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Abstract

Determining the complexity of computing Gröbner bases is an important problem both in
theory and in practice, and for that the solving degree plays a key role. In this paper, we study
the solving degrees of affine semi-regular sequences and their homogenized sequences. Some of
our results are considered to give mathematically rigorous proofs of the correctness of methods for
computing Gröbner bases of the ideal generated by an affine semi-regular sequence. This paper is
a sequel of the authors’ previous work [28] and gives additional results on the solving degrees and
important behaviors of Gröbner basis computation.

1 Introduction

Let K be a field, and let K denote its algebraic closure. We denote by An
K (resp. Pn

K) the n-
dimensional affine (resp. projective) space over K. Let R = K[x1, . . . , xn] be the polynomial
ring in n variables over K. For a given monomial ordering ≺ on the set of monomials in R, let
LM(f) denote the leading monomial of f ∈ R ∖ {0} with respect to it. For a non-empty subset
F ⊂ R ∖ {0}, put LM(F ) := {LM(f) : f ∈ F}. A set F (resp. a sequence F ) of polynomials in
R is said to be homogeneous if the elements of F (resp. F ) are all homogeneous, and otherwise
F is said to be affine. We denote by 〈F 〉R (or 〈F 〉 simply) the ideal generated by a non-empty
subset F of R. For a polynomial f in R ∖ {0}, let f top denote its maximal total degree part
which we call the top part of f , and let fh denote its homogenization in R′ = R[y] by an extra
variable y, see Subsection A.2 below for details. For a sequence F = (f1, . . . , fm) ∈ (R ∖ {0})m,
we also set F top := (f top

1 , . . . , f top
m ) and F h := (fh

1 , . . . , f
h
m). For a finitely generated graded R-(or

R′-)module M , we also denote by HFM and HSM its Hilbert function and its Hilbert–Poincaré
series, respectively.

A Gröbner basis of an ideal I in R is defined as a special kind of generating set for I, and
it gives a computational tool to determine many properties of I. A typical application of com-
puting Gröbner bases is solving the multivariate polynomial (MP) problem: Given a sequence
F = (f1, . . . , fm) of m polynomials f1, . . . , fm in R ∖ {0}, find (a1, . . . , an) ∈ Kn such that
fi(a1, . . . , an) = 0 for all i with 1 ≤ i ≤ m. A particular case where f1, . . . , fm are all quadratic
is called the MQ problem, and its hardness is applied to constructing public-key cryptosystems
and digital signature schemes that are expected to be quantum resistant. Therefore, analyzing the
complexity of computing Gröbner bases is one of the most important problems both in theory and
in practice.
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An algorithm for computing Gröbner bases was proposed first by Buchberger [5], and so far a
number of its improvements such as the F4 [17] and F5 [18] algorithms have been proposed. In
determining the complexity of computing Gröbner bases, as we will see in the first paragraph of
Subsection 2.2 below, one of the most important cases is the case where the input system is zero-
dimensional and where the monomial ordering is graded (i.e., degree-compatible), and we focus on
that case in the rest of this paper. Namely, we suppose that the input sequence F = (f1, . . . , fm)
admits a finite number of zeros in An

K
(resp. Pn−1

K
) if F is affine (resp. homogeneous), and we

consider a monomial ordering ≺ on R that compares monomials first by their total degrees, e.g.,
a degree reverse lexicographical (DRL) ordering. Then, the complexity of the Gröbner basis
computation for F = {f1, . . . , fm} is estimated as a function of the solving degree(s): To the
authors’ best knowledge, there are three (in fact four) kinds of definitions of solving degree, and
they will be rigorously described in Subsection 2.2 below. In the first definition, the solving degree
is defined as the highest degree of the polynomials involved during the Gröbner basis computation.
Since this solving degree depends on an algorithm A that one adopts, we denote it by sdA

≺(F ). On
the other hand, in the second and the third definitions, which were originally provided in a series of
Gorla et al.’s studies (cf. [7], [4], [22], [8], [21]), we can see that the solving degrees do not depend
on an algorithm, but only on F and ≺. The solving degree in the second (resp. third) definition
is defined by using Macaulay matrices (resp. those with mutants), and it is denoted by sdmac

≺ (F )
(resp. sdmut

≺ (F )) in this paper, where the subscripts “mac” and “mut” stand for Macaulay matrices
and mutants respectively. Note that, when F is homogeneous, these three solving degrees coincide
with one another (for A with suitable setting) and we call them the solving degree simply; they
are equal to the maximal Gröbner basis degree max.GB.deg≺(F ) of F with respect to ≺. In this
case, we can apply a well-known bound [29, Theorem 2] by Lazard. In the following, we mainly
treat with the case where F is affine.

In their celebrated works (cf. [7], [4], [22], [8], [21]), Gorla et al. have studied well the rela-
tions between the solving degrees sdmac

≺ (F ) and sdmut
≺ (F ) and other invariants such as the degree

of regularity and the Castelnuovo–Mumford regularity. Their results provide a mathematically
rigorous framework for estimating the complexity of computing Gröbner bases. In particular,
Caminata-Gorla [7] proved the following upper-bound on sdmac

≺ (F ) by using Lazard’s bound:

• ([7, Theorem 11]) When K = Fq, the solving degree sdmac
≺ (F ) for a DRL ordering ≺ can be

upper-bounded by the Macaulay bound d1 + · · · + dℓ − ℓ + 1 with d1 ≥ d2 ≥ · · · ≥ dm and
ℓ = min{n+ 1, ℓ}, if F contains the field equations xqi − xi for all 1 ≤ i ≤ n.

As for upper-bounds on the solving degrees sdA
≺(F ) and sdmut

≺ (F ), we know the following:

• Semaev-Tenti [38] (see also Tenti’s PhD thesis [39]) constructed a Buchberger-like algorithm
A for the case K = Fq such that sdA

≺(F ) ≤ 2D−2 with D := dreg(〈F top〉) for a DRL ordering
≺, assuming that {xqi − xi : 1 ≤ i ≤ n} ⊂ F and max{q, deg(f1), . . . , deg(fm)} ≤ D. Here
dreg(〈F top〉) is the degree of regularity for F top, i.e., the smallest integer d with Rd = 〈F top〉d,
where Rd denotes the homogeneous part (component) of degree d and where we set Id = I∩Rd

for a homogeneous ideal I of R.

• Caminata-Gorla proved in [8, Theorem 3.1] that sdmut
≺ (F ) = max{dF ,max.GB.deg≺(F )} for

any graded monomial ordering ≺, where dF denotes the last fall degree of F defined in [8,
Definition 1.5] (originally in [25], [24]). Recently, Salizzoni [37] also proved sdmut

≺ (F ) ≤ D+1,
in the case where max{deg(f1), . . . , deg(fm)} ≤ D <∞.

In this paper, by a mathematically rigorous way following Gorla et al.’s works, we study the
solving degrees and related Gröbner bases of affine semi-regular polynomial sequences, where a
sequence F = (f1, . . . , fm) ∈ (R ∖ K)m of (not necessarily homogeneous) polynomials is said
to be affine semi-regular (resp. affine cryptographic semi-regular) if F top = (f top

1 , . . . , f top
m ) is
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semi-regular (resp. cryptographic semi-regular), see Definitions 2.1.3, 2.1.9, and 2.1.12 for details.
Note that homogeneous semi-regular sequences are conjectured by Pardue [34, Conjecture B] to
be generic sequences of polynomials (see e.g., [34] for the definition of genericness), and affine
(cryptographic) semi-regular sequences are often appearing in the construction of multivariate
public key cryptosystems and digital signature schemes. As a sequel of the authors’ previous work
[28], we investigate further results on the solving degrees and on behaviors of the computation of
Gröbner bases.

As the first main result in this paper, we revisit the result in our previous paper [28] with some
additional remarks, which shall give an explicit characterization (Theorem 1 below) of the Hilbert
function and the Hilbert-Poincaré series associated to the homogenization Fh. This characteriza-
tion is useful to analyze the Gröbner basis computation for both F and Fh.

Theorem 1 (Theorem 3.1.1, Remark 3.1.2, Remark 3.1.3 and Corollary 3.1.5). With notation as
above, assume that F is affine cryptographic semi-regular, and put D := dreg(〈F top〉). Then, we
have the following:

(1) For each d with d < D, we have HFR′/⟨Fh⟩(d) = HFR/⟨F top⟩(d) + HFR′/⟨Fh⟩(d − 1), and

hence HFR′/⟨Fh⟩(d) =
∑d

i=0 HFR/⟨F top⟩(i).

(2) The Hilbert function HFR′/⟨Fh⟩ is unimodal and its highest value is attained at d = D − 1.

In more detail, the multiplication map by y from (R′/〈Fh〉)d−1 to (R′/〈Fh〉)d is injective for
d < D and surjective for d ≥ D.

(3) There exists d0 such that HFR′/⟨Fh⟩(d0) = HFR′/⟨Fh⟩(d) for all d with d ≥ d0, namely the

number of projective zeros for Fh is finite at most. Here, d0 gives an upper-bound on the
solving degree of Fh (or equivalently the maximal degree of the Gröbner basis of 〈Fh〉).

(4) HSR′/⟨Fh⟩(z) ≡
∏m

i=1(1 − z
di)/(1 − z)n+1 (mod zD), so that Fh is D-regular, equivalently

syz(Fh)<D = tsyz(Fh)<D. Here we denote by syz(Fh) and tsyz(Fh) the module of syzygies
of Fh and that of trivial syzygies of Fh, respectively (see Appendix A.1 for the definition of
syz(Fh) and tsyz(Fh)).

As for (3) of Theorem 1, it follows from the proof of Lazard’s bound [29, Theorem 2] that
max.GB.deg≺h(Fh) ≤ d0 for a DRL ordering ≺ (we give an explicit proof for this in Lemma 2.2.2
below), where ≺h is the homogenization of ≺. As in [7, Theorem 11] recalled above, we can apply
Lazard’s bound to obtaining d0 ≤ d1 + · · · + dℓ − ℓ + 1 with di = deg(fi) and ℓ = min{n + 1, ℓ},
assuming d1 ≥ · · · ≥ dm in descending order. As an additional result in this paper, we also obtain
the following upper-bound on the solving degree of Fh:

Theorem 2 (Theorem 3.2.3 and Proposition 3.2.5). (1) Suppose that that d1 ≤ d2 ≤ · · · ≤ dm
(in ascending order) and m > n. If F top satisfies a stronger condition that it is semi-regular,
then the solving degree of Fh is upper-bounded by d1 + d2 + · · ·+ dn + dm − n. Moreover, if
dm ≤ D, the solving degree of Fh is upper-bounded by d1 + d2 + · · ·+ dn + dn+1 − n.

(2) Let S0 be the saturation exponent of (〈Fh〉 : 〈y∞〉), that is, the minimum integer s such that
(〈Fh〉 : 〈ys〉) = (〈Fh〉 : 〈y∞〉). Then the solving degree of Fh is upper-bounded by D + s0.

Based on Theorem 1, we can explore the computations of reduced Gröbner bases of 〈F 〉, 〈Fh〉,
and 〈F top〉 in Section 4 below, dividing the cases into the degree less than D or not. More precisely,
denoting by G, Ghom, and Gtop the reduced Gröbner bases of 〈F 〉, 〈Fh〉, and 〈F top〉 respectively,
where their monomial orderings are DRL ≺ or its extension ≺h, we revisit [28, Section 5] and
obtain more precise results:

Theorem 3 (Section 4; cf. [28, Section 5]). With notation as above, assume that F is affine
cryptographic semi-regular, and that D := dreg(〈F top〉) <∞.
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(1) LM(Ghom)d = LM(Gtop)d for each degree d < D. This implies that the Gröbner basis
computation process for 〈Fh〉 corresponds to that for 〈F 〉, for each degree less than D.

(2) 〈LM((Ghom)≤D)〉R[y] ∩ RD = RD. Moreover, for each element g in (Ghom)D with gtop :=
g(x1, . . . , xn, 0) 6= 0, the top-part gtop consists of one term, that is, gtop = LT(g).

(3) There is a strong correspondence between the computation of Ghom and that of G at early
stages, namely, at the step degrees not greater than D.

(4) If D ≥ max{deg(f) : f ∈ F}, then the maximal Gröbner basis degree with respect to a DRL
ordering ≺ is upper-bounded by D. Moreover, there exists a Buchberger-like algorithm A
whose solving degree sdA

≺(F ) is upper-bounded by 2D − 1, and by 2D − 2 in the strict sense
(see (I) in Subsection 2.2 for details on the definition of the terminology ‘strict sense’).

Note that (2) and the first half of (4) hold not necessarily assuming the affine cryptographic semi-
regularity of F .

In particular, we rigorously prove some existing results, which are often used for analyzing the
complexity of computing Gröbner bases, and moreover extend them to our case.

Notation

• R = K[x1, . . . , xn]: The polynomial ring of n variables over a field K.

• deg(f): The total degree of f ∈ R.
• f top: The maximal total degree part of f ∈ R, namely, f top is the sum of all terms of f

whose total degree equals to deg(f).

• fh: The homogenization of f ∈ R∖{0} by an extra variable y, say fh := ydeg(f)f(x1/y, . . . , xn/y).

• HFM : The Hilbert function of a finitely generated graded R-module M =
⊕

d∈ZMd, say
HFM (d) = dimKMd for each d ∈ Z≥0.

• HSM : The Hilbert–Poincaré series of a finitely generated graded R-module M =
⊕

d∈ZMd,

say HSM (z) =
∑∞

d=0 HFM (d)zd ∈ ZJzK.
• K•(f1, . . . , fm): The Koszul complex on a sequence (f1, . . . , fm) of homogeneous polynomials

in R.

• Hi(K•(f1, . . . , fm)): The i-th homology group of the Koszul complex K•(f1, . . . , fm).

As for the definition of Koszul complex and homogenization, see Appendix A for details.

2 Preliminaries

In this section, we recall definitions of semi-regular sequences and solving degrees, and collect some
known facts related to them.

2.1 Semi-regular sequences

We first review the notion of semi-regular sequence defined by Pardue [34].

Definition 2.1.1 (Semi-regular sequences, [34, Definition 1]). Let I be a homogeneous ideal of
R. A degree-d homogeneous element f ∈ R is said to be semi-regular on I if the multiplication
map (R/I)t−d −→ (R/I)d ; g 7−→ gf is injective or surjective, for every t with t ≥ d. A sequence
(f1, . . . , fm) ∈ (R ∖ {0})m of homogeneous polynomials is said to be semi-regular on I if fi is
semi-regular on I + 〈f1, . . . , fi−1〉R, for every i with 1 ≤ i ≤ m.
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Throughout the rest of this subsection, let f1, . . . , fm ∈ R ∖ K be homogeneous elements of
degree d1, . . . , dm respectively, unless otherwise noted, and put I = 〈f1, . . . , fm〉R, I(0) := {0}, and
A(0) := R/I(0) = R. For each i with 1 ≤ i ≤ m, we also set I(i) := 〈f1, . . . , fi〉R and A(i) := R/I(i).

The degree-d homogeneous part A
(i)
d of each A(i) is given by A

(i)
d = Rd/I

(i)
d , where I

(i)
d = I(i)∩Rd.

We denote by ψfi the multiplication map

A(i−1) 3 g 7−→ gfi ∈ A(i−1),

which is a graded homomorphism of degree di. For every t with t ≥ di, the restriction map

ψfi |A(i−1)
t−di

: A
(i−1)
t−di

−→ A
(i−1)
t

is a K-linear map.
The semi-regularity is characterized by equivalent conditions in Proposition 2.1.2 below. In

particular, the fourth condition enables us to compute the Hilbert–Poincaré series of each A(i).

Proposition 2.1.2 (cf. [34, Proposition 1]). With notation as above, the following are equivalent:

1. The sequence (f1, . . . , fm) is semi-regular.

2. For each 1 ≤ i ≤ m and for each t ≥ di, the multiplication map ψfi |A(i−1)
t−di

is injective or

surjective, namely dimK A
(i)
t = max{0, dimK A

(i−1)
t − dimK A

(i−1)
t−di
}.

3. For each i with 1 ≤ i ≤ m, we have HSA(i)(z) = [HSA(i−1)(z)(1 − zdi)], where [·] means
truncating a formal power series over Z after the last consecutive positive coefficient.

4. For each i with 1 ≤ i ≤ m, we have HSA(i)(z) =

[∏i
j=1(1−z

dj )

(1−z)n

]
.

When K is an infinite field, Pardue also conjectured in [34, Conjecture B] that generic poly-
nomial sequences are semi-regular.

We next review the notion of cryptographic semi-regular sequence, which is defined by a condi-
tion weaker than one for semi-regular sequence. The notion of cryptographic semi-regular sequence
is introduced first by Bardet et al. (e.g., [2], [3]) motivated to analyze the complexity of comput-
ing Gröbner bases. Diem [13] also formulated cryptographic semi-regular sequences, in terms of
commutative and homological algebra. The terminology “cryptographic” was named by Bigdeli et
al. in their recent work [4], in order to distinguish such a sequence from a semi-regular one defined
by Pardue (see Definition 2.1.1).

Definition 2.1.3 ([2, Definition 3]; see also [13, Definition 1]). Let f1, . . . , fm ∈ R be homogeneous
polynomials of positive degrees d1, . . . , dm respectively, and put I = 〈f1, . . . , fm〉R. For each integer
d with d ≥ max{di : 1 ≤ i ≤ m}, we say that a sequence (f1, . . . , fm) is d-regular if it satisfies the
following condition:

• For each i with 1 ≤ i ≤ m, if a homogeneous polynomial g ∈ R satisfies gfi ∈ 〈f1, . . . , fi−1〉R
and deg(gfi) < d, then we have g ∈ 〈f1, . . . , fi−1〉R. In other word, the multiplication map

A
(i−1)
t−di

−→ A
(i−1)
t ; g 7→ gfi is injective for every t with di ≤ t < d.

Diem [13] determined the (truncated) Hilbert series of d-regular sequences as in the following
proposition:

Theorem 2.1.4 (cf. [13, Theorem 1]). With the same notation as in Definition 2.1.3, the following
are equivalent for each d with d ≥ max{di : 1 ≤ i ≤ m}:

1. The sequence (f1, . . . , fm) is d-regular. Namely, for each (i, t) with 1 ≤ i ≤ m and di ≤ t < d,

the equality dimK A
(i)
t = dimK A

(i−1)
t − dimK A

(i−1)
t−di

holds.
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2. We have

HSA(m)(z) ≡
∏m

j=1(1− z
dj )

(1− z)n (mod zd). (2.1.1)

3. H1(K•(f1, . . . , fm))≤d−1 = 0.

Proposition 2.1.5 ([13, Proposition 2 (a)]). With the same notation as in Definition 2.1.3, let
D and i be natural numbers. Assume that Hi(K(f1, . . . , fm))≤D = 0. Then, for each j with
1 ≤ j < m, we have Hi(K(f1, . . . , fj))≤D = 0.

Definition 2.1.6. A finitely generated graded R-module M is said to be Artinian if there exists
a sufficiently large D ∈ Z such that Md = 0 for all d ≥ D.

Definition 2.1.7 ([2, Definition 4], [3, Definition 4]). For a homogeneous ideal I of R, we define its
degree of regularity dreg(I) as follows: If the finitely generated graded R-module R/I is Artinian,
we set dreg(I) := min{d : Rd = Id}, and otherwise we set dreg(I) :=∞.

As for an upper-bound on the degree of regularity, we refer to [21, Theorem 21].

Remark 2.1.8. In Definition 2.1.7, since R/I is Noetherian, it is Artinian if and only if it is of
finite length. In this case, the degree of regularity dreg(I) is equal to the Castelnuovo-Mumford
regularity reg(I) of I (see e.g., [15, §20.5] for the definition), whence dreg(I) = reg(I) = reg(R/I)+1.

Definition 2.1.9 ([2, Definition 5], [3, Definition 5]; see also [13, Section 2]). A sequence
(f1, . . . , fm) ∈ (R ∖ K)m of homogeneous polynomials is said to be cryptographic semi-regular
if it is dreg(I)-regular, where we set I = 〈f1, . . . , fm〉R.

The cryptographic semi-regularity is characterized by equivalent conditions in Proposition
2.1.10 below.

Proposition 2.1.10 ([13, Proposition 1 (d)]; see also [3, Proposition 6]). With the same notation
as in Definition 2.1.3, we put D = dreg(I). Then, the following are equivalent:

1. (f1, . . . , fm) ∈ (R ∖K)m is cryptographic semi-regular.

2. We have

HSR/I(z) =

[∏m
j=1(1− z

dj )

(1− z)n

]
. (2.1.2)

3. H1(K•(f1, . . . , fm))≤D−1 = 0.

Remark 2.1.11. By the definition of degree of regularity, if (f1, . . . , fm) is cryptographic semi-
regular, then dreg(I) coincides with deg(HSR/I(z)) + 1, where we set I = 〈f1, . . . , fm〉R.

In 1985, Fröberg had already conjectured in [20] that, when K is an infinite field, a generic
sequence of homogeneous polynomials f1, . . . , fm ∈ R of degrees d1, . . . , dm generates an ideal I
with the Hilbert–Poincaré series of the form (2.1.2), namely (f1, . . . , fm) is cryptographic semi-
regular. It can be proved (cf. [34]) that Fröberg’s conjecture is equivalent to Pardue’s one [34,
Conjecture B]. We also note that Moreno-Soćıas conjecture [33] is stronger than the above two
conjectures, see [34, Theorem 2] for a proof.

It follows from the fourth condition of Proposition 2.1.2 together with the second condition of
Proposition 2.1.10 that the semi-regularity implies the cryptographic semi-regularity. Note that,
when m ≤ n, both ‘semi-regular’ and ‘cryptographic semi-regular’ are equivalent to ‘regular’.

Finally, we define an affine semi-regular sequence.

Definition 2.1.12 (Affine semi-regular sequences). A sequence F = (f1, . . . , fm) ∈ (R ∖K)m of
not necessarily homogeneous polynomials f1, . . . , fm is said to be semi-regular (resp. cryptographic
semi-regular) if F top = (f top

1 , . . . , f top
m ) is semi-regular (resp. cryptographic semi-regular). In this

case, we call F an affine semi-regular (resp. affine cryptographic semi-regular) sequence.
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2.2 Solving degrees of Gröbner basis computation

In general, determining precisely the complexity of computing a Gröbner basis is very difficult; in
the worst-case, the complexity is doubly exponential in the number of variables, see e.g., [9], [31],
[35] for surveys. However, it is experimentally well-known that a Gröbner basis with respect to
a graded monomial ordering, in particular degree reverse lexicographical (DRL) ordering, can be
computed quite more efficiently than ones with respect to other orderings in general. Moreover,
in the case where the input set F = {f1, . . . , fm} of polynomials generate a zero-dimensional
inhomogeneous ideal, once a Gröbner basis G with respect to an efficient monomial ordering ≺ is
computed, a Gröbner basis G′ with respect to any other ordering ≺′ can be computed easily by
the FGLM basis conversion [19]. Even when F is homogeneous, one can efficiently convert G to
G′ by Gröbner walk [11] (or Hilbert driven [40] if both ≺ and ≺′ are graded). From this, we focus
on the case where the monomial ordering is graded, and if necessary we also assume that the ideal
generated by the input polynomials is zero-dimensional.

Definitions of solving degrees In the case where the chosen monomial ordering is graded,
the complexity of computing a Gröbner basis is often estimated with the so-called solving degree.
To the best of the authors’ knowledge, there are three (in fact four) kinds of definitions of solving
degree, and we here review them. The first definition is explicitly provided first by Ding and
Schmidt in [14], and it depends on algorithms or their implementations:

(I) As the first definition, we define the solving degree of an algorithm to compute a Gröbner
basis as the highest degree of the polynomials involved during the execution of the algorithm,
see [14, p. 36]. For example, applying Buchberger’s algorithm or its variants such as F4 with
the normal strategy, we collect critical S-pairs with the lowest degree and then reduce the
corresponding S-polynomials in each iteration of the main loop of reductions. The lowest
degree of each iteration is called the step degree. Then the solving degree is defined as the
highest step degree. Instead, we may adopt the highest degree of S-polynomials appearing
in the whole computation as in [39] and [38] by Semaeve-Tenti, and in this case we use the
terminology “the solving degree in the strict sense”.

(I)’ Their is a variant of the above first definition, where the solving degree is defined as a value
depending not only on an algorithm but also on its implementation. More precisely, in [14,
Section 2.1], the authors use the term solving degree for the step degree at which it takes
the most amount of time among all iterations. In the cryptographic literature, the term
solving degree often means this solving degree. Although this solving degree is estimated
based on experiments, it is practically a quite important ingredient for analyzing the security
of multivariate cryptosystems. The degree of regularity dreg(〈F top〉) can be often used as a
proxy for this solving degree.

We do not consider the solving degree in (I)’, since this paper focuses on theoretical aspects on
computing Gröbner bases, but not on aspects in practical implementation. For a graded monomial
ordering ≺ on R and an input set F of non-zero polynomials in R, we denote by sdA

≺(F ) the solving
degree in (I) of an algorithm A to compute a Gröbner basis of F with respect to ≺.

On the other hand, Caminata and Gorla [7] defined the solving degree of an input system,
so that it does not depend on an algorithm, by using Macaulay matrices. Here, a Macaulay
matrix is defined as follows: For a (fixed) graded monomial ordering ≺ and a finite sequence H =
(h1, . . . , hk) ∈ (R∖ {0})k with d := max{deg(hi) : 1 ≤ i ≤ k}, writing each hi as hi =

∑ℓ
j=1 ci,jtj ,

where T≤d = {t1, . . . , tℓ−1, tℓ = 1} is the set of monomials in R of degree ≤ d with t1 � · · · � tℓ,
the Macaulay matrix of H, denoted by Mac≺(H) is defined to be the k × ℓ matrix (ai,j)i,j over
K (we let Mac≺(H) be the 1 × 1 zero-matrix if H is empty). Moreover, for each non-negative
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integer d, the degree-d Macaulay matrix of F , denoted by M≤d(F ) when ≺ is fixed, is defined
as M≤d(F ) := Mac≺(S≤d(F )), where S≤d(F ) is a sequence of the multiples tf for f ∈ F with
deg(f) ≤ d and t ∈ T≤d−deg(f). Namely, the rows of M≤d(F ) correspond to tf ’s above, and the
columns are indexed by the monomials of degree at most d in descending order with respect to ≺.
Note that the order of elements in S≤d(F ) can be arbitrary.

(II) We define the solving degree of F with respect to a fixed (graded) monomial ordering as
the lowest degree d at which the reduced row echelon form (RREF) of M≤d(F ) produces a
Gröbner basis of F .

Note that the computation of the RREF ofM≤d(F ) corresponds to the standard XL algorithm [10],
which is based on an idea of Lazard [29].

The third definition is given in Gorla et al.’s works (cf. [4], [22], [8], [21]), see also [37]. More
precisely, for each non-negative integer d ∈ Z≥0, let VF,d be the smallest K-vector space such that
{f ∈ F : deg(f) ≤ d} ⊂ VF,d and {tf : f ∈ VF,d, t ∈ T≤d−deg(f)} ⊂ VF,d, where T≤d denotes the
set of all monomials in R of degree at most d. Then the third definition is as follows:

(III) The solving degree of F is defined as the smallest d for which VF,d contains a Gröbner basis
of F with respect to a fixed monomial ordering.

We can also describe the solving degree in (III) with Macaulay matrices. Specifically, we consider
to compute a Gröbner basis of F by the following mutant strategy:

• Initialize d as d = max{deg(f) : f ∈ F}. Compute the RREF of M≤d(F ). If the RREF
contains a polynomial f with deg(f) < d whose leading monomial is not equal to that of any
row of M≤d(F ), add to the RREF the new rows corresponding to tf for all t ∈ T≤d−deg(f)

such that tf does not belong to the linear space spanned by the rows of the RREF. Repeat
the computation of the RREF and the operation of adding new rows, until there are no
new rows to add. If the resulting matrix produces a Gröbner basis of F , then we stop, and
otherwise we proceed to the next degree, d+ 1.

This strategy computes a basis of VF,d for each d, and therefore the smallest d for which the mutant
strategy terminates is equal to the solving degree of F in terms of (III), see [22, Theorem 1]. As in
[21], we refer to the algorithms such as Mutant-XL [6] and MXL2 [32] that employ this strategy
as mutant algorithms. In the following, we denote the solving degree in (II) and that in (III)
respectively by sdmac

≺ (F ) and sdmut
≺ (F ). By definitions, it is clear that sdmut

≺ (F ) ≤ sdmac
≺ (F ) for

any graded monomial oredering ≺, and the equality holds if the elements in F are all homogeneous.
In a series of their celebrated works (cf. [7], [4], [22], [8], [21]), Gorla et al. provided a mathemat-

ical formulation for the relations between the solving degrees sdmac
≺ (F ) and sdmut

≺ (F ) and algebraic
invariants coming from F , such as the maximal Gröbner basis degree, the degree of regularity, the
Castelnuovo–Mumford regularity, the first and last degrees, and so on. Here, the maximal Gröbner
basis degree of the ideal 〈F 〉R is the maximal degree of elements in the reduced Gröbner basis of
〈F 〉R with respect to a fixed monomial ordering ≺, and is denoted by max.GB.deg≺(F ). For any
graded monomial oredering ≺, it is straightforward that

max.GB.deg≺(F ) ≤ sdmut
≺ (F ) ≤ sdmac

≺ (F ). (2.2.1)

Upper bounds on solving degree If F consists of homogeneous elements, then one has
sdmac

≺ (F ) = sdmut
≺ (F ), and moreover these solving degrees are equal to sdA

≺(F ) if the algorithm
A incrementally computes the reduced d-Gröbner basis for each d in increasing the degree d. For
example, Buchberger algorithm, F4, F5, matrix-F5, and Hilbert driven algorithm are the cases.
Furthermore, the equalities in (2.2.1) hold, and hence we can use a bound on max.GB.deg≺(F ).
Since we are now considering the zero-dimensional case, we can apply Lazard’s upper-bound below.
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In the non-homogeneous case, i.e., F contains at least one non-homogeneous element, the
euqalities in (2.2.1) do not hold in general, and it is not so easy to estimate any of the solving
degrees. A straightforward way of bounding the solving degrees in the non-homogeneous case is
to apply the homogenization as follows. We set ≺ as the DRL ordering on R with xn ≺ · · · ≺ x1,
and fix it throughout the rest of this subsection. Let y be an extra variable for homogenization
as in Subsection A.2, and ≺h the homogenization of ≺, so that y ≺ xi for any i with 1 ≤ i ≤ n.
Then, we have

max.GB.deg≺(F ) ≤ sdmac
≺ (F ) = sdmac

≺h (Fh) = max.GB.deg≺h(F
h),

see [7] for a proof. Here, we also recall Lazard’s bound for the maximal Gröbner basis degree of
〈Fh〉R′ with R′ = R[y]:

Theorem 2.2.1 (Lazard; [29, Theorem 2], [30, Théorèm 3.3]). With notation as above, we assume
that the number of projective zeros of Fh is finite (and therefore m ≥ n), and that fh

1 = · · · =
fh
m = 0 has no non-trivial solution over the algebraic closure K with y = 0, i.e., F top has no
solution in K

n
other than (0, . . . , 0). Then, supposing also that d1 ≥ · · · ≥ dm, we have

max.GB.deg≺h(F
h) ≤ d1 + · · ·+ dℓ − ℓ+ 1 (2.2.2)

with ℓ := min{m,n+ 1}.
One of the most essential parts for the proof of Theorem 2.2.1 is an argument stated in the

following lemma (we here write a proof for readers’ convenience):

Lemma 2.2.2. With notation as above, let d0 be a positive integer satisfying the following two
properties:

1. The multiplication-by-y map (R′/〈Fh〉)d0−1 −→ (R′/〈Fh〉)d0 is surjective.

2. For any d ∈ Z with d ≥ d0, the multiplication-by-y map (R′/〈Fh〉)d −→ (R′/〈Fh〉)d+1 is
injective.

Then we have max.GB.deg≺h(Fh) ≤ d0.

Proof. Let G be a Gröbner basis of 〈Fh〉 with respect to ≺h. Clearly, we may suppose that each
element of G is homogeneous. It suffices to prove that G≤d0 := {g ∈ G : deg(g) ≤ d0} is a Gröbner
basis of 〈Fh〉 with respect to ≺h. Indeed, the maximal degree of the reduced Gröbner basis of
〈Fh〉 with respect to ≺h is not greater than that of any Gröbner basis of 〈Fh〉 with respect to ≺h.

Let f ∈ 〈Fh〉, and d := deg(f). We show that there exists g ∈ G≤d0 with LM(g) | LM(f),
by the induction on d. It suffices to consider the case where f is homogeneous, since 〈Fh〉 is
homogeneous. The case where d ≤ d0 is clear, and so we assume d > d0.

First, if LM(f) ∈ R = K[x1, . . . , xn] (namely y ∤ LM(f)), we choose an arbitrary monomial
t ∈ R of degree d0 with t | LM(f). Since the multiplication map (R′/〈Fh〉)d0−1 −→ (R′/〈Fh〉)d0 by
y is surjective, there exists a homogeneous polynomial h ∈ (R′)d0−1 such that h1 := t−yh ∈ 〈Fh〉.
Here, h1 is homogeneous of degree d0, and y ∤ t, whence LM(h1) = t. Therefore, we have LT(g) | t
for some g ∈ G. Since deg(t) = d0, we also obtain deg(g) ≤ d0, so that g ∈ G≤d0 .

Next, assume that y | LM(f). In this case, it follows from the definition of ≺h that any other
term in f is also divisible by y, so that f ∈ 〈y〉. Hence, we can write f = yf1 for some homogeneous
f1 ∈ R′. By d− 1 ≥ d0, the multiplication map (R′/〈Fh〉)d−1 −→ (R′/〈Fh〉)d by y is injective, so
that f1 ∈ 〈Fh〉d−1. By the induction hypothesis, there exists g ∈ G≤d0 such that LM(g) | LM(f1).
Since LM(f) = yLM(f1), we obtain LM(g) | LM(f). We have proved that G≤d0 is a Gröbner basis
of 〈Fh〉 with respect to ≺h.
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Lazard proved that we can take d1 + · · ·+ dℓ − ℓ+ 1 in Theorem 2.2.1 as d0 in Lemma 2.2.2.
Lazard’s bound given in (2.2.2) is also referred to as the Macaulay bound, and it provides an
upper-bound for the solving degree of F with respect to a DRL ordering.

As for the maximal Gröbner basis degree of 〈F 〉, if 〈F top〉 is Aritinian, we have

max.GB.deg≺′(F ) ≤ dreg(〈F top〉) (2.2.3)

for any graded monomial ordering ≺′ on R, see [7, Remark 15] or Lemma 4.2.4 below for a
proof. Both dreg(〈F top〉) and sdmac

≺ (F ) are greater than or equal to max.GB.deg≺(F ), whereas
it is pointed out in [4], [7], and [8] by explicit examples that any of the degree of regularity and
the first fall degree does not produce an estimate for the solving degrees in general, even when F
is an affine (cryptographic) semi-regular sequence. Caminata-Gorla proved in [8] that the solving
degree sdmut

≺ (F ) is nothing but the last fall degree if it is greater than the maximal Gröbner basis
degree:

Theorem 2.2.3 ([8, Theorem 3.1]). With notation as above, for any degree-compatible monomial
ordering ≺′ on R, we have the following equality:

sdmut
≺′ (F ) = max{dF ,max.GB.deg≺′(F )},

where dF denotes the last fall degree of F defined in [8, Definition 1.5] (originally in [25], [24]).

By this theorem, if dreg(〈F top〉) < dF , the degree of regularity is no longer an upper-bound on
the solving degrees sdmac

≺ (F ) and sdmut
≺ (F ). Recently, Salizzoni [37] proved the following theorem:

Theorem 2.2.4 ([37, Theorem 1.1]). With notation as above, we also set D = dreg(〈F top〉), and
assume that D ≥ max{deg(f) : f ∈ F}. Then, for any graded monomial ordering ≺′ on R, we
have sdmut

≺′ (F ) ≤ D+1. Moreover, a Gröbner basis of F can be find in O((n+1)4(d+1)) operations
in K.

On the other hand, Semaev and Tenti proved that the solving degree sdA
≺(F ) for some algorithm

A is linear in the degree of regularity, if K is a (small) finite field, and if the input system contains
polynomials related to the field equations, say xqi − xi for 1 ≤ i ≤ n:
Theorem 2.2.5 ([38, Theorem 2.1], [39, Theorem 3.65 & Corollary 3.67]). With notation as above,
assume that K = Fq, and that F contains xqi − xi for all 1 ≤ i ≤ n. If D ≥ max{deg(f) : f ∈ F}
and D ≥ q, then there exists a Buchberger-like algorithm A to compute the reduced Gröbner basis
of F with S-polynomials such that

sdA
≺(F ) ≤ 2D − 1. (2.2.4)

and
sdA

≺(F ) ≤ 2D − 2. (2.2.5)

in the strict sense (see the definition (I) of the solving degree for details). Furthermore, the
complexity of the algorithm A is

O(Lq(n,D)2Lq(n,D − 1)2Lq(n, 2D − 2))

operations in K, where Lq(n, d) denotes the number of monomials in Fq[x1, . . . , xn]/〈xq1, . . . , xq
n〉

of degree ≤ d.
In Subsection 4.2 below, we will prove the same inequality as in (2.2.4), in the case where F

not necessarily contains a field equation but is cryptographic semi-regular.
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3 Proofs of Theorems 1 and 2

In this section, we shall prove Theorems 1 and 2 stated in Section 1. As in the previous section,
let K be a field, and R = K[X] = K[x1, . . . , xn] denote the polynomial ring of n variables over K.
We denote by Rd the homogeneous part of degree d, that is, the set of homogeneous polynomials
of degree d and 0. As in Theorems 1 and 2, let F = {f1, . . . , fm} be a set of not necessarily
homogeneous polynomials in R of positive degrees d1, . . . , dm, and put F = (f1, . . . , fm). Recall
Definition 2.1.9 for the definition of cryptographic semi-regular sequences.

3.1 Bounded regularity of homogenized sequences

Here we revisit the main results in [28, Section 4]. For the readability, we remain the proofs. Also,
as additional remarks, we explicitly give an important property of the Hilbert-Poincaré series of
R′/〈Fh〉 with R′ = R[y], and also give an alternative proof for [28, Theoem 7] (Theorem 3.1.1
below).

The Hilbert-Poincaré series associated to a (homogeneous) cryptographic semi-regular sequence
is given by (2.1.2). On the other hand, the Hilbert-Poincaré series associated to the homogenizaton
Fh cannot be computed without knowing its Gröbner basis in general, but we shall prove that
it can be computed up to the degree dreg(〈F top〉) − 1 if F is affine cryptographic semi-regular,
namely F top = (f top

1 , . . . , f top
m ) is cryptographic semi-regular.

Theorem 3.1.1 (Theorem 1 (1); [28, Theoem 7]). Let R′ = R[y], and let F = (f1, . . . , fm) be a
sequence of not necessarily homogeneous polynomials in R of positive degrees. Assume that F is
affine cryptographic semi-regular. Then, for each d with d < D := dreg(〈F top〉), we have

HFR′/⟨Fh⟩(d) = HFR/⟨F top⟩(d) + HFR′/⟨Fh⟩(d− 1), (3.1.1)

and hence
HFR′/⟨Fh⟩(d) = HFR/⟨F top⟩(d) + · · ·+HFR/⟨F top⟩(0), (3.1.2)

whence we can compute the value HFR′/⟨Fh⟩(d) from the formula (2.1.2).

Proof. LetK• = K•(f
h
1 , . . . , f

h
m) be the Koszul complex on (fh

1 , . . . , f
h
m), which is given by (A.1.1).

By tensoring K• with R′/〈y〉R′ ∼= K[x1, . . . , xn] = R over R′, we obtain the following exact
sequence of chain complexes:

0 // K•
×y // K•

π• // K• ⊗R′ R // 0,

where ×y is a graded homomorphism of degree 1 multiplying each entry of a vector with y, and
where πi is a canonical homomorphism sending v ∈ Ki to vi ⊗ 1 ∈ Ki ⊗R′ R. Note that there is
an isomorphism

Ki ⊗R′ R ∼=
⊕

1≤j1<···<ji≤m

R(−dj1···ji)ej1···ji ,

via which we can interpret πi : Ki → Ki ⊗R′ R as a homomorphism that projects each entry of a
vector in Ki modulo y. In particular, we have

K0 ⊗R′ R = R′/〈fh
1 , . . . , f

h
m〉R′ ⊗R′ R′/〈y〉R′

∼= R′/〈fh
1 , . . . , f

h
m, y〉R′

∼= R/〈f top
1 , . . . , f top

m 〉R
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for i = 0. This means that the chain complex K• ⊗R′ R gives rise to the Kosuzul complex on
(f top

1 , . . . , f top
m ). We induce a long exact sequence of homology groups. In particular, for each

degree d, we have the following long exact sequence:

Hi+1(K•)d−1
×y // Hi+1(K•)d

πi+1 // Hi+1(K• ⊗R′ R)d
δi+1

ssggggg
ggggg

ggggg
ggggg

ggg

Hi(K•)d−1 ×y
// Hi(K•)d πi

// Hi(K• ⊗R′ R)d,

where δi+1 is a connecting homomorphism produced by the Snake lemma. For i = 0, we have the
following exact sequence:

H1(K• ⊗R′ R)d // H0(K•)d−1
×y // H0(K•)d // H0(K• ⊗R′ R)d // 0.

From our assumption that F top is cryptographic semi-regular, it follows from Proposition 2.1.10
that H1(K• ⊗R′ R)≤D−1 = 0 for D := dreg(〈F top〉). Therefore, if d ≤ D − 1, we have an exact
sequence

0 // H0(K•)d−1
×y // H0(K•)d // H0(K• ⊗R′ R)d // 0

of K-linear spaces, so that

dimKH0(K•)d = dimKH0(K• ⊗R′ R)d + dimKH0(K•)d−1 (3.1.3)

by the dimension theorem. Since H0(K•) = R′/〈Fh〉 and H0(K• ⊗R′ R) = R/〈F top〉, we have the
equality (3.1.1), as desired.

Remark 3.1.2 (Theorem 1 (2), (3); [28, Remark 6]). Note that, in the proof of Theorem 3.1.1, the
multiplication map H0(K•)d−1 → H0(K•)d by y is injective for all d < D, whence HFR′/⟨Fh⟩(d) is

monotonically increasing for d < D. On the other hand, since H0(K• ⊗R′ R)d = (R/〈F top〉)d = 0
for all d ≥ D by the definition of the degree of regularity, the multiplication map H0(K•)d−1 →
H0(K•)d by y is surjective for all d ≥ D, whence HFR′/⟨Fh⟩(d) is monotonically decreasing for

d ≥ D − 1. By this together with [9, Theorem 3.3.4], the homogeneous ideal 〈Fh〉 is zero-
dimensional or trivial, i.e., there are at most a finite number of projective zeros of Fh (and thus
there are at most a finite number of affine zeros of F ).

Remark 3.1.3. We note that, for each d ≥ D, the condition dimK H0(K•)d−1 =dimK H0(K•)d
is equivalent to that the multiplication map H0(K•)d−1 → H0(K•)d by y is injective (and thus
bijective). By this together with Lemma 2.2.2, letting d0 be the smallest number with d0 ≥ D
such that dimK H0(K•)d0 = dimK H0(K•)d0+1, the maximal Gröbner basis degree of 〈Fh〉 is
upper-bounded by d0.

Remark 3.1.4. We have another proof of Theorem 1 (1), (2) by using the following exact sequence:

0 // R′/(〈Fh〉 : y)(−1)
×y //// R′/〈Fh〉 // R′/(〈Fh〉+ 〈y〉) // 0.

Then, as an easy consequence, for d ∈ N, we have

HFR′/⟨Fh⟩(d) = HFR′/(⟨Fh⟩+⟨y⟩)(d) + HFR′/(⟨Fh⟩:⟨y⟩)(d− 1),

see [23, Lemmas 5.2.1 and 5.2.2]. Note that HFR′/(⟨Fh⟩+⟨y⟩)(d) = HFR/⟨F top⟩(d) for any positive

integer d. On the other hand, for d < D, any degree-fall does not occur, that is, if yf ∈ 〈Fh〉d
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with f ∈ R′ then f ∈ 〈Fh〉d−1. This can be shown by some semantic argument (see Remark 4.1.3)
or also rigidly by the injectiveness of the multiplication map of y in (3.1.3). Thus, we also have
〈f ∈ R[y] : fy ∈ 〈Fh〉〉d−1 = 〈Fh〉d−1, so that

dimK(R′/(〈Fh〉 : 〈y〉))d−1 = dimK(R′/〈Fh〉)d−1,

namely HFR′/(⟨Fh⟩:⟨y⟩)(d − 1) = HFR′/⟨Fh⟩(d − 1), and hence we have (3.1.1) for d < D. For

d ≥ D, since (R/〈F top〉)d = 0 by the definition of D, we have

dimK(R′/〈Fh〉)d = HFR′/⟨Fh⟩(d) = HFR′/(⟨Fh⟩:⟨y⟩)(d− 1) = dimK(R′/(〈Fh〉 : 〈y〉))d−1. (3.1.4)

Now we consider the following multiplication map by y:

×y : (R′/〈Fh〉)d−1 −→ (R′/〈Fh〉)d ; g 7→ yg.

Since Ker(×y) = (〈Fh〉 : 〈y〉)d−1/〈Fh〉d−1, we have

dimK R′
d/〈Fh〉d ≥ dimK(Im(×y))

= dimK(R′/〈Fh〉)d−1 − dimK((〈Fh〉 : 〈y〉)/〈Fh〉)d−1

= dimK R′
d−1 − dimK(〈Fh〉 : 〈y〉)d−1

= dimK(R′/(〈Fh〉 : 〈y〉))d−1. (3.1.5)

Since the both ends of (3.1.4) and (3.1.5) coincide, we have Im(×y) = (R′/〈Fh〉)d, that is, the
multiplication map by y is surjective.

The Hilbert-Poincaré series of R′/〈Fh〉 satisfies the following equality (3.1.6):

Corollary 3.1.5 (Theorem 1 (3); [28, Corollary 1]). Let D = dreg(〈F top〉). Then we have

HSR′/⟨Fh⟩(z) ≡
∏m

i=1(1− z
di)

(1− z)n+1
(mod zD). (3.1.6)

Therefore, by Theorem 2.1.4 ([13, Theorem 1]), the sequence F h is D-regular. Here, we note that

D = deg(HSR/⟨F top⟩) + 1 = deg
([∏m

i=1(1−zdi )

(1−z)n

])
+ 1.

3.2 Solving degree for homogenized sequences

Here we assume that F top is semi-regular and that all degrees di = deg(fi) are smaller or equal
to the degree of regularity dreg(〈F top〉). Then, any n-subsequence of F top is regular. Under this
assumption, we can give a detailed discussion on the solving degree of Fh. From now on, we assume
thatm ≥ n, and set Fk := (f1, . . . , fn+k) and Dk := dreg(〈F top

k 〉) for each k ≥ 0. As F top
0 is regular

and F top
1 is semi-regular, we have D0 = d1 + · · ·+ dn−n+1 and D1 = b d1+···+dn+1−n−1

2
c+1, see

[4, Theorem 4.1]. Thus, by setting d1 ≤ d2 ≤ · · · ≤ dm, we can minimize the values D0 and D1.

Remark 3.2.1. Our estimations on the solving degree below require that F top
1 is semi-regular.

Thus, even when F top is not semi-regular, if there is an (n + 1)-subset which is semi-regular, we
may assume that F top

1 is semi-regular and apply our arguments below.

We denote by K
(j,top)
• the Koszul complex on (f top

1 , . . . , f top
j ), and let

K(j−1,top)
• (−dj)

×f
top
j−−−−→ K(j−1,top)

•
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be a graded homomorphism of degree dj multiplying each entry of a vector with f top
j . (This kind

of complex is also used in [13].) Regarding K
(j,top)
• as the mapping cone of the above ×f top

j , we
obtain the following short exact sequence of complexes

0 // K(j−1,top)
• // K(j,top)

• // K(j−1,top)
• [−1](−dj) // 0,

where K
(j−1,top)
• [−1] is a shifted complex defined by K

(j−1,top)
• [−1]i = K

(j−1,top)
i−1 , and where

K
(j,top)
i

∼= K
(j−1,top)
i ⊕K(j−1,top)

i−1 (−dj), for example

K
(j,top)
1 =

j⊕
s=1

R(−ds) ∼=

(
j−1⊕
s=1

R(−ds)

)
⊕R(−dj) = K

(j−1,top)
1 ⊕K(j−1,top)

0 (−dj).

Note also that K
(j−1,top)
• −→ K

(j,top)
• and K

(j,top)
• −→ K

(j−1,top)
• [−1](−dj) are the canonical

inclusion and projection respectively. Then we deduce the following exact sequence from the
Snake lemma:

Hi+1(K
(j−1,top)
• ) // Hi+1(K

(j,top)
• ) // Hi(K

(j−1,top)
• )(−dj)

δi

rrffffff
ffffff

ffffff
ffffff

fff

Hi(K
(j−1,top)
• ) // Hi(K

(j,top)
• ) // Hi−1(K

(j−1,top)
• )(−dj),

where δi denotes a connecting homomorphism. Note that δi coincides with the multiplication map
by f top

j on

Hi(K
(j−1,top)
• (−dj)) −→ Hi(K

(j−1,top)
• )

induced from that on K
(j−1,top)
• (−dj) −→ K

(j−1,top)
• (this is also derived from general facts in

homological algebra). Since H−1(K
(j−1,top)
• ) = 0, we can rewrite the above long exact sequence as

Hi+1(K
(j−1,top)
• )(−dj)

×f
top
j // Hi+1(K

(j−1,top)
• ) // Hi+1(K

(j,top)
• )

rrffffff
ffffff

ffffff
ffffff

ff

Hi(K
(j−1,top)
• )(−dj)

×f
top
j

// Hi(K
(j−1,top)
• ) // Hi(K

(j,top)
• ).

In particular, for i = 0 and for each degree d, we have the following exact sequence:

H1(K
(j−1,top)
• )d−dj

×f
top
j // H1(K

(j−1,top)
• )d // H1(K

(j,top)
• )d

ssffffff
fffff

fffff
fffff

ffff

H0(K
(j−1,top)
• )d−dj

×f
top
j

// H0(K
(j−1,top)
• )d // H0(K

(j,top)
• )d.

Now consider H1(K
(m,top)
• ) for m ≥ n+1. Here we remark that Hi(K

(n,top)
• ) = 0 for all i with

i ≥ 1, since the sequence F top
0 = (f top

1 , . . . , f top
n ) is regular by our assumption.
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Proposition 3.2.2. Suppose that d1 ≤ d2 ≤ · · · ≤ dm and m > n. If F top is semi-regular, then
H1(K

(m,top)
• )d = 0 for any d with d ≥ D0 + dm. Moreover, if dm ≤ D1, then H1(K

(m,top)
• )d = 0

for any d with d ≥ D0 + dn+1.

Proof. First consider the case where m = n + 1. For d ≥ D0 + dn+1, as d − dn+1 ≥ D0, we have
H0(K

(n,top)
• )d−dn+1 = 0. Therefore, for any d with d ≥ D0 + dn+1, we obtain an exact sequence

0 = H1(K
(n,top
• ))d // H1(K

(n+1,top)
• )d // H0(K

(n,top)
• )d−dn+1 = 0,

so that H1(K
(n+1,top)
• )d = 0.

Next we consider the case where m ≥ n+1 and we show that H1(K
(m,top
• )d = 0 for d ≥ D0+dm

by the induction on m. So we assume that H1(K
(m,top
• )d = 0 for d ≥ D0 + dm. Then, for

d ≥ D0 + dm+1 ≥ D0 + dm, we have an exact sequence

0 = H1(K
(m,top)
• )d // H1(K

(m+1,top)
• )d // H0(K

(m,top)
• )d−dm+1 . (3.2.1)

It follows from H0(K
(n,top)
• )d′ = 0 for d′ ≥ D0 that H0(K

(m,top)
• )d′ = 0 by F top

m−n ⊃ F top
0 .

Therefore, we also have H0(K
(m,top)
• )d−dm+1 = 0 by d−dm+1 ≥ D0, whence H1(K

(m+1,top)
• )d = 0.

Finally we consider the case where dm ≤ D1 and show H1(K
(m,top)
• )d = 0 for d ≥ D0 + dn+1

by the induction on m in a similar manner as above. So we assume that H1(K
(m,top)
• )d = 0 for

d ≥ D0 + dn+1. Then, we consider the sequence (3.2.1) for d ≥ D0 + dn+1 again. Thus it suffices

to show that H0(K
(m,top)
• )d−dm+1 = 0.

Using D1 =
⌊

d1+···+dn+1−n−1

2

⌋
+ 1 ≥ dm+1, we have

d− dm+1 ≥ D0 + dn+1 − dm+1

≥ (d1 + · · ·+ dn+1 − n− 1) + 2−
(⌊

d1 + · · ·+ dn+1 − n− 1

2

⌋
+ 1

)
≥

⌊
d1 + · · ·+ dn+1 − n− 1

2

⌋
+ 1 = D1.

Thus, it follows that H0(K
(n+1,top)
• )d−dm+1 = 0. Since one has 〈F top

m−n〉 ⊃ 〈F
top
1 〉, the condition

H0(K
(n+1,top)
• )d−dm+1 = 0 implies H0(K

(m,top)
• )d−dm+1 = 0, as desired.

Theorem 3.2.3 (Theorem 2). Suppose that that d1 ≤ d2 ≤ · · · ≤ dm and m > n. If F top is semi-
regular, then the solving degree of Fh is upper-bounded by d1 + d2 + · · ·+ dn + dm − n. Moreover,
if dm ≤ D1, the solving degree of Fh is upper-bounded by d1 + · · ·+ dn + dn+1 − n.

Proof. We recall the long exact sequence of homology groups derived from the following exact
sequence considered in the proof of Theorem 3.1.1:

0 // K•(F
h)

×y // K•(F
h)

π• // K•(F
top) // 0.

For i = 0 and d ∈ N, we have the following exact sequence:

H1(K•(F
top))d // H0(K•(F

h))d−1
×y // H0(K•(F

h))d // H0(K•(F
top))d // 0.
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Then, for d ≥ D0 + dm (or d ≥ D0 + dn+1 if dm ≤ D1), it follows from Proposition 3.2.2 that
H1(K•(F

top))d = 0. Moreover, H0(K•(F
top))d = 0 also holds, since d > D0 ≥ D. Therefore, we

have an exact sequence

0 // H0(K•(F
h))d−1

×y // H0(K•(F
h))d // 0,

and, by letting A = R′/〈Fh〉, we have

Ad−1 = H0(K•(F
h))d−1

∼= H0(K•(F
h))d = Ad

for any d ≥ D0 + dm (or d ≥ D0 + dn+1 if dm ≤ D1). Moreover, the multiplication map by y
from Ad−1 to Ad is a bijection. Thus, by Lemma 2.2.2, it can be shown that the solving degree
sd≺h(Fh) is bounded by D0 + dm − 1 (or D0 + dn+1 − 1 if dm ≤ D1).

Remark 3.2.4. The bound in Theorem 3.2.3 looks the same as Lazard’s bound (Theorem 2.2.1).
However, in our bound, except dm, the degrees d1, . . . , dn are set in ascending order, while in
Lazard’s bound they are set in descending order. We note that, when d1 = · · · = dm, these two
bounds coincide with one another.

Finally in this subsection, under the assumption that F top is cryptographic semi-regular, we
show that the solving degree of Fh can be bounded by D plus the saturation exponent, say S0

here, that is, the minimal integer k such that 〈F 〉h = (〈Fh〉 : y∞) = (〈Fh〉 : yk). See [23, p. 81]
for the definition of saturation exponent.

Proposition 3.2.5. The solving degree of Fh is bounded by D + S0.

Proof. Consider the following exact sequence:

0 // R′/〈F 〉h(−S0)
×yS0 // R′/〈Fh〉 // R′/(〈Fh〉+ 〈yS0〉) // 0,

where R′/(〈Fh〉 : 〈yS0〉) = R′/〈F 〉h. Then, we have

HSR′/⟨Fh⟩(z) = HSR′/(⟨Fh⟩+⟨yS0 ⟩)(z) + zS0HSR′/⟨F ⟩h(z).

First, we show HFR′/(⟨Fh⟩+⟨yS0 ⟩)(d) = 0 for d ≥ D + S0, by which we have HFR′/⟨Fh⟩(d) =

HFR′/⟨F ⟩h(d − S0). Suppose for a contradiction that (R′/(〈Fh〉 + 〈yS0〉))d 6= 0. Then, it follows
from Macaulay’s basis theorem (cf. [26, Theorem 1.5.7]) that

LBd := {t ∈ R′
d : t is a monomial and t /∈ 〈LM(〈Fh〉+ 〈yS0〉)〉}

is a non-empty basis for the K-vector space (R′/(〈Fh〉 + 〈yS0〉))d. For any element T in LBd, if
T is divisible by yS0 , then T belongs to (〈Fh〉+ 〈yS0〉)d, which is a contradiction. Otherwise, the
degree of the X-part of T is not smaller than D. Since LM(〈Fh〉) contains any monomial in X
of degree D by Lemma 4.1.4, it also contains T . Therefore T ∈ LM(〈Fh〉 + 〈yS0〉)), which is a
contradiction.

Next we show that HFR′/⟨F ⟩h(d) becomes constant for d ≥ D, which implies that HFR′/⟨Fh⟩(d)

becomes constant for d ≥ D+ S0. Then, by Lemma 2.2.2, it follows that the solving degree of Fh

is bounded by D + S0.
Let G be the reduced Gröbner basis of 〈F 〉 with respect to ≺. Then Gh is a Gröbner basis of

〈F 〉h. By Lemma 4.2.4 below, we have max.GB.deg(F ) ≤ D and thus, any element of Gh is of
degree not greater than D. Then, let {t1, . . . , tr} be the standard monomial basis of R/〈F 〉 as a
K-vector space, that is, {t1, . . . , tr} = {t : LM(g) ∤ t for any g ∈ G} with r := dimK R/〈F 〉.
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Again by Macaulay’s basis theorem, as a basis of the K-linear space (R′/〈F 〉h)d, we can
take LB′

d = {t ∈ R′
d : t is a monomial and LM(g) ∤ t for any g ∈ Gh}, which is equal to

{t1yk1 , . . . , try
kr} for d ≥ D, where deg(tiy

ki) = d for 1 ≤ i ≤ r. Thus, for d ≥ D, it follows that
dimK R′/〈F 〉h is equal to the constant r.

4 Behaviors of Gröbner bases computation

Here we show certain correspondences in the Gröbner basis computations among inputs Fh, F top,
and F . First we revisit the correspondence among the computation of the Gröbner basis of Fh

and that of F top given in [28, Section 5.1]. Then, we explicitly give an important correspondence
between the computation of the Gröbner basis of Fh and that of F , which brings an upper-bound
(Lemma 4.2.4 below) on the solving degree of F related to Samaev-Tenti’s bound [38].

Here we use the same notation as in the previous section, and unless otherwise noted, assume
that F is cryptographic semi-regular. Let G, Ghom, and Gtop be the reduced Gröbner bases of
〈F 〉, 〈Fh〉, and 〈F top〉, respectively, where their monomial orderings are DRL ≺ or its extension
≺h. Also we let D = dreg(〈F top〉), and assume D < ∞. Moreover, we extend the notion of top
part to a homogeneous polynomial h in R′ = R[y] as follows. We call h|y=0 the top part of h
and denote it by htop. Thus, if htop is not zero, it coincides with the top part (h|y=1)

top of the
dehomogenization h|y=1 of h. We remark that gtop = (gh)top for a polynomial g in R.

4.1 Correspondence between Ghom and Gtop

Here we revisit the results in [28, Section 5.1].

Corollary 4.1.1 ([28, Corollary 2]). With notation as above, assume that F = (f1, . . . , fm) ∈
Rm is affine cryptographic semi-regular. Put I := 〈F top〉R and Ĩ := 〈Fh〉R′ . Then, we have
(〈LM(Ĩ)〉R′)d = (〈LM(I)〉R′)d for each d with d < D := dreg(I).

Since F top is cryptographic semi-regular and since F h is D-regular by Corollary 3.1.5, we
obtain H1(K•(F

top))<D = H1(K•(F
h))<D = 0. Moreover, as H1(K•(F

h)) = syz(Fh)/tsyz(Fh)
and H1(K•(F

top)) = syz(F top)/tsyz(Fh) (see (A.1.2)), we have the following corollary, where tsyz
denotes the module of trivial syzygies (see Definition A.1.1).

Corollary 4.1.2 ([13, Theorem 1]). With notation as above, we have syz(F top)<D = tsyz(F top)<D

and syz(Fh)<D = tsyz(Fh)<D.

Remark 4.1.3. Corollary 4.1.2 implies that, in the Gröbner basis computation Ghom with respect
to a graded ordering ≺h, if an S-polynomial S(g1, g2) = t1g1 − t2g2 of degree less than D is

reduced to 0, it comes from some trivial syzyzy, that is,
∑m

i=1(t1a
(1)
i − t2a(2)i − bi)ei belongs to

tsyz(Fh)<D, where g1 =
∑m

i=1 a
(1)
i fh

i , g2 =
∑m

i=1 a
(2)
i fh

i , and S(g1, g2) =
∑m

i=1 bif
h
i is obtained by

Σ-reduction in the F5 algorithm (or its variant such as the matrix-F5 algorithm) with the Schreyer
ordering. Thus, since the F5 algorithm (or its variant) automatically discards an S-polynomial
whose signature is the LM of some trivial syzygy, we can avoid unnecessary S-polynomials. See
[16] for the F5 algorithm and its variant, and also for the syzygy criterion.

In addition to the above facts, as mentioned (somehow implicitly) in [1, Section 3.5] and [3],
when we compute a Gröbner basis of 〈Fh〉 for the degree less than D by the F5 algorithm with
respect to ≺h, for each computed non-zero polynomial g from an S-polynomial, say S(g1, g2), of
degree less than D, its signature does not come from any trivial syzygy and so the reductions of
S(g1, g2) are done only at its top part. This implies that any degree-fall does not occur at each
step degree less than D. This can be rigidly shown by using the injectiveness of the multiplication
map by y shown in Remark 3.1.2.
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Now we recall that the Gröbner basis computation process of 〈Fh〉 corresponds exactly to
that of 〈F top〉 at each step degree less than D. (We also discuss similar correspondences among
the Gröbner basis computation of 〈Fh〉 and that of 〈F 〉 in the next subsection.) Especially, the
following lemma holds.

Lemma 4.1.4 ([28, Lemma 2]). With notation as above, assume that F = (f1, . . . , fm) ∈ Rm is
affine cryptographic semi-regular. For each degree d < D, we have

LM(Ghom)d = LM(Gtop)d. (4.1.1)

We also note that the argument and the proof of Lemma 4.1.4 can be considered as a corrected
version of [36, Theorem 4].

Next we consider (Ghom)D. The following lemma holds, not assuming that F is affine crypto-
graphic semi-regular:

Lemma 4.1.5 ([28, Lemma 3]). Assume that D = dreg(〈F top〉) < ∞ (the assumption that F is
affine cryptographic semi-regular is not necessary). Then, for each monomial M in X of degree
D, there is an element g in (Ghom)≤D such that LM(g) divides M . Therefore,

〈LM((Ghom)≤D)〉R′ ∩RD = RD. (4.1.2)

Moreover, for each element g in (Ghom)D with gtop 6= 0, the top-part gtop consists of one term,
that is, gtop = LT(g), where LT denotes the leading term of g. (We recall LT(g) = LC(g)LM(g).)

Remark 4.1.6. If we apply a signature-based algorithm such as the F5 algorithm or its variant
to compute the Gröbner basis of 〈Fh〉, its Σ-Gröbner basis is a Gröbner basis, but is not always
reduced in the sense of ordinary Gröbner basis, in general. In this case, we have to compute so
called inter-reduction among elements of the Σ-Gröbner basis to obtain the reduced Gröbner basis.

4.2 Correspondence between the computations of Ghom and G

In this subsection, we show that, at early stages, there is a strong correspondence between the
computation of Ghom and that of G, from which we shall extend the upper bound on solving degree
given in [38, Theorem 2.1] to our case.

Remark 4.2.1. In [38], polynomial ideals over R = Fq[x1, . . . , xn] are considered. Under the
condition where the generating set F contains the field equations xqi −xi for 1 ≤ i ≤ n, recall from
Theorem 2.2.5 ([39, Theorem 6.5 & Corollary 3.67]) that the solving degree sdA

≺(F ) in the strict
sense (see the definition (I) of Subsection 2.2 for the definition) with respect to a Buchberger-like
algorithm A for 〈F 〉 is upper-bounded by 2D − 2, where D = ddeg(〈F top〉). In the proofs of [39,
Theorem 6.5 & Corollary 3.67], the property 〈F top〉D = RD was essentially used for obtaining the
upper-bound. As the property also holds in our case, we may apply their arguments. Also in [4,
Section 3.2], the case where Fh is cryptographic semi-regular is considered. The results on the
solving degree and the maximal degree of the Gröbner basis are heavily related to our results in
this subsection.

Here we examine how two computations look like each other in early stages when we use the
normal selection strategy on the choice of S-polynomials with respect to the monomial ordering
≺h. Here we denote by Ghom the set of intermediate polynomials during the computation of Ghom,
and denote by G that of G, namely, G and Ghom may not be reduced and G and Ghom are obtained
by applying so-called ”inter-reduction” to G and Ghom, respectively.
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Phase 1: Before degree fall in the computation of G: The computation of G can
simulate faithfully that of Ghom until the degree of computed polynomials becomes D − 1. Here,
we call this stage an early stage and denote by G(e) and G(e)hom the set of all elements in G and that
in Ghom computed in an early stage, respectively.

In this process, we can make the following correspondence among G(e) and that of G(e)hom by
carefully choosing S-polynomials and their reducers:

G(e)hom 3 g ←→ gdeh ∈ G(e).

We can show it by induction on the degree. Consider a step where two polynomial g1 and
g2 in G(e)hom are chosen such that its S-polynomial S(g1, g2) = t1g1 − t2g2 is of degree d < D,
where t1 and t2 are terms (monomials with non-zero coefficients), deg(t1g1) = deg(t2g2) = d and
LCM(LM(g1),LM(g2)) = LM(t1g1) = LM(t2g2). From S(g1, g2), we obtain a new element g3 6= 0

by using some h1, . . . , ht in G(e)hom as reducers, where h1, . . . , ht are already produced before the
computation of S(g1, g2). That is, g3 can be written as

g3 = t1g1 − t2g2 −
t∑

i=1

bihi

for some b1, . . . , bt in R such that LM(bihi) � LM(S(g1, g2)) for every i. Simultaneously, for
the counter part in G(e), two polynomial gdeh1 and gdeh2 are chosen by induction. Then we can
make the obtained new element from the S-polynomial S(gdeh1 , gdeh2 ) equal to gdeh3 . Indeed, as
there is no degree-fall for < D by Lemma 4.1.4 (since F top is cryptographic semi-regular), we
have LM(S(g1, g2)) = LM(S(gdeh1 , gdeh2 )), whence the condition LM(bihi) �h LM(S(g1, g2)) is
equivalent to LM(bdehi hdeh

i ) � LM(S(gdeh1 , gdeh2 )). Since hdeh
1 , . . . , hdeh

t are already computed before
the computation of S(gdeh1 , gdeh2 ) by induction, the following expression

gdeh3 = t1g
deh
1 − t2gdeh2 −

t∑
i=1

bdehi hdeh
i

matches to the reduction process of S(gdeh1 , gdeh2 ). (It can be easily checked by our induction
hypothesis that gdeh3 cannot be reduced by any element in G(e) already computed before the
computation of S(gdeh1 , gdeh2 ).) Here we note that, since we use the normal selection strategy, each
pair (g1, g2) is chosen simply by checking LCM(LM(g1),LM(g2)). Moreover, also by synchronizing
the choice of reducers, the computation of reduction of S(gdeh1 , gdeh2 ) can be synchronized faithfully

with that of g3 in G
(e)
hom at this early stage.

Conversely, we can make the computation of G(e)hom to match with that of G(e) at an early stage

in the same manner. Thus, we have LM(G(e)) = LM(G(e)hom) in this case. Of course, the reduction
computation for each S-polynomial depends on the choice of reducers, and some elements might
be not synchronized faithfully in actual computation. However, the set LM(G(e)hom) is automatically

minimal, that is, it has no element g in G(e)hom such that LM(g) is divisible by LM(g′) for some its

another element g′ in G(e)hom. Thus, LM(G(e)hom) coincides with LM((Ghom)<D), that is, it does not
depend on the process for the computation of Ghom. Hence, we have the following:

Lemma 4.2.2. LM(G(e)) coincides with LM(G(e)hom) = LM((Ghom)<D).

Phase 2: At the step degree D: Next we investigate the computation of Ghom at the
step degree D. In this phase, there might occur some degree fall, from which the computation
process would become very complicated. Thus, to simply our investigation, we also assume to use
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the sugar strategy for the computation of G, by which the computational behaviour becomes very
close to that for Ghom. See [12] for details on the sugar strategy.

After the computation at the step degree D − 1, we enter the computation at step degree D.
In this phase, pairs of degree D in G(e)hom are chosen. Simultaneously, corresponding pairs in Ghom
of degree D are chosen. (Here we continue to synchronize the computation of G(e) and that of

G(e)hom as in Phase 1.) Thus, we extend the notations G(e)hom and G(e) to the step degree D. Let

G(e),Dhom be the set of all elements obtained at the step degree D, each of which is computed from an

S-polynomial (g1, g2) such that g1 and g2 belong to G(e)hom and S(g1, g2) is of degree D. Similarly we
let G(e),D be the set of all elements in G obtained at the step degree D. We note that no element
in G(e),Dhom is used for constructing an S-polynomial at this phase, and so for G(e),D.

Let (g1, g2) be a pair in G(e)hom such that its S-polynomial S(g1, g2) is reduced to g3 and LM(g3) is
not divisible by y. Consider the step where (g1, g2) is chosen, and simultaneously, its corresponding
pair (gdeh1 , gdeh2 ) is also chosen. Let g′ be an element computed from the corresponding S-polynomial
S(gdeh1 , gdeh2 ). Then g3 is obtained from S(g1, g2) = t1g1 − t2g2 as

g3 = t1g1 − t2g2 −
t∑

i=1

bihi

by reducers h1, . . . , ht in G(e)hom. Simultaneously, S(gdeh1 , g,deh2 ) can be also reduced to gdeh3 by
reducers hdeh

1 , . . . , hdeh
t ;

gdeh3 = t1g
deh
1 − t2gdeh2 −

t∑
i=1

bdehi hdeh
i .

If gdeh3 is not reducible by any element in G(e)∪G(e),D already computed before the computation of
S(gdeh1 , gdeh2 ), then LM(gdeh3 ) = LM(g′). So, there is still a correspondence, and 〈LM(G(e)∪G(e),D)〉
contains LM(gdeh3 ). Otherwise, LM(gdeh3 ) is divisible by LM(g′′) for some g′′ already computed
elements in G(e) ∪ G(e),D at the step degree D. This implies that 〈LM(G(e) ∪ G(e),D)〉 contains
LM(gdeh3 ), which holds for any pair (g1, g2) generated at the step degree D. Hence, 〈LM(G(e) ∪
G(e),D)〉 includes LM((Ghom)≤D) ∩RD. Therefore, 〈LM(G(e) ∪ G(e),D)〉 contains all monomials of
degree D in X, since 〈LM((Ghom)≤D)〉R′∩RD = RD by Lemma 4.1.5. Thus, we have the following
lemma.

Lemma 4.2.3. 〈LM(G(e) ∪ G(e),D)〉 contains all monomials in X of degree ≥ D.

Solving degree of F as the highest step degree: Here we show an upper-bound on
the highest step degree appeared in the computation of G with respect to the DRL ordering by
a Buchberger-like algorithm A based on S-polynomials with the normal strategy and the sugar
strategy. We note that, in [28, Lemma 4.2.4], we restart the computation of the Gröbner basis of
F from H = {g|y=1 : g ∈ (Ghom)≤D}. However, here we do not need (Ghom)≤D. We refer to [7,
Remark 15] for another proof of max.GB. deg≺(F ) ≤ D.

Lemma 4.2.4 (cf. [28, Lemma 4]). Assume that D ≥ max{deg(f) : f ∈ F}, and that ≺ is a DRL
ordering on the set of monomials in R. Then, it follows that max.GB. deg≺(F ) ≤ D. Moreover,
there exists a Buchberger-like algorithm A with normal strategy such that

sdA
≺(F ) ≤ 2D − 1,

and
sdA

≺(F ) ≤ 2D − 2.
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in the strict sense (see (I) in Subsection 2.2 for details on the definition of these solving degrees).
Namely, the maximal degree of S-polynomials generated during the execution of A is bounded by
2D − 2.

Remark 4.2.5. We refer to [7, Remark 15] for another proof of max.GB. deg≺(F ) ≤ D. We also
note that, if D = dreg(F

top) < ∞, Lemma 4.2.3 and Lemma 4.2.4 hold without the assumption
that F top is cryptographic semi-regular.

Remark 4.2.6 (cf. [28, Section 5.2]). As to the computation of Ghom, we have a result similar to
Lemma 4.2.4. Since 〈LM(Ghom)≤D〉 contains all monomials in X of degree D, for any polynomial g
generated in the middle of the computation of Ghom the degree of the X-part of LM(g) is less than
D. Because g is reduced by (Ghom)≤D. Thus, letting U be the set of all polynomials generated
during the computation of Ghom, we have

{The X-part of LM(g) : g ∈ U} ⊂ {xe11 · · ·x
en
n : e1 + · · ·+ en ≤ D}.

As different g, g′ ∈ U can not have the same X-part in their leading terms, the size #U is upper-
bounded by the number of monomials in X of degree not greater than D, that is

(
n+D
n

)
. By using

the F5 algorithm or its efficient variant, under an assumption that every unnecessary S-polynomial
can be avoided, the number of computed S-polynomials during the computation of Ghom coincides
with the number #U and is upper-bounded by

(
n+D
n

)
.

4.3 Concrete example to demonstrate the correspondences

We review a simple example shown in [28, Example 1] and examine the correspondences discussed
in the previous subsections.

Example 4.3.1. We give a simple example. Let p = 73, K = Fp, and

f1 = x21 + 3x1x2 + x22 − 2x1x3 − 2x2x3 + x23 − x1 − 2x2 + x3,

f2 = 4x21 + 3x1x2 + 4x1x3 + x23 − 2x1 − x2 + 2x3,

f3 = 3x21 + 9x22 − 6x2x3 + x23 − x1 + x2 − x3,
f4 = x21 − 6x1x2 + 9x22 + 2x1x3 − 6x2x3 + 2x23 − 2x1 + x2.

Then, d1 = d2 = d3 = d4 = 2. As their top parts (maximal total degree parts) are

f top
1 = x21 + 3x1x2 + x22 − 2x1x3 − 2x2x3 + x23,

f top
2 = 4x21 + 3x1x2 + 4x1x3 + x23,

f top
3 = 3x21 + 9x22 − 6x2x3 + x23,

f top
4 = x21 − 6x1x2 + 9x22 + 2x1x3 − 6x3x2 + 2x23,

one can verify that F top is cryptographic semi-regular (and furthermore, F top is semi-regular).
Then its degree of regularity is equal to 3. Indeed, the reduced Gröbner basis Gtop of the ideal
〈F top〉 with respect to the DRL ordering x1 � x2 � x3 is

{x2x23, x33, x21 + 68x2x3 + 55x23, x1x2 + 27x2x3 + 29x23, x
2
2 + x2x3 + 71x23, x1x3 + 3x2x3 + 33x23}.

Then its leading monomials are x2x
2
3, x

3
3, x

2
1, x1x2, x

2
2, x1x3 and its Hilbert-Poincaré series satisfies

HSR/⟨F top⟩(z) = 2z2 + 3z + 1 =

(
(1− z2)4

(1− z)3 mod z3
)
,
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whence the degree of regularity of 〈F top〉 is 3.
On the other hand, the reduced Gröbner basis Ghom of the ideal 〈Fh〉 with respect to the DRL

ordering x1 � x2 � x3 � y is

{x1y3, x2y3, x3y3, x2x23 + 60x1y
2 + 22x2y

2 + 39x3y
2,

x33 + 72x1y
2 + 14x2y

2 + 56x3y
2, x2x3y + 16x1y

2 + 55x2y
2 + 38x3y

2,

x23y + 72x1y
2 + 66x2y

2 + 70x3y
2, x21 + 68x2x3 + 55x23 + 72x1y + 40x2y + 14x3y,

x1x2 + 27x2x3 + 29x23 + 20x1y + 37x2y + 12x3y,

x22 + x2x3 + 71x23 + 57x1y + 3x2y + 52x3y,

x1x3 + 3x2x3 + 33x23 + 22x1y + 5x2y + 14x3y}

and its leading monomials are x1y
3, x2y

3, x3y
3, x2x

2
3, x

3
3, x2x3y, x

2
3y, x

2
1, x1x2, x

2
2, x1x3. Then the

Hilbert-Poincaré series of R′/〈Fh〉 satisfies

(
HSR′/⟨Fh⟩(z) mod z3

)
=
(
6z2 + 4z + 1 mod z3

)
=

(
(1− z2)4

(1− z)4 mod z3
)
.

We note that HFR′/⟨Fh⟩(3) = 4 and HFR′/⟨Fh⟩(4) = 1. We can also examine the correspondence
LM(Ghom)<D = LM(Gtop)<D and, for g ∈ Ghom, if LM(g) is divided by y, then deg(g) ≥ D = 3.
Thus, any degree-fall cannot occur at degree less than 3 = D.

Finally, we examine the correspondence between G(e) ∪ G(e),D and (Ghom)≤D. The reduced
Gröbner basis of 〈F 〉 with respect to ≺ is {x, y, z} and we can examine that LM(G(e)) coincides
with LM(Ghom)<3. Because we have the following G without inter-reduction (see the paragraph
just after Remark 4.2.1 for the definition of G);

{x21 + 3x1x2 + x22 + 71x1x3 + 71x2x3 + x23 + 72x1 + 71x2 + x3,

x1x2 + 41x22 + 23x1x3 + 64x2x3 + 49x23 + 16x1 + 56x2 + 57x3,

x22 + 14x1x3 + 43x2x3 + 22x23 + 29x3, x1x3 + 3x2x3 + 33x23 + 22x1 + 5x2 + 14x3,

x2x
2
3 + 41x33 + 5x2x3 + 35x23 + 64x1 + 42x2 + 11x3, x

3
3 + 35x23 + 37x1 + 61x2 + 24x3,

x3x2 + 13x23 + 3x1 + 37x2 + 72x3, x
2
3 + 72x1 + 66x2 + 70x3,

x1 + 61x2 + 51x3, x2 + 70x3, x3},

and LM(G(e)) = {x21, x1x2, x22, x1x3}. Moreover, LM(Ghom)D coincides with LM(G(e),D), as it is
{x2x23, x23, x2x3, x23}. We note that we have removed f2, f3, f4 from G as they have the same LM
as f1. Interestingly, in this case, we can see that the whole LM(G) corresponds to LM(Ghom).
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A Koszul complex and homogenization

A.1 Koszul complex

Let f1, . . . , fm ∈ R be homogeneous polynomials of positive degrees d1, . . . , dm respectively, and
put dj1···ji :=

∑i
k=1 djk . For each 0 ≤ i ≤ m, we define a free R-module of rank

(
m
i

)
Ki(f1, . . . , fm) :=


⊕

1≤j1<···<ji≤m

R(−dj1···ji)ej1···ji (i ≥ 1)

R (i = 0),

where ej1···ji is a standard basis. We also define a graded homomorphism

φi : Ki(f1, . . . , fm) −→ Ki−1(f1, . . . , fm)

of degree 0 by

φi(ej1···ji) :=

i∑
k=1

(−1)k−1fjkej1···ĵk···ji .

Here, ĵk means to omit jk. For example, we have e12̂3 = e13. To simplify the notation, we set
Ki := Ki(f1, . . . , fm). Then,

K• : 0→ Km
φm−−→ · · · φ3−−→ K2

φ2−−→ K1
φ1−−→ K0 → 0 (A.1.1)

is a complex of graded free R-modules, and we call it the Koszul complex on (f1, . . . , fm). The
i-th homology group of K• is given by

Hi(K•) = Ker(φi)/Im(φi+1).

In particular, we have
H0(K•) = R/〈f1, . . . , fm〉R.

We also note that Hm(K•) = 0, since φm is clearly injective by definition. The kernel and the
image of a graded homomorphism are both graded submodules in general, so that Ker(φi) and
Im(φi+1) are graded R-modules, and so is the quotient module Hi(K•) (and each homogeneous
part is finite-dimensional K-vector space). In the following, we denote by Hi(K•)d the degree-d
homogeneous part of Hi(K•).

Note that Ker(φ1) = syz(f1, . . . , fm) (the right hand side is the module of syzygies), and that
Im(φ2) ⊂ K1 =

⊕m
j=1R(−dj)ej is generated by

{ti,j := fiej − fjei : 1 ≤ i < j ≤ m}.

Hence, putting
tsyz(f1, . . . , fm) := 〈ti,j : 1 ≤ i < j ≤ m〉R,

we have
H1(K•) = syz(f1, . . . , fm)/tsyz(f1, . . . , fm). (A.1.2)
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Definition A.1.1 (Trivial syzygies). With notation as above, we call each generator ti,j (or each
element of tsyz(f1, . . . , fm)) a trivial syzygy for (f1, . . . , fm). We also call tsyz(f1, . . . , fm) the
module of trivial syzygies.

A.2 Homogenization of polynomials and monomial orders

We here recall the notion of homogenization; see [27, Chapter 4] for details. Let R = K[x1, . . . , xn]
be the polynomial ring of n variables over a field K, and T the set of all monomials in x1, . . . , xn.
Put R′ = R[y] for an extra variable y.

(1) For a non-homogeneous and non-zero polynomial f =
∑

t∈T ctt in R with ct ∈ K, its

homogenization fh is defined, by introducing an extra variable y, as

fh =
∑
t∈T

ctty
deg(f)−deg(t) ∈ R′ = R[y].

Thus fh is a homogeneous polynomial in R′ with total degree d = deg(f). Also for a set F
(or a sequence F = (f1, . . . , fm) ∈ Rm) of non-zero polynomials, its homogenization Fh (or
Fh) is defined as Fh = {fh | f ∈ F} (or Fh = (fh

1 , . . . , f
h
m) ∈ (R′)m).

(2) Conversely, for a homogeneous polynomial h in R′, its dehomogenization hdeh is defined by
substituting y with 1, that is, hdeh = h(x1, . . . , xn, 1) (it is also denoted by h|y=1). For a set
H of homogeneous polynomials in R′, its dehomogenization Hdeh (or H|y=1) is defined as
Hdeh = {hdeh : h ∈ H}. We also apply the dehomogenization to sequences of polynomials.

(3) For an ideal I of R, its homogenization Ih, as an ideal, is defined as 〈Ih〉R′ . We remark that,
for a set F of polynomials in R, we have 〈Fh〉R′ ⊂ Ih with I = 〈F 〉R, and the equality does
not hold in general.

(4) For a homogeneous ideal J in R′, its dehomogenization Jdeh, as a set, is an ideal of R. We
note that if a homogeneous ideal J is generated by H, then Jdeh = 〈Hdeh〉R and for an ideal
I of R, we have (Ih)deh = I.

(5) For a monomial ordering ≺ on the set of monomials T in X, its homogenization ≺h on the
set of monomials T h in x1, . . . , xn, y is defined as follows: For two monomials Xαya and
Xβyb in T h, we say Xαya ≺h X

βyb if and only if one of the following holds:

(i) a+ |α| < b+ |β|, or
(ii) a+ |α| = b+ |β| and Xα ≺ Xβ ,

where α = (α1, . . . , αn) ∈ Zn
≥0 and |α| = α1 + · · · + αn, and where Xα denotes xα1

1 · · ·xαn
n .

Here, for a monomial Xαya, we call Xα and ya the X-part and the y-part, respectively. If
a monomial ordering ≺ is graded, that is, it first compares the total degrees, the restriction
≺h |T of ≺h on T coincides with ≺.

It is well-known that, for a Gröbner basis H of 〈Fh〉 with respect to ≺h, its dehomogenization
Hdeh = {hdeh : h ∈ H} is also a Gröbner basis of 〈F 〉 with respect to ≺ if ≺ is graded. Moreover,
we have 〈F 〉h = (〈Fh〉 : 〈y〉∞) = (〈Fh〉 : 〈yk〉) for some integer k, where (〈Fh〉 : 〈yk〉) is the ideal
quotient of 〈Fh〉 by 〈yk〉, namely {f ∈ R′ : f〈yk〉 ⊂ 〈Fh〉} see [27, Corollary 4.3.8].
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