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Abstract. In 2021, Sterner proposed a commitment scheme based on
supersingular isogenies. For this scheme to be binding, one relies on a
trusted party to generate a starting supersingular elliptic curve of un-
known endomorphism ring. In fact, the knowledge of the endomorphism
ring allows one to compute an endomorphism of degree a power of a given
small prime. Such an endomorphism can then be split into two to obtain
two different messages with the same commitment. This is the reason
why one needs a curve of unknown endomorphism ring, and the only
known way to generate such supersingular curves is to rely on a trusted
party or on some expensive multiparty computation. We observe that if
the degree of the endomorphism in play is well chosen, then the knowl-
edge of the endomorphism ring is not sufficient to efficiently compute
such an endomorphism and in some particular cases, one can even prove
that endomorphism of a certain degree do not exist. Leveraging these
observations, we adapt Sterner’s commitment scheme in such a way that
the endomorphism ring of the starting curve can be known and public.
This allows us to obtain isogeny-based commitment schemes which can
be instantiated without trusted setup requirements.

Keywords: Supersingular isogenies, Post-Quantum Cryptography, Isogeny-
Based Cryptography, commitment schemes.

1 Introduction

A commitment scheme allows to commit to a message while keeping its con-
tent hidden until a desired moment. Such schemes play an important role in
Cryptography, namely in proofs of knowledge [17,14] and electronic vote [16,13].
The two security requirements for commitment schemes are the binding and
the hiding property. The binding property ensures that a message can not be
changed after it has been committed to. The hiding property ensures that it
must be impossible to learn any information about the message from its com-
mitment. The most currently used commitment scheme is the Pedersen com-
mitment [28], whose binding property is due to the uniqueness of the discrete
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logarithm, and the hiding property is based on the discrete logarithm problem.
The discret logarithm problem can be solved with a quantum computer by us-
ing Shor’s quantum algorithm [31], which also solves the integer factorization
problem. Hence, the Pedersen scheme is not quantum safe, as well as protocols
whose security is based on the discrete logarithm problem and integer factoriza-
tion problem. Some alternatives to protocols whose security is based on discrete
logarithm problem and integer factorization problem are lattice-based protocols,
code-based protocols, isogeny-based protocols etc. In this paper, we are inter-
ested in isogeny-based commitments. The existing isogeny-based commitment
scheme is proposed by Sterner [33]. This commitment scheme is constructed
from CGL hash function [9], a hash function constructed with supersingular
isogeny graph.

In 2006, Charles, Goren and Lauter [9] introduced a new method for con-
structing hash functions (the CGL hash function), which uses expander graphs.
The method consists of constructing a path defined by the message in a graph,
from a public fixed starting vertex to a vertex whose label is the hash of the
message. One concrete example of expander graph used for CGL hash function
is the supersingular ℓ-isogeny graph [30], whose vertices are isomorphism classes
of supersingular elliptic curves and edges are isogenies of degree ℓ up to com-
position by authomorphisms, where ℓ is a small prime. The collision resistance
of CGL hash function is based on the problem of computing ℓ-power degree
endomorphisms of the starting curve. The pre-image resistance is based on the
hardness of the supersingular ℓ-isogeny path problem, which consists of comput-
ing an isogeny of degree a power of ℓ between two random supersingular elliptic
curves. This problem is believed to be hard, even for a quantum computer. The
best known algorithm for solving it has complexity O(p

1
2 ) for classical comput-

ers [21] and O(p
1
4 ) for quantum computers [5], where p is the characteristic the

base field.

Sterner’s commitment scheme [33] can be summarized as follows. The space
of messages is M = {0, 1, . . . , ℓ − 1}∗. For m ∈ M, the commitment for m is
CGL(m||r), where r is sampled at random from {0, 1, . . . , ℓ − 1}kr for some in-
teger kr. The hiding property is based on the fact that kr should be greater
than the mixing constant of the supersingular ℓ-isogeny graph in play. For such
value of kr (say kr > 2 logℓ p) and some message of length km, ℓkm+kr > 2 logℓ p
is large enough so that we can efficiently compute an endomorphism of degree
ℓ2(kr+km) > p4 when the endomorphism of the starting curve is known [20,25].
Such an endomorphism represents a collision in the ℓ-isogeny graph, which com-
promises the binding property of this scheme. In order to avoid this, one uses
a curve with unknown endomorphism ring. Unfortunately, all existing methods
for efficiently constructing supersingular elliptic curves [7,26] allow the person
generating the curve to efficiently recover its endomorphism ring. To solve this
issue, the author suggests to delegate the generation of the starting curve to a
trusted third party. Basso et al. [3] introduced a multiparty computation method
for implementing such a trusted party. Such method requires a lot of resources.
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In this work, we propose two approaches to avoid the trusted setup. These two
approaches share the same idea which can be summarized as follows. We modify
Sterner’s commitment scheme so that the message space consists of messages of
fixed length km and the random string r used to compute the commitment to m
is of length kr where km and kr are such that either endomorphisms of degree
ℓ2(km+kr) do not exist, or they exist but finding them is hard.

– The first approach consists of using as starting curve, the curve E6 : y2 =
x3 + 6x2 + x for which we can easily avoid endomorphisms of small degree
in the setting of this commitment scheme. In fact it was shown in [27] that
in a specific setting, some relatively short isogenies never have the same
co-domain, hence there are no collisions. With this approach, we obtain a
perfect binding and computationally hiding commitment scheme.

– The second approach consists of using a uniformly random supersingular el-
liptic curve as starting curve. Such an elliptic curve can be generated by using
the CGL hash function to hash a long nothing-up-my-sleeve string. We then
take km and kr so that existing algorithms to compute an endomorphism
of given degree cannot be used to efficiently compute an endomorphism of
degree ℓ2(km+kr). We obtain a computationally binding and computationally
hiding commitment scheme.

We stress that going from messages of arbitrary size (as it is the case in [33])
to messages of bounded size does not have a significant impact on protocols using
commitment schemes. In fact, even the Pedersen commitment [28] uses Z/qZ as
message space, for some prime q. This is also the case in bit-commitment[15]
used in electronic vote [16] and coin flipping [6]. Moreover, the definition of
commitment scheme given in [14] consider the message space to be a finite set.

The rest of the paper is structured as follows: In Section 2, we give some
preliminaries on commitment schemes, isogenies and quaternion algebras; and
we describe the CGL hash function. Sterner’s commitment scheme is presented
in Section 3. In Section 4, we present the first approach of our construction and
in Section 5 we discuss the smallest ℓ-power degree endomorphism that can be
efficiently computed, together with the second approach. We conclude the paper
in Section 6.

2 Commitment Schemes, Isogenies and Quaternion
Algebras

In this section, we recall some background about commitment schemes, elliptic
curves and isogenies.

2.1 Commitment Schemes

A commitment scheme consists of two probabilistic polynomial-time algorithms
KeyGen and Commit and a deterministic polynomial-time algorithm Open
described as follows.
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• KeyGen(1λ) takes the security parameter as input and outputs the public
parameters pp needed for the protocol, as well as the message spaceM.

• Commit(pp,m, r) : Given the public parameters pp, a message m ∈ M
and a uniformly random string r sampled from a space R, outputs a value c
which is the commitment to m.

• Open(pp,m, r, c): Given the public parameters pp, a message m, a string r
and a value c, verifies if c is a valid commitment for m and r. It returns a
boolean b ∈ {0, 1}.

The hiding and the binding properties are modeled by the following games.

Hidinggameb(A)
1: pp← KeyGen(1λ)
2: (m0,m1)← A(pp)
3: r

$←− R
4: c← Commit(pp,mb, r)
5: b′ ← A(c)
6: return b′

Bindinggame(A)
1: pp← KeyGen(1λ)
2: (m, r,m′, r′, c)← A(pp)
3: return (m ̸= m′)&(Open(pp,m, c, r) == (pp,m′, c, r′) == 1)

The hiding game is modelled like an indistinguishability game. An adversary
chooses two distinct messages m0 and m1 and submits to an oracle. In the
Hidinggame0, one commits to m0 while in the game Hidinggame1 one commits to
m1. The adversary wins the game if it can correctly guess in which game he is
(Hidinggame0 or Hidinggame1). In the binding game, the adversary wins if it can
find two distinct messages from the message space with the same commitment.

For the security analysis, we use the following definition of negligible function
from [23].

Definition 1. A function ε : N→ [0, 1] is negligible if for all c ≥ 0, there exists
kc ≥ 0 such that ε(k) < 1

kc for all k > kc.

The security of a commitment scheme depends on the ability of an adversary
to win the hiding game or the binding game. This ability is evaluated using its
advantage against these games.

Definition 2. Let C be a commitment scheme and λ a security parameter. The
hiding advantage and the binding advantage for an adversary A, are respectively
defined by

AdvhidC (A) = |Pr (Hidinggame1 returns 1)− Pr(Hidinggame0 returns 1)|

and
AdvbindC (A) = Pr[A wins the binding game].
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We say that C is information-theoretically (resp. computationally) hiding if for
all adversary (resp. PPT adversary) A, there is a negligible function negl, such
that AdvhidC (A) ≤ negl(λ). Furthermore, C has perfect hiding if AdvhidC (A) = 0
for any adversary.

The information-theoretical binding, the computational binding and the perfect
binding are defined similarly, replacing AdvhidC (A) by AdvbindC (A).

A black box way to build a commitment scheme is to use a hash function as
follows. Let H : {0, 1}∗ → {0, 1}t be a hash function. For a given message m,
the algorithm Commit returns c = H(m||r) where r is a random string. In the
opening phase, the messagem is reveled together with the string r. The algorithm
Open consists to verify if c = H(m||r) holds. The isogeny based construction [33]
follows this idea, using the CGL hash function, an isogeny based hash function
introduced by Charles, Goren and Lauter [9]. To understand the isogeny based
commitment scheme, we give a little background on isogenies.

2.2 Elliptic Curves and Isogenies

In this section, we recall some useful notions on elliptic curves and isogenies. Any
interested reader can refer to Silverman’s book [32] or Washington’s book [36]
for more details.

Definition 3. Let K be a field. An elliptic curve defined over K is a projective
regular algebraic curve of genus one defined over K.

Any elliptic curve defined overK has a Weierstrass affine equation E : y2+a1xy+
a3y = x3 + a2x

2 + a4x+ a6. If the characteristic of K is different from 2 and 3,
then this equation can be reduced to an equation of the form y2 = x3 + b4x+ b6
with ∆(E) = 4b34+27b26 ̸= 0. The j-invariant of a curve E : y2 = x3+ b4x+ b6 is
defined by j(E) = 1728

4b34
4b34+27b26

= 1728
4b34

∆(E) , and characterizes the isomorphism
class of E. This means that any other elliptic curve isomorphic to E has the same
j-invariant. Any elliptic curve has an abelian group structure. Any rational map
which preserves the group structure of elliptic curves is called isogeny. More
formally, we have the following definition.

Definition 4. Let E and E′ be two elliptic curves. An isogeny between E and
E′ is a rational map φ : E → E′ such that φ(OE) = OE′ .

Any isogeny φ : E → E′ is a group homomorphism and is defined by φ(x, y) =(
u1(x)
v1(x)

, y u2(x)
v2(x)

)
. This formulation allows us to define the degree of an isogeny.

Definition 5. Let φ : E → E′ be an isogeny defined by φ(x, y) =
(

u1(x)
v1(x)

, y u2(x)
v2(x)

)
where u1(x) and v1(x) are co-prime polynomials. The degree of φ is the integer

deg(φ) = max{deg(u1), deg(v1)}. If the derivative
(

u1

v1

)′
(x) is not identically 0,

we say that φ is separable.



6 G. Tchoffo Saah, T. B. Fouotsa, E. Fouotsa, C. Nkuimi-Jugnia

For any isogeny φ : E → E′, there is a unique isogeny (up to isomorphism)
φ̄ : E′ → E, the dual isogeny of φ, such that φ◦φ̄ = [deg(φ)] and φ̄◦φ = [deg(φ)],
where [deg(φ)] denotes the multiplication by deg(φ). When φ is a separable as
it will be the case in this article, we have deg(φ) = #Ker φ. The kernel of any
isogeny φ : E → E′ is a finite subgroup of E. Conversely, given a finite subgroup
G of an elliptic curve E, there exists a unique isogeny (up to composition by an
isomorphism) of kernel G. This isogeny can be computed and evaluated using
Vélu’s formulas [34]. We denote the codomain curve of this isogeny by E/G.
Two isogenies with a same domain are said to be equivalent if they have the
same kernel. This implies that they have isomorphic codomains. If an isogeny φ
is decomposed as φ = φ1 ◦ φ2, then we have deg(φ) = deg(φ1)deg(φ2). Hence,
for a prime ℓ, an isogeny of degree ℓe can be viewed as a sequence of e isogenies
of degree ℓ. Such a sequence of is a path in the ℓ-isogeny graph.

Definition 6. Let p an ℓ be two distinct primes. The ℓ-isogeny graphs in char-
acteristic p is the graph whose vertices are isomorphism classes of elliptic curves
defined over the algebraic closure F̄p of the field Fp and edges are equivalence
classes of isogenies of degree ℓ defined over F̄p.

The vertices of the ℓ-isogeny graph are labeled by j-invariants of elliptic curves.
Given a prime p, the ℓ-isogeny graph in characteristic p has two sub-graphs,
the sub-graph of which vertices are isomorphism classes of supersingular elliptic
curves and that of which vertices are isomorphism classes of ordinary elliptic
curves. The first sub-graph is a component called the supersingular ℓ-isogeny
graph and denoted by Gℓ(p). In characteristic p, the j-invariant of any supersin-
gular elliptic curve (supersingular j-invariant for short) is an element of Fp2 . The
nature of an elliptic curve (ordinary or supersingular) is given by the structure
of its endomorphism ring.

Given an elliptic curve E, an endomorphism of E is an isogeny from E to
E. Such isogenies form a ring End(E), where multiplication is the natural maps
composition. When E is defined over a field of characteristic p, E is said to be
ordinary if End(E) is isomorphic to an order in an imaginary quadratic field,
and supersingular if End(E) is isomorphic to a maximal order in the quaternion
algebras Bp,∞ ramified at p and ∞.

2.3 Quaternion Algebra

In this section, we present a little background on quaternion algebras that will
allow us to understand the computation of endomorphisms of supersingular el-
liptic curves in Section 5.1. For more details about this notion, the reader can
refer to John Voight’s book [35].

Definition 7. A quaternion algebra over a field K is a K-algebra of which the
underlying K-vector space is generated by {1, i, j, k} where i, j and k satisfy
i2 = a; j2 = b and k = ij = −ji for some a, b ∈ K\{0}. Such quaternion algebra
is noted by

(
a,b
K

)
.
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In this paper, we are interested in quaternion algebras over Q. Let p be a prime.
We denote by Bp,∞ the quaternion algebra ramified 4 only at p and ∞, which is
defined by

Bp,∞ =

(
−q,−p

Q

)
where q is in {1, 2} or is a prime congruent to 3 modulo 4. One defines the
norm and trace of a quaternion x = x1 + ix2 + jx3 + kx4 by Nrd(x) = xx̄ and
Trd(x) = x+ x̄ respectively, where x̄ = x1 − (ix2 + jx3 + kx4) is the conjugate
of x.

The principal link between supersingular elliptic curves and quaternion al-
gebras is that the endomorphism ring of any supersingular elliptic curve defined
over a field of characteristic p is isomorphic to a maximal order in Bp,∞. Con-
versely, any maximal order in Bp,∞ is isomorphic to the endomorphism ring of
a supersingular elliptic curve.

Definition 8. An order in Bp,∞ is a Z-sub module O of Bp,∞ such that O⊗Q =
Bp,∞. O is said to be maximal if it is not contained in another order.

Using the correspondence between maximal orders in Bp,∞ and endomorphism
ring of supersingular elliptic curves, the degree of an endomorphism corresponds
to the norm of the associated quaternion. Hence, finding an endomorphism of E
of degree d is equivalent to finding a quaternion of norm d in the maximal order
of Bp,∞ isomorphic to End(E). Now we describe the CGL hash function.

2.4 Supersingular ℓ-isogeny Graph and CGL Hash Function

In characteristic p, the number of supersingular j-invariants is Np =
[

p
12

]
+ ϵ,

where ϵ ∈ {0, 1, 2}.
Let ℓ ̸= p be a prime. The graph Gℓ(p) is a connected (ℓ+ 1)-regular graph,

with the Ramanujan property[30]. It is an example of expander graph which can
be used to build a hash function [9]. This hash function is constructed as follows.
Setup:

– Fix a prime p and a starting supersingular elliptic curve E defined over Fp2 ;
– Fix a small prime ℓ ̸= p and a point P0 ∈ E[ℓ] of order ℓ, where E[ℓ] is the
ℓ-torsion subgroup of E;

– Define a canonical order in the set of points of order ℓ in any supersingular
elliptic curve;

– The message space is M = {0, 1, . . . , ℓ− 1}∗.

Hashing:
Let m = (m1, . . . ,mk) ∈M.

1. Set E0 = E;
2. for i = 1, 2, . . . , k

4 We refer the reader to [35, Chapter 13] for details about ramification place
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(a) Avoiding the point Pi−1, order the ℓ remaining points of order ℓ and
successively label them with the bits from 0 to ℓ− 1;

(b) Set Si−1 to be the point corresponding to mi and compute the isogeny
φi : Ei−1 → Ei of kernel ⟨Si−1⟩;

(c) Set Pi = φi(Pi−1) ∈ Ei;
3. Return j(Ek)

We denote this algorithm by CGL(E, ℓ, P0,m). A more efficient algorithm can be
found in [19].

We now describe the isogeny-based commitment scheme following Sterner’s
construction [33].

3 Sterner’s Isogeny-based Commitment Scheme

Sterner’s isogeny-based commitment scheme is described as follows.
KeyGen(1λ) : Given a security parameter λ, fix a prime p of bit length

depending on λ; a small prime ℓ; a positive integer kr and a supersingular elliptic
curve E/Fp2 , together with a point P0 ∈ E[ℓ] of order ℓ. The public parameters
are pp := {p, ℓ, E, kr, P0} and the message space is M = {0, 1, . . . , ℓ− 1}∗.

Commit(pp,m, r) : Given the public parameters, a message m ∈ M and a
random r ∈ {0, 1, . . . , ℓ− 1}kr , return c = CGL(E, ℓ, P0,m||r).

Open(pp,m, r, c) : Given the public parameters; a message m ∈M; a string
r ∈ {0, 1, . . . , ℓ − 1}kr and a commitment c, return 1 if c = CGL(E, ℓ, P0,m||r)
and 0 otherwise.

Remark 9. In the original paper, to commit to a message m, one first computes
Em = E(CGL(E, ℓ,m)), followed by c = CGL(Em, ℓ, r). The paper says that
the computations are done in such a way that there is no backtracking. It is
not clear how these computations explicitly avoid backtracking. In fact, when
one calls the CGL hash function on m, one gets Em and nothing else. Explicitly
avoiding backtracking when computing c = CGL(Em, ℓ, r) requires the knowledge
of the last isogeny step in the computation of Em = E(CGL(E, ℓ,m)). Hence the
correct way to proceed is to concatenate the message m and the string r before
giving them as inputs to the hash function.

Now we move to the security properties of Sterner’s commitment scheme.

3.1 Hiding Property

In the context of the commitment scheme described above, the hiding game
involves finding two isogenies φ0 : E → E0 and φ1 : E → E1 of ℓ-power degree
and a distinguisher D such that, for a given curve E′ computed from a (hidden)
random cyclic isogeny ψ : Eb → E′ of degree ℓkr such that ψ ◦ φb is a cyclic
isogeny for a random b ∈ {0, 1}, D can distinguish which curve has been used
as domain of the isogeny ψ. When kr is such that there exists an isogeny of
degree ℓkr between any pair of supersingular elliptic curves defined over Fp2 , the
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advantage of any distinguisher is less than
(

ℓ+1
2
√
ℓ

)−kr

[33]. Such value of kr is
formally defined as follows.

Definition 10. Let G be a d-regular connected graph. The mixing constant of
G is the smallest value kG ∈ N such that for all k ≥ kG, for all pair of vertices
(j1, j2), there is a path of length k between j1 and j2.

For the ℓ-isogeny graph in characteristic p, we denote the mixing constant by kℓ,p.
The hiding property of the above commitment scheme is given by the following
theorem from [33, Theorem 4.2].

Theorem 11. Let C be the isogeny based commitment scheme described above,
and kr the length of the random path used in C. If kr ≥ kℓ,p, then C is information-
theoretically hiding.

By [33, Lemma 3.5], kℓ,p is lower bounded by logℓ

(
Np

ℓ+1

)
+ 1. Hence, we should

take kr > logℓ(p) to expect C to be hiding.

3.2 Binding Property

In the context of the above isogeny based commitment scheme, the binding game
involves finding two distinct cyclic isogenies φ0 : E → E0 and φ1 : E → E1 of
ℓ-power degree and two other cyclic isogenies ψ0 : E0 → E′ and ψ1 : E1 → E′

of degree ℓkr such that ψ0 ◦ φ0 and ψ1 ◦ φ1 are cyclic isogenies. This is exactly
a collision in the supersingular ℓ-isogeny graph, and is equivalent to finding an
endomorphism of E which has ℓ-power degree. This fact is formalized in [33,
Theorem 4.6], where the author shows that the scheme C is computationally
binding, assuming the hardness of the following Problem 12.

Problem 12 (Supersingular ℓ-power Endomorphism Problem). Given a prime
p, a supersingular elliptic curve E over Fp2 and a small prime ℓ, compute a
non-trivial cyclic endomorphism of E whose degree is ℓe, where e is a positive
integer.

When the endomorphism ring of E is known, solving this problem consists
of solving a norm equation in the maximal order O ∼= End(E) of the quaternion
algebra Bp,∞. This can be done by [20, Algorithm 13] and [25, Algorithm 8]. So
for this commitment scheme to be binding, ideally, we need a starting curve with
unknown endomorphism ring. Since all existing efficient methods for construct-
ing a supersingular elliptic curve [8,10] allow the one constructing the curve to
recover its endomorphism ring [7,26], one needs a trusted party to generate the
starting curve. One method to implement such trusted party is given by [3]. This
method involves a multiparty computation, and require a lot of resources to be
performed. In this paper, we modify this commitment scheme in such a way that
the trusted setup is avoided.

In the original version of the Sterner’s scheme presented at the beginning of
this Section, the message space isM = {0, 1, . . . , ℓ− 1}∗, and the starting curve
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is required to have a hidden endomorphism ring. The first major modification
we bring is that we allow a starting curve of known endomorphism ring. In this
situation, we have a binding issue: Knowing the endomorphism ring, one can
compute a cycle in Gℓ(p) using [20, Algorithm 13] and [25, Algorithm 8]. In order
to fix this issue, we modify the message space: we takeM = {0, 1, . . . , ℓ− 1}km

where km is a fixed integer. We then need to take km and kr (the length of the
random string) so that an endomorphism of degree lower than ℓ2(km+kr) does
not exists or is hard to compute. The first approach consists of using as starting
curve, the curve E6 : y2 = x3 + 6x2 + x where endomorphisms of small degree
do not exist5.

4 Committing from the Curve E6

Here we use the curve E6 : y2 = x3 + 6x2 + x defined over Fp2 where p ≡
15(Mod 16). Contributing to the security analysis of SIDH/SIKE, Onuki [27]
investigated on the existence of endomorphism of degree ℓe < p on this curve.

Theorem 13 ([27]). Let ℓ be a prime number that does not split in Z[
√
−1],

ϕ = (ϕ1, . . . , ϕn) and ψ = (ψ1, . . . , ψm) two distinct paths of respective lengths n
and m from E6 to the same curve E in Gℓ(p) without backtracking. Then one of
the following holds:

• ℓn+m ≥ p+1
16 ;

• ℓ = 2 and either ϕ or ψ has a form ϕ′ ◦ ϕ0 where ϕ0 : E6 → E(1728) is of
degree 2 and E(1728) has j-invariant 1728.

It follows that there does not exist a cycle of length less than p+1
16 in the ℓ-isogeny

graph which begins with E6 when ℓ ̸= 2. In the case where ℓ = 2, the first edge
of such a cycle is the 2-isogeny whose codomain is the curve of j-invariant 1728.
The adjustment of km and kr can then be done so that ℓ2(km+kr) < p+1

16 . We
describe the protocol as follows.

4.1 Description of the Commitment Scheme

Our idea is to use the curve E6 as starting curve, and take km and kr such that
km + kr <

1
2 logℓ(

p+1
16 ). We designate this scheme by Ckm,kr

and described it as
follows.

KeyGen(1λ) : Given a security parameter λ, fix a prime p ≡ 15 (mod 16),
two positive integers km and kr (The size of p, km and kr will be given later
in Section 4.4). Let ℓ be a small prime equal to 2 or congruent to 3 modulo
4 and P0 ∈ E6[ℓ]. When ℓ = 2, the point P0 is such that j(E6/⟨P0⟩) = 1728.
The public parameters are pp := {p, ℓ, km, kr, E6, P0} and the message space is
M = {0, 1, . . . , ℓ− 1}km .

Commit(pp,m, r) : Given the public parameters, a message m ∈ M and a
random r ∈ {0, 1, . . . , ℓ− 1}kr , return c = CGL(E6, ℓ, P0,m||r).
5 Such an endomorphism exists, but can be easily avoided in our setting
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Open(pp,m, r, c) : Given the public parameters, a message m ∈ M, r ∈
{0, 1, . . . , ℓ− 1}kr and a commitment c, return c == CGL(E6, ℓ, P0,m||r).

For the rest of this section, p is a prime congruent to 15 modulo 16 and ℓ is a
small prime equal to 2 or congruent to 3 modulo 4. We now analyse the security
properties of the new commitment scheme.

4.2 Binding Property

Our scheme is constructed to be perfectly binding. In fact, since km + kr <
1
2 logℓ(

p+1
16 ), Theorem 13 shows that the only cycles starting from E6 and of

length smaller than logℓ(
p+1
16 ) have the isogeny E6 → E(1728) = E6/⟨P0⟩ as

their first step. Since this isogeny is never the first step in the computation
of the commitment c = CGL(E6, ℓ, P0,m||r), then there exists no distinct mes-
sages m0,m1 ∈ M, no random strings r0, r1 ∈ {0, 1, . . . , ℓ − 1}kr such that
CGL(E6, ℓ, P0,m0||r0) = CGL(E6, ℓ, P0,m1||r1). Meaning that Ckm,kr

is perfectly
binding by design. In the next paragraph, we discuss the hiding property.

4.3 Hiding Property

Since the mixing constant of ℓ-isogeny graph is lower bounded by logℓ(Np) −
logℓ(ℓ + 1) + 1 [33, Lemma 3.5], we have kr < kℓ,p, which does not satisfy the
conditions of Theorem 11. Moreover, considering the context of the hiding game,
if c is the commitment for a message mb following the scheme in Section 4.1, the
probability to be the commitment of m1−b is 0. This is justified by Lemma 14,
where we consider the following set for each tuple (d,E, ψ) where d is a positive
integer and ψ : E6 → E is a cyclic isogeny.

Isogd(E,ψ) =

{
j(E′/Fp2); there exist a cyclic isogeny ϕ : E → E′ of degree d

such that ϕ ◦ ψ is a cyclic isogeny

}
.

Lemma 14. Let φ0 : E6 → E0 and φ1 : E6 → E1 be two non equivalent cyclic
isogenies of degree ℓkm and let kr be an integer such that km+kr <

1
2 logℓ(

p+1
16 ).

Then Isogℓkr (E0, φ0) ∩ Isogℓkr (E1, φ1) = ∅ in the following cases:

1. ℓ ̸= 2
2. ℓ = 2 and neither φ0 nor φ1 is a path containing the curve of j-invariant

1728;

Proof. Let us suppose that Isogℓkr (E0, φ0)∩ Isogℓkr (E1, φ1) ̸= ∅, and let E such
that j(E) ∈ Isogℓkr (E0, φ0) ∩ Isogℓkr (E1, φ1). Then there exists two cyclic iso-
genies ψ0 : E0 → E and ψ1 : E1 → E of degree ℓkr such that ψ0 ◦ φ0 and
ψ1 ◦ φ1 are cyclic isogenies. We then have two distinct paths ψ0 ◦ φ0 : E6 → E
and ψ1 ◦ φ1 : E6 → E in the ℓ-isogeny graph, both of length km + kr. This
contradicts Theorem 13, since ℓ2(km+kr) < p+1

16 .

Hence our scheme is not information theoretically hiding. We prove that our
scheme is computationally hiding assuming that Problem 15 is hard.
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Problem 15. Let km, kr ∈ N∗ such that km + kr <
1
2 logℓ(

p+1
16 ). Find two cyclic

isogenies φ0 : E6 → E0 and φ1 : E6 → E1 of degree ℓkm and a PPT distinguisher
which distinguishes between the following distributions:

1. E′ ∈ Isogℓkr (E0, φ0);
2. E′ ∈ Isogℓkr (E1, φ1).

Theorem 16. The scheme Ckm,kr
is computationally hiding under the hardness

of Problem 15.

Proof. Let A = (A1, A2) be a polynomial time adversary against the hiding
game, described as follows: A1 returns two massages m0 and m1. After a uni-
formly random one of the two messages has been committed to, A2 takes the
commitment and distinguishes which of them has been committed to.

We describe an adversary A′ for Problem 15 as follows: A′ queries A to
obtain the two messages m0,m1 returned by A1 and computes the corresponding
isogenies φ0 : E6 → E0 and φ1 : E6 → E1. Afterward, uses the distinguisher
A2 to obtain b such that mb has been committed to. A′ returns the distribution
E′ ∈ Isogℓkr (Eb, φb). A′ has the same success probability as A.

Given two curves E0 and E1, to the best of our knowledge the best ap-
proach to distinguish among the distributions in Problem 15 is the strategy
which consists of trying to compute an isogeny Eb → E′ of degree ℓkr using
vOW algorithm [12], for each b ∈ {0, 1}. This approach has running time of
O( N3/2

w1/2m
), where w is the size of the memory, m is the number of processors

and N = (ℓ+ 1)ℓkr/2−1 ≈ ℓkr/2[1]. So for our scheme to be secured, we need to
carefully choose kr, according to ℓ and the security parameter λ. In the following
section, we provide further details for the parameters selection.

4.4 Concrete Setup

The analysis of vOW [1] allows us to suggest some values for kr, according to
some security parameters λ. We summarize these values in Table 1. For any

λ 128 160 192
ℓ 2 3 2 3 2 3
kr 216 137 273 172 305 192

Table 1. Some secure values for kr

security level, the length km is such that km + kr = ⌊ 12 logℓ(
p+1
16 )⌋. For giving

the size of p as function of λ, we consider the MIM attack [1] instead of vOW
attack. Then we need kr = 2λ. Taking km ≈ nλ for some rational n, we need a
prime p such that logℓ(p+ 1) ≈ 2(n+ 2)λ+ logℓ(16).
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We hence get rid of the trusted setup, but at the cost of having a prime
whose size is linear in the size of the messages. In the original scheme [33], the
size of the prime is 2λ. The relatively large size of p in our variant is due to
the smallness of the upper bound logℓ(

p+1
16 ). In the next section, we suggest a

more compact variant of our construction, which instead of aiming for perfectly
binding commitment scheme, goes for computationally binding one by using a
uniformly random supersingular curve (of non secret endomorphism ring) as
starting curve.

5 Committing from a Uniformly Random Supersingular
Curve

This approach is similar to that presented in Section 4.1. The difference is that we
use a publicly generated uniformly random supersingular curve, and we exploit
lower bounds on the degree of prime power degree endomorphisms that can be
efficiently computed.

5.1 Computing short ℓ-power Degree Endomorphisms

In this section, our goal is to discuss the shortest ℓ-power degree endomorphism
that can be efficiently computed using existing algorithms. Our motivation comes
from the fact that the commitment scheme Ckm,kr in Section 4 requires km
and kr such that km + kr < 1

2 logℓ
(
p+1
16

)
, in order to avoiding the existence

of endomorphisms of degree ℓ2(km+kr) in the starting curve. The smallness of
the upper bound 1

2 logℓ
(
p+1
16

)
leads to a relatively large size of p. In order to

increase this upper bound (and then reduce the size of p), we allow the existence
of endomorphism of degree ℓ2(km+kr), but ensure that these endomorphisms are
hard to compute.

We recall that computing an endomorphism of a curve E of degree d implies
solving a norm equation in a maximal order which is isomorphic to the endomor-
phism ring of E. The method for solving the norm equation in maximal order
depends on whether the order is a special extremal order [24] or not. A part of
the following discussion about special extremal orders is already done in [2] for
slightly different purpose.

Let Bp,∞ =
(

−q,−p
Q

)
= Q+ iQ+ jQ+kQ be the quaternion algebra ramified

at p and ∞, where i2 = −q, j2 = −p and ij = −ji = k. A special p-extremal
maximal order [24] is a maximal order containing j. Examples of p-extremal
maximal orders are those containing Z⟨i, j⟩ = Z+ iZ+ jZ+ kZ as subring. For
such a maximal order O, if R = O ∩ Q[i] = Z[ω] is the ring of integers of Q[i],
then the restriction of the norm to R+Rj is given by

Nrd(x1 + y1ω + (x2 + y2ω)j) = f(x1, y1) + pf(x2, y2),

where f is a principal quadratic form of same discriminant as R [24]. We have

f(x, y) = x2 +Trd(ω)xy +Nrd(ω)y2.
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In the following example, for several congruence classes of p, we exhibit
the quaternion algebra Bp,∞, a special p-extremal order O, the corresponding
quadratic ring R and the form of f(x, y).

Example 17. 1. For p ≡ 3 mod 4: Bp,∞ =
(

−1,−p
Q

)
; O = ⟨1, i, 1+k

2 , i+j
2 ⟩; R =

Z[i];
f(x, y) = x2 + y2

.
2. For p ≡ 5 mod 8: Bp,∞ =

(
−2,−p

Q

)
; O = ⟨1, i, 1+j+k

2 , i+2j+k
4 ⟩; R = Z[i];

f(x, y) = x2 + 2y2

.
3. For p ≡ 1 mod 4: Bp,∞ =

(
−q,−p

Q

)
, where q ≡ 3 mod 4 is a prime such that(

−p
q

)
= 1; O = ⟨1, 1+i

2 , j, ci+k
q ⟩, where c2 ≡ −p mod q; R = Z[ 1+i

2 ];

f(x, y) = x2 − xy + 1 + q

4
y2

.

Any curve whose endomorphism ring is isomorphic to one of p-extremal maximal
orders given in Example 17 is said to be special. For such a curve, the best method
to find an endomorphism of ℓ-power degree consists of solving the equation

f(x, y) + pf(z, t) = ℓe

for some e. Algorithm 13 in [20] consists of taking e large enough so that the
quantity ℓe−pf(z, t) is positive for sufficiently many pairs (z, t) and the equation

f(x, y) = ℓe − pf(z, t)

can be solved by Cornacchia’s algorithm [11]. When ℓ is split in R, this equation
may have a solution for z = t = 0 and6. When ℓ is not split in R, this equation
does not have a solution for ℓe < p. The solution returned by [20, Algorithm 13]
is such that ℓe ≈ p2.

For a random curve of known endomorphism ring isomorphic to O, we don’t
have a nice norm form as in the above case. So it is not clear how to use the
same approach to solve the norm equation. The method given by [25, Algotithm
8, Page 75] consists of solving the norm equation in the Einsler order O0 ∩ O,
where O0 is one of extremal orders given in Example 17. From [18, Proposition
1], we have O0 ∩ O = Z+ I where I is an ideal connecting O0 and O. One can
always choose the idea I such that its norm is prime [24]. Let N = Nrd(I) be
prime. One computes µ ∈ Z+ I of ℓ-power norm as follows:
6 This may not be the case. The probability that this holds is 1

h∆ω
, where h∆ω is the

class number of R.
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1. Compute (C : D) ∈ P1(Z/NZ) such that µ0 = (C + ωD)j ∈ Z+ I;
2. Compute λ ∈ Z/NZ and µ1 ∈ O0 such that µ = 1

2 (λµ0 + Nµ1) is of norm
ℓe for some e ∈ N.

The existence of (C : D) in Step 1 can be justified by [25, Proposition 3.3.1].
The idea in Step 2 is to find µ1 of the form µ1 = x+yω+(z+ tω)j ∈ R+Rj.

We then have µ = 1
2 [N(x+ yω) + (Nz + λC + (Nt+ λD)ω)j] and Nrd(µ) = ℓe

is equivalent to

1

4

[
N2f(x, y) + pf(Nz + λC;Nt+ λD)

]
= ℓe. (1)

Modulo N , we have pλ2f(C,D) = 4ℓe. Since ℓ is a quadratic non-residue modulo
N , we can adjust the parity of e so that

(
pf(C,D)

N

)
=

(
4ℓe

N

)
and take

λ =

√
4ℓe

pf(C,D)
(mod N).

Equation 1 is equivalent to

f(x, y) =
4ℓe − pf(Nz + λC;Nt+ λD)

N2
(2)

Using the optimisation strategy presented in [29], this equation can be solved by
choosing e such that 4ℓe ≈ pN3

√
∆Q(ω). Since N is slightly greater than √p, ℓe

is slightly greater than p
5
2 . If we could generate many pairs (C : D), we could

use the strategy in [2, Section 4.1] to have a superpolynomial time version of
this algorithm where the lower bound p

5
2 is reduced to p

5
2−ϵ with running time

in O(N ϵ) where N ϵ is the number of pairs (C : D) generated. However, the
pair (C,D) given by [25, Proposition 3.3.1] is unique up to scalar multiplication,
according to [25, Proposition 2.3.12]. So p

5
2 (as found in [25]) is the lower bound

on the degrees of endomorphisms that can be efficiently computed, assuming the
supersingular curve in play was generated uniformly at random.

Recently, some improvements [4,22] have been made on algorithms to find
isogenies of fixed degree between supersingular elliptic curves E1 and E2. The
algorithm given in [22] improves that given in [4]. More precisely, given two
maximal orders O1 and O2 in Bp,∞, Algorithm 5 in [22] allows to compute an
ideal of any norm d connecting O1 and O2, assuming that such an ideal exists.
This algorithm runs in time O(

√
Nrd(β1)Nrd(γ1)) where β1 ∈ O1 and γ1 ∈ O2

are the smallest (in terms of norm) non scalar endomorphisms of E1 and E2

respectively. For a generic maximal order O, the norm of the smallest elements
in O is upper-bounded by O(p2/3) [22]. Hence the expected running time of this
algorithm is O(p2/3) when both maximal orders are generic, and O(p1/3) when
either O1 or O2 is one of the extremal maximal orders in Example 17. This
algorithm could be used to find an endomorphisms of given degree d on a curve
E of known endomorphism ring O by setting O1 = O2 = O. We note that, if
β is a non scalar endomorphism of smallest norm in O, this algorithm cannot
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return a non scalar endomorphism if d < Nrd(β). When O is one of the above
extremal maximal orders, this method runs in polynomial time and can return
an endomorphism of any degree when it exists.

A more efficient method could be to use Algorithm 3 in [22], which allows
to compute an endomorphism of given trace and degree if such an endomor-
phism exists in O. One could exploit this algorithm by picking a random trace
t and finding an endomorphism of our given norm d and trace t. The resulting
algorithm has expected running time O(

√
Nrd(β).polylog(dp)).

Another way for computing a degree ℓe endomorphism of a curve E could be
as follows, assuming that its endomorphism ring End(E) ∼= O is known.

1. Compute an isogeny ϕ : E → E′ of degree ℓe/2;
2. Compute the endomorphism ring O′ of E′;
3. Use Algorithm 5 in [22] to compute an ideal I of norm ℓe/2 connecting O to
O′;

4. Compute the isogeny ϕI of kernel ideal I;
5. If ϕI is equivalent to ϕ then go back to 2 and consider a maximal order O′′

conjugated to O′ that is not isomorphic to End(E′p);
6. Return α = ϕ̄ ◦ ϕI .

If E is a randomly generated curve, this approach has expected exponential
running time as Algorithm 5 in [22] runs in expected time O(p3/2). Furthermore,
the loop in this algorithm might not stop. For example if E = E6 as defined in
Section 4 and ℓe < p+1

16 , there is no non equivalent isogeny to ϕ if ϕ corresponds
to a path whose the first edge does not connect E6 to E(1728).

According to the above discussion, we can use a generic curve with no small
endomorphism for our protocol. The obtained variant is described as follows.

5.2 Description of the Scheme

The scheme Ckm,kr
described in Section 4 uses the curve E6 : y2 = x3+6x2+x as

starting curve. The message space is {0, 1, . . . , ℓ−1}km and the space of random
messages is {0, 1, . . . , ℓ− 1}kr , where km + kr = ⌊ 12 logℓ

(
p+1
16

)
⌋. In this Section,

we bring the following modification to this scheme.

• The starting curve E is a uniformly random supersingular elliptic curve with
no endomorphism of small degree. Such an elliptic curve can be generated
by using the CGL hash function to hash a long nothing-up-my-sleeve string.
To verify that the curve E has no endomorphism of small degree, one can
compute a Minkowski reduced basis of End(E).

• The message space and the space of random strings are unchanged, but
values of km and kr are such that 2(km + kr) = ⌊2 logℓ(p)⌋.

Apart form these modifications, everything else is unchanged (see Section 4.1).
We designate this new variant by Ckm,kr (E). We now provide security arguments
for this variant.
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5.3 Binding Property

For the binding property of Ckm,kr (E), we have the following problem which is
a variant of Problem 12.

Problem 18. Given a prime p, a uniformly random supersingular elliptic curve
E defined over Fp2 , a small prime ℓ and a positive fixed integer e ≤ 2 logℓ(p),
compute a cyclic endomorphism of E which has degree ℓe.

Theorem 19. The commitment scheme Ckm,kr
(E) is computationally binding,

assuming the hardness of Problem 18.

The proof of the above theorem is straightforward. Following the discussion
in Section 5.1, existing efficient algorithms for computing an endomorphism of
ℓ-power degree can not return an endomorphism whose degree is smaller than
p

5
2 . So to the best of our knowledge, there is no known efficient algorithm for

solving Problem 18.

5.4 Hiding Property

For the hiding property, we introduce the following problem.

Problem 20. Let E be a random supersingular elliptic curve and km, kr ∈ N∗

such that km + kr = ⌊log p⌋. Find two distinct cyclic isogenies φ0 : E → E0 and
φ1 : E → E1 of degree ℓkm and a distinguisher which distinguishes between the
following distributions:

1. E′ sampled uniformly at random from Isogℓkr (E0, φ0);
2. E′ sampled uniformly at random from E′ ∈ Isogℓkr (E1, φ1).

Theorem 21. Let E be a supersingular elliptic curve. The scheme Ckm,kr
(E) is

computationally hiding under the hardness of Problem 20.

Proof. The proof is similar to that of Theorem 16.

The best known strategy against Problem 20 is the same as that against
Problem 15 which consists of trying to compute an isogeny Eb → E′ of degree
ℓkr using vOW algorithm [12], for each b ∈ {0, 1}. We can hence use the values
of kr given in Table 1 to avoid such attacks. Furthermore, taking kr = 2λ and
km = nλ as in Section 4.4, we can use a prime p of size logℓ(p) ≈ (n + 2)λ,
instead of logℓ(p+ 1) ≈ 2(n+ 2)λ+ logℓ(16) as in the previews variant. .

6 Conclusion

In this work, we have investigated the problem of constructing an isogeny based
commitment without trusted setup. We have suggested two approaches to solve
this problem. These two approaches share the same idea that consists of modify-
ing Sterner’s commitment scheme by using a starting curve of known endomor-
phism ring and a finite set as message space. In the first approach, the starting
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curve is a curve that does not have endomorphisms of relatively small ℓ-power
degree and the size of messages is bounded in such a way that associated isoge-
nies never have the same co-domain, and hence never lead to endomorphisms on
the starting curve. Doing so, we obtain a perfectly binding and computationally
hiding commitment scheme. However, this approach requires a field of charac-
teristic p significantly larger than that used for the initial scheme. In order to
limit the efficiency loss in our first proposal, we suggest a second variant where
instead of choosing the starting curve and the degree of the isogenies in such
a way that certain endomorphisms do not exist, we choose them in such a way
that these endomorphisms may exist but computing them is hard. This leads to
a scheme where we half the size of the prime p, compared to our first proposal.
We prove that the resulting scheme is computationally hiding and computation-
ally binding.

Acknowledgments. We thank Antonin Leroux for useful discussions about
computing an endomorphism of given degree.
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