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Abstract

We study the possibility of algorithm substitution attacks (ASAs) on functions with no
secret-key material, such as hash functions, and verification algorithms of signature schemes
and proof systems. We consider big-brother’s goal to be three-fold: It desires utility (it can
break the scheme), exclusivity (nobody else can) and undetectability (outsiders can’t detect its
presence). We start with a general setting in which big-brother is aiming to subvert an arbitrary
public function. We give, in this setting, strong definitions for the three goals. We then present
a general construction of an ASA, and prove that it meets these definitions. We use this to
derive, as applications, ASAs on hash functions, signature schemes and proof systems. As a
further application of the first two, we give an ASA on X.509 certificates. While ASAs were
traditionally confined to exfiltrating secret keys, our work shows that they are possible and
effective at subverting public functions where there are no keys to exfiltrate. Our constructions
serve to help defenders and developers identify potential attacks by illustrating how they might
be built.
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1 Introduction

The Snowden revelations lead researchers to ask how cryptography might be subverted. Algorithm
Substitution Attacks (ASAs) [10, 66, 67] emerged as one answer. The first formalism and attacks,
by BPR [10], put forth the following template. There is a prescribed cryptographic algorithm A
that accesses a secret key K. The adversary (called big-brother in this setting) substitutes A by
subverted code Ã that aims to undetectably exfiltrate K. For this purpose, Ã and big-brother
may share a symmetric key. Such ASAs have now been given or considered for many primitives
including symmetric encryption [3,9,10,26,41], signature schemes [5,20,62] and beyond [14,14,19,
21,38,44,53–55,63]. However, the goal has always remained to exfiltrate a secret key.

We initiate work in a new and different direction inspired by work on backdooring of machine-
learning algorithms [40]. We consider the possibility of ASAs on public functions, such as hash
functions, verification algorithms of signature schemes, or verification algorithms of proof systems
like SNARGs or SNARKs. In these cases, there is no secret key to exfiltrate, so one has to ask what
an ASA would want to do, and what properties big-brother would like it to have. We answer these
questions with new definitions. These are given in a general setting where the goal is an ASA on
an arbitrary public function. In the same general setting, we then give a construction of an ASA
that we prove meets our definitions. We then apply this to obtain ASAs on the specific primitives
mentioned above.
The setting. Honest function f is sampled from a prescribed family F, as f ←$ F. Big-brother
generates a substitution function f̃ together with an associated exploit function (also called a back-
door) e, via (f̃ , e)←$ F̃(f ), where F̃ is an algorithm of big-brother’s own devising. It now arranges
that a user’s code implementing f is substituted with code implementing f̃ . This substitution can
take place by a variety of means and is outside our scope. Applications that expected to use f are
now (unknowingly) using f̃ instead. In this setting, we consider big-brother to have three goals, as
follows:
• Utility: Big-brother, through knowledge of the exploit function e, now wants to violate security

of the f̃ -using application.
• Undetectability: A tester with black-box access to either f or f̃ should not be able to tell which

of the two it is.
• Exclusivity: Others, meaning entities knowing f̃ but not e, should not be able to violate security

of the application even when it uses f̃ .
Utility of course represents the main intent of big-brother in creating the ASA. Undetectability is
a core ASA requirement [10]. Exclusivity captures that a big-brother government or Intelligence
Agency wants to ensure that other parties cannot violate security of the application. Similarly,
a big-brother corporation may want to ensure that its competitors and the public cannot violate
security of the application.
Motivating applications. Before formalizing the above requirements and giving our general
construction, we discuss some motivating applications.

The first is that f is a collision-resistant hash function. The canonical application is hashing the
content (data) in a digital certificate before signing it to create the certificate itself. The utility of
interest to big-brother would be that, when f̃ is used in place of f , big-brother can forge certificates.
Exclusivity means others cannot forge certificates even under f̃ . The ASAs we will give improve the
backdoored hash functions of [34] which had lower utility, lower exclusivity and no undetectability
requirement.

The second is signatures. Prior work on ASAs [5] aims to substitute the signing algorithm and
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exfiltrate the secret signing key, and the ASAs only succeed for schemes which have randomized
signing with sufficient entropy. Instead, we let f be the verification algorithm, viewed as embedding
a target, public verification key vk. The substitution continues to accept signatures under vk, but
utility allows big-brother to have it also accept other signatures that big-brother devises using
e. Yet, exclusivity ensures that an outside entity not knowing either e or the secret signing key
underlying vk be unable to create new signatures that f̃ accepts.

The third is proof systems. These are extensively used in blockchains and cryptocurrencies. Our
ASAs will show how to subvert soundness. We let f be the proof-verification algorithm, possibly
embedding a CRS. The substitution f̃ accepts valid proofs under the CRS but also accepts proofs,
devised by big-brother using e, of false statements. Exclusivity precludes others from violating
soundness even relative to f̃ .
The general framework. Rather than treat the above three applications separately, we will
derive them via a general framework that we now discuss. Here F is an arbitrary function family
from which the honest function f ←$ F is sampled, and big-brother generates the substitution
function f̃ together with an exploit function e via (f̃ , e)←$ F̃(f ).
• Utility: Utility seems at first glance to be very application dependent, and we have to ask

what it may mean in general. We parameterize the requirement by a predicate P(·, ·) called the
constraint. Then we ask that exploit function e, given a string u called the constraint-parameter,
and given a target output y, returns an x such that (1) f̃ (x) = y and (2) P(x, u) = true.
Intuitively, big-brother can create an input x, satisfying a desired constraint involving a u of its
choice, such that x maps to an output y of its choice under f̃ . Different applications will make
different choices of P.

• Undetectability: We consider a game that picks a random challenge bit b and gives the detector
an oracle that on input x returns f (x) if b = 1 and f̃ (x) otherwise. Asking that the detector have
negligible advantage in guessing b formalizes black-box undetectability, a strong requirement in
line with prior work [10,40].

• Exclusivity: We consider an adversary that is given the descriptions of f and f̃ and oracle access
to the exploit function e, and ask that it cannot come up with an input x at which f and f̃
differ, except trivially, meaning through use of its oracle.

Our first result is Theorem 3.1, saying that exclusivity, in our strong formulation, actually implies
undetectability. We define the latter separately because it is a core ASA requirement insisted on
by prior work [10], but for our ASAs, we will prove exclusivity and then conclude undetectability
via Theorem 3.1.
Our general ASA construction. Is it possible to build an ASA F̃ on an arbitrary function
family F that meets the three conditions above? We show, through construction, that the answer
is “yes.”

To expand on this, first note that one cannot hope to achieve this for all constraint predicates
P. It is, for example, impossible for the predicate P(x, u) that returns true iff x = u; intuitively, one
needs some “room” in x to exploit. We show how to build an ASA F̃ for any constraint predicate
satisfying a certain condition, that we define and call embeddability. The class of predicates meeting
this condition is large and includes in particular ones allowing our above-discussed applications.

Our construction is a transform ASA that takes (1) the target function family F (2) a signature
scheme S and (3) an embedding function Emb, for the constraint predicate P, that is compatible
with S, F, as we will define in Section 4. (Embeddability, for now, just asks that such an embedding
exists.) It returns an ASA F̃ = ASA[F, S, Emb] built from these three components. Proposition 4.1
establishes utility with respect to P, assuming correctness of the embedding and signature scheme.
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Theorem 4.2 establishes exclusivity assuming strong unforgeability of the signature scheme S. Un-
detectability follows from Theorem 3.1. The design of ASA extends ideas of [40], who used a
signature scheme to backdoor a machine learning model.
ASAs on hash functions. Towards our first application, to collision-resistant hash functions and
certificate forgeries, we start with some background. While ASAs on hash functions have not to our
knowledge been explicitly discussed before, Fischlin, Janson and Mazaheri (FJM) [34] considered
backdooring hash functions, which is similar. Let H be the target set of hash functions from which,
via h←$ H, one generates an honest hash function h : {0, 1}∗→ {0, 1}ℓ that is assumed collision-
resistant. A backdooring of H can be seen, like an ASA, as specified by an algorithm H̃ that takes an
instance h of H and via (h̃, e)←$ H̃(h) generates a substitution function h̃ : {0, 1}∗ → {0, 1}ℓ as well
as a backdoor (or exploitation) function e. FJM [34] have two requirements that in our language
represent utility and exlusivity. FJM-utility asks that knowledge of e allows big-brother to violate
collision resistance (cr) of h̃, meaning find distinct x1, x2 such that h̃(x1) = h̃(x2). FJM-exclusivity
asks that an adversary given h̃ but not e cannot violate cr of h̃. They give no undetectability
condition.

FJM [34] build a backdooring H̃ of H satisfying their two conditions. Roughly, h̃ embeds the
image y of a random point x under a one-way function g, and h̃ behaves anomalously if (and only
if) its input maps to y under g. Other works also satisfy this basic notion of a backdoored hash
function: Albertini, Aumasson, Eichlseder, Mendel and Schläffer (AAEMS) [2] give a backdoored
version of SHA1. The VSH (Very Smooth Hash) algorithm of Contini, Lenstra and Steinfeld [22]
achieves FJM-utility and FJM-exclusivity when viewed as a backdoored hash function.

This notion of utility is however limited; in its quest for subversion, big-brother wants signifi-
cantly more. We illustrate with two examples:

Forgery of TLS certificates. Forgery of TLS certificates, to allow impersonation of a target
website, is a commonly considered big-brother goal [60,61,69]. Hashing is used here by the CA to
compress the certificate data before it signs to create the certificate. An arbitrary hash collision
will not help towards a forgery; big-brother needs not only to find a preimage x of a target point
y (the hash of a legitimate certificate) but to be able to embed in x information of its choice, such
as a public key for which it knows the secret key.

Breaking password-based authentication. Big-brother may be interested in subverting password-
based authentication, where the server holds a hash of the user password and salt. Big-brother
needs to find a preimage of this same hash that contains a password that it knows and the given
salt as a suffix.

We note that FJM [34] and AAEMS [2] suggest that utility be the ability to violate preimage
resistance but their formulations still do not suffice for the above tasks because they do not allow
big-brother to embed information of its choice in the preimage. Meanwhile, FJM-exclusivity too is
limited, as collisions created by big-brother using e can reveal e, making it easy for outside observers
to find further collisions.

In Section 5, we give an ASA on hash functions that satisfies our strong utility and exclusivity
requirements. In particular, the ASA permits the two exploits discussed above, meaning TLS
certificate forgery and breaking of password-based authentication. We obtain our hash-function
ASA by applying our above-discussed general ASA and results about it. To obtain the two exploits,
we make particular choices of the constraint predicates that parameterize our definition. Section 8
describes the X.509 forgery in detail. We note that this application relies crucially on our strong,
predicate-parameterized definition of utility.
ASAs on proof systems. As a second example, we illustrate ASAs on proof systems, targeting
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the substitution of the verification algorithm. We use the notation (p, v)←$ PS to denote the
generation of a proving and verification algorithm which hardcode the CRS. Our ASA then targets
the family of verification functions V, where our goal is to replace v ∈ V with a substitution function
ṽ, and to produce an exploit function e via an ASA generation algorithm Ṽ.

The property we presume an ASA on verification to target is soundness. Using e, we want to
be able to create an accepting proof for any statement ϕ which is not in the language described
by the proof system. This means that our utility definition asks to effectively violate soundness.
Further, we ask that soundness is maintained for any other party not having access to e, even
if it has observed forged proofs for statements of its choice. This is captured by our exclusivity
definition which provides oracle access to e. In order to apply our general ASA transform, we view
a proof forgery as finding a preimage of 1. (Recall that a verification function outputs a bit where
1 indicates success.) In line with the general setting, we define a corresponding predicate PPS along
with an embedding function. We include these results in Section 6.
ASAs on signature schemes. Finally, we turn to signature schemes. Similar to proof systems,
we want to substitute the verification algorithm. However in this setting, different users create
their own signing-verification key pair, hence it is desired that an exploitation algorithm works for
not only one but multiple users. Again we consider a family of functions V, where a function vi ∈ V
hardcodes the verification key for user i, and we want to construct an ASA Ṽ which takes v1, . . . , vn

and generates substitution functions ṽ1, . . . , ṽn and a single exploit function e for all n users.
Utility might ask that possession of e allows creation of some forgery, meaning a message m and

a valid signature for it under the verification function ṽi of some user. We ask for a stronger notion
of utility, namely that given any user i, and any target message m, the exploit algorithm allows
creation of a signature for m relative to ṽi. Our exclusivity definition is similarly strong, asking
that unforgeability of signatures still holds even with access to an oracle for producing signatures
using the exploit algorithm for any user. We observe that our general ASA transform needs to be
adapted so that signatures produced by the exploit algorithm are tied to the user. In Section 7, we
therefore give a modified multi-user ASA transform ASAn and show that it indeed achieves our
specified goals above.

As a concrete application, we consider again the certificate forgery example. Using our signature
ASA, big-brother can use the exploitation function to create certificates with validating signatures.
This is discussed in detail in Section 8.
Related work. “Subversion” is a recurring concern in cryptography. Attacks have been observed
in a variety of settings, including parameter generation in Dual EC [15,57], malicous code changes
in Linux [32], and governmental exceptional access [1]. To situate our investigation of ASAs on
public functions, it is useful to consider different categories in this area of subverted cryptography.

In a first category, code can be maliciously modified from its algorithmic specification. This
has been studied as algorithm substitution attacks [10] and as kleptography [66–68]. Here, an
adversary’s goal is to both modify an algorithm such that it exfiltrates secret information, and to
keep this modification undetected. We call our considered attacks ASAs because they involve a
code substitution step, and a second exploitation step. However, we define different goals than
exfiltration and undetectability. ASAs and kleptography have been studied for symmetric encryp-
tion [3,9,10,26], KEMs [19,44,53], signatures [5,62], and protocols [14,14,21,38,63]. Defenses have
been studied from the perspective of preventing exfiltration [30,50] or other “subversion-resistant”
notions [4,13,54,55]. These include more fine-grained online/offline detectability notions and other
modes of computation.

In another category of subversion, violations occur through authoritarian means. That is,
an authority can overcome usual security guarantees, but this extra power is well known to the
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public. Anamorphic cryptography [7, 47, 52] and earlier work on subliminal channels [43, 58, 59]
have proposed defenses to this type of subversion, which is different than the ASA model.

A final category, somewhat more related to ASAs, is maliciously designed algorithms or param-
eters. These have been studied for PRGs [27, 29], NIZKs [8], PKE [6], and hash functions [2, 34].
Unlike an ASA, algorithms are assumed to be implemented honestly, and code can be inspected.
Nonetheless, some of the goals and techniques are similar. In relevant sections, we will compare
related work on particular primitives in more detail.

The 2022 work of Goldwasser, Kim, Vaikuntanathan and Zamir (GKVZ) studies the possibility
of inserting undetectable backdoors in a machine learning model [40]. We leverage their techniques
in Section 4. In GKVZ, a strongly unforgeable signature triggers alternate execution in a model,
modifying classifier output when a signature is correctly parsed and verified. The non-replicability
condition of GKVZ offers an oracle providing backdoored model inputs, which is similar to an
additional oracle that our exclusivity game provides. We note that the predicates and embeddings
we additionally formalize in Section 4 generalize the parsing of GKVZ, and that our techniques for
“general public functions” seem to be quite applicable beyond cryptographic functions.

As a real-world motivation to study ASAs, the xz backdoor was discovered on March 29,
2024 [35]. Current understanding of its cryptographic portion [64] shows interesting similarities
with our ASAs, such as the embedding of a signature and attacker-chosen data in a certificate
which triggers alternate execution during certificate validation. The discovery of the xz backdoor
shows that ASAs targeting high levels of utility are a realistic possibility, and motivates research,
such as ours, on this topic.

2 Preliminaries

Notation and terminology. By ε we denote the empty string. By |Z| we denote the length of
a string Z. By x ∥ y we denote the concatenation of strings x, y. If Z is a string, we let Z[a..b] be
the substring of Z between indices a and b, inclusive, or ε if b < a. If S is a finite set, then |S|
denotes it size. We say that a set S is length-closed if, for any x ∈ S it is the case that {0, 1}|x| ⊆ S.
(This will be a requirement for certain spaces.)

If X is a finite set, we let x←$ X denote picking an element of X uniformly at random and
assigning it to x. If A is an algorithm, we let y ← A[O1, . . .](x1, . . . ; r) denote running A on
inputs x1, . . . and coins r with oracle access to O1, . . ., and assigning the output to y. We let
y←$ A[O1, . . .](x1, . . .) be the result of picking r at random and computing y ← A[O1, . . .](x1, . . . ; r).
We let OUT(A[O1, . . .](x1, . . .)) denote the set of all possible outputs of A when invoked with inputs
x1, . . . and oracles O1, . . .. Algorithms are randomized unless otherwise indicated. Running time is
worst case, which for an algorithm with access to oracles means across all possible replies from the
oracles. The abbreviation “p.p.t.” denotes “probabilistic polynomial time.”

An adversary is an algorithm. We use ⊥ (bot) as a special symbol to denote rejection, and it
is assumed to not be in {0, 1}∗. The image of a function f : D→R is the set Im(f) = {f(x) : x ∈
D} ⊆ R. We may interchangeably refer to the boolean false and integer 0, or to the boolean true
and integer 1.

Games. We use the code-based game-playing framework of BR [11]. A game G starts with an
optional Init procedure, followed by a non-negative number of additional procedures called oracles,
and ends with a Fin procedure. Execution of adversary A with game G begins by running Init (if
present) to produce input←$ Init. A is then given input and is run with query access to the game
oracles. When A terminates with some output, execution of game G ends by returning Fin(output).
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Game Gsuf-cma
S

Init:
1 (vk, sk)←$ S.Kg ; Q ← ∅
2 Return vk

Sign(m):
3 σ←$ S.Sign(sk, m)
4 Q ← Q∪ {(m, σ)}
5 Return σ

Fin(m, σ):
6 If (m, σ) ∈ Q then return false
7 Return S.Vfy(vk, m, σ)

Figure 1: Strong unforgeability for a signature scheme S.

By Pr[G(A)] we denote the probability that the execution of game G with adversary A results in
Fin(output) being the boolean true.

Different games may have procedures (oracles) with the same names. If we need to disambiguate,
we may write G.O to refer to oracle O of game G. In games, integer variables, set variables, boolean
variables and string variables are assumed initialized, respectively, to 0, the empty set ∅, the boolean
false and ⊥. Tables are initialized with all entries being ⊥. Games may occasionally Require: some
condition, which means that all adversaries must obey this condition. This is used to rule out
trivial wins.
Unforgeability of signatures. A signature scheme S specifies algorithms S.Kg, S.Sign, S.Vfy,
key spaces S.VK, S.SK, and signature length S.sl. Key generation S.Kg produces a verification key
vk ∈ S.VK and signing key sk ∈ S.SK via (vk, sk)←$ S.Kg. Signing takes as input a signing key
sk ∈ S.SK and message m ∈ {0, 1}∗ to return a signature σ ∈ {0, 1}S.sl via σ←$ S.Sign(sk, m),
where S.sl ∈ N is a constant signature length. Deterministic algorithm S.Vfy takes as input a
verification key vk ∈ S.VK, message m ∈ {0, 1}∗, and signature σ ∈ {0, 1}S.sl to return a bit d via
d← S.Vfy(vk, m, σ).

Correctness of scheme S asks that for all (vk, sk) ∈ OUT(S.Kg), for all m ∈ {0, 1}∗, it holds
that S.Vfy(vk, m, S.Sign(sk, m)) = 1.

The security notion that we will make use of is strong unforgeability. This is captured by game
Gsuf-cma

S of Figure 1. If A is an adversary, we let Advsuf-cma
S (A) = Pr

[
Gsuf-cma

S (A)
]

be its suf-cma
advantage. Strongly unforgeable signatures have been constructed based on bilinear CDH [17],
strong RSA [24,37], and generally from one-way functions [39, Section 6.5].

3 Algorithm substitution attacks on public functions

We begin with new definitions for algorithm substitution attacks on arbitrary functions. In Section 4
we will provide a construction satisfying our notions, and in the remainder of the paper we extend
both our definitions and construction to more specific settings. As our first task, we introduce a
generic ASA syntax.
Syntax. Let F be a function family; a member function f : {0, 1}∗ → {0, 1}F.ol is selected via
f ←$ F. An ASA aims to substitute f with f̃ which has certain malicious behavior on particular
inputs, while ensuring that the ability to find such inputs is exclusive to the attacker. Concretely,
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Game Gexc
F,̃F,P

Init:
1 f ←$ F ; (̃f , e)←$ F̃(f )
2 X ← ∅
3 Return (f , f̃ )

GetPmg(u, y):
4 x←$ e(u, y) ; X ← X ∪ {x}
5 Return x

Fin(x∗):
6 Return (x∗ /∈ X ) ∧ (f (x∗) ̸= f̃ (x∗))

Game Gdet
F,̃F,P

Init:
1 f ←$ F ; (̃f , e)←$ F̃(f )
2 b←$ {0, 1}
3 Return ε

Eval(x):
4 y0 ← f (x) ; y1 ← f̃ (x)
5 Return yb

Fin(b′):
6 Return (b = b′)

Figure 2: Exclusivity (left) and detectability (right) of an ASA F̃ on public function f . While
detectability is black-box, exclusivity returns the functions (f , f̃ ) to the adversary.

we have an algorithm F̃ which generates (f̃ , e)←$ F̃(f), where f̃ is the substitution and e is the
exploitation algorithm. Before elaborating on this ability, let us clarify the ASA model.
ASA model for public functions. An attacker who mounts an ASA proceeds in two steps,
substitution and exploitation. First, they generate algorithms (f̃ , e)←$ F̃(f ) and replace a user’s
implementation of f with one of f̃ . The exploitation algorithm e remains secret and is retained
by the attacker. Second, in the exploitation step, the attacker may use e to find a preimage x of
target point y. The user, who has f̃ on their device, now computes f̃ (x) = y. The interface of this
exploitation algorithm is broad, applying to settings where (1) it is reasonable that the attacker
chooses inputs x to send to the user, and (2) it is useful to an attacker to find preimages of target
points (where the target point could even be 1 or true).
Utility. The utility capabilities of F̃ are captured with respect to a constraint predicate P. Let
P : {0, 1}∗×{0, 1}∗→{true, false} be a predicate. We say that F̃ achieves utility relative to P, if for
every every f ∈ F, every constraint-parameter u ∈ {0, 1}∗ and every y ∈ {0, 1}F.ol, if (f̃ , e)←$ F̃(f )
and if x←$ e(u, y), then we have (1) f̃ (x) = y and (2) P(x, u) = 1. In other words, e allows one to
compute a preimage of any target output, where the preimage also satisfies the constraint predicate.
In the following section we discuss predicates in more detail. At a high level, this utility definition
relative to a predicate allows one to specify fine-grained notions of successful attacks, beyond only
finding some preimage.
Exclusivity. Effectiveness of an ASA calls for exclusivity as well as utility. Exclusivity requires
that, even after seeing inputs x such that f (x) ̸= f̃ (x), it remains hard to find another nontrivial
input x∗ on which f and f̃ differ. This is captured by the exclusivity game Gexc

F,F̃,P
of Figure 2. If A

is an adversary, we let Advexc
F,F̃,P

(A) = Pr
[

Gexc
F,F̃,P

(A)
]

be its exc advantage.
We will see exclusivity applied to more specific settings in later sections, but for now, we remark

that an ASA is only useful if the substituted algorithm f̃ differs from f on some inputs (else f could
be attacked directly). Exclusivity asks that is hard for anyone other than the ASA to find these
inputs which produce different behavior. The game Gexc

F,F̃,P
provides an additional oracle GetPmg

for seeing these “trigger inputs” and an adversary A wins if it produces another such input x∗ which
was not generated by GetPmg directly.
Undetectability. We define (black-box) undetectability as a distinguishing game which is de-
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Games G0, G1

Init:
1 f ←$ F ; (̃f , e)←$ F̃(f )
2 b←$ {0, 1}
3 Return ε

Eval(x):
4 y0 ← f (x) ; y1 ← f̃ (x)
5 If y0 ̸= y1 then bad← true ; Return ⊥
6 Return yb

Fin(b′):
7 Return (b = b′)

Adversary A′(f , f̃ ):

1 b←$ {0, 1}
2 b′ ← A[Eval]()

Oracle Eval(x):

3 y0 ← f (x) ; y1 ← f̃ (x)
4 If y0 ̸= y1 then Fin(x)
5 Return yb

Figure 3: Games G0, G1 (left) and adversary A′ (right) for the proof of Theorem 3.1. G1 contains
the boxed code and G0 does not.

scribed on the right side of Figure 2. If A is an adversary, we let Advdet
F,F̃,P

(A) = 2·Pr
[

Gdet
F,F̃,P

(A)
]
−1

be its det advantage. The following statement shows that exclusivity implies undetectability. For
this reason, we will continue our focus on exclusivity, as it is stronger. Nonetheless, black-box
undetectability remains a standard notion in works on ASAs.

Theorem 3.1 Let F be a family of functions and F̃ an ASA on F relative to a predicate P. Given
an adversary A against the undetectability of F̃ we can build an adversary A′ such that

Advdet
F,F̃,P(A) ≤ 2 ·Advexc

F,F̃,P(A′) . (1)

A′ makes no GetPmg queries. The running time of A′ is close to that of A.

Proof of Theorem 3.1: Consider game G0 of Figure 3 which is exactly the det game, except
that it additionally checks whether y0 equals y1 for queries to Eval and sets flag bad if they are
not the same. The output, however, is not modified, so

Advdet
F,F̃,P(A) = 2 · Pr [ G0(A) ]− 1 .

We now turn to G1. Games G0, G1 are identical-until-bad, so by the Fundamental Lemma of Game
Playing [11] we have

Pr [ G0(A) ] = Pr [ G1(A) ] + (Pr [ G0(A) ]− Pr [ G1(A) ])

≤ Pr [ G1(A) ] + Pr [ G1(A) sets bad ] .

We construct adversary A′ on the right side of Figure 3. A′ gets as input functions f and f̃ , and can
simulate the detectability game in a straightforward way by picking its own challenge bit. Since A′

does not ask any GetPmg queries, then if bad is set in G1, A′ has found a winning output in the
exclusivity game. We have

Pr [ G1(A) sets bad ] ≤ Advexc
F,F̃,P(A′) .

Finally note that Pr [ G1(A) ] = 1/2 since the outputs of Eval are independent of the challenge bit.
Collecting the probabilities proves Eq. (1).
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Pn
pfx(x, u):

1 If (|x| ̸= |u|+ n) then return false
2 Return (x[1..|u|] = u)

Embn
pfx(z, u):

3 Return u ∥ z

EmbInvn
pfx(x):

4 If (|x| < n) then return ⊥
5 z ← x[(|x| − n + 1)..|x|]
6 u← x[1..(|x| − n)]
7 Return (z, u)

Pn
sfx(x, u):

1 If (|x| ̸= |u|+ n) then return false
2 Return (x[(|x| − |u|+ 1)..|x|] = u)

Embn
sfx(z, u):

3 Return z ∥u

EmbInvn
sfx(x):

4 If (|x| < n) then return ⊥
5 z ← x[1..n]
6 u← x[(n + 1)..|x|]
7 Return (z, u)

Figure 4: Practical examples of predicates and embedding functions: a prefix embedding (left) and
suffix embedding (right). The embedding space is Embn

pfx.ES = Embn
sfx.ES = {0, 1}n for a fixed n.

4 ASA construction

Predicates and embeddings. In order to proceed to our construction, we first turn to some
details of realizing constraint predicates in constructions. For this, we introduce a message em-
bedding function Emb for predicate P. This is a map Emb : Emb.ES × {0, 1}∗ → {0, 1}∗, where
Emb.ES is a set (the “embedding space”) that must be specified and depends on the intended
predicate. There is also an inverse Emb−1 : {0, 1}∗→ (Emb.ES × {0, 1}∗) ∪ {⊥} such that (1) for
all (z, u) ∈ Emb.ES × {0, 1}∗, if x ← Emb(z, u) then P(x, u) = 1 and Emb−1(x) = (z, u), and (2)
Emb−1(x) = ⊥ for all x /∈ Im(Emb). We say that Emb is a correct embedding function for predicate
P if these two properties are satisfied.

In other words, Emb is a bijection from (Emb.ES× {0, 1}∗) to Im(Emb) with inverse Emb−1.
Two illustrative examples are prefix and suffix embeddings. Suppose one wants to find a preim-

age x of function output y, with the constraint that x begins with prefix u, or ends with suffix u.
For a prefix embedding, let n ∈ N and Embn

pfx.ES = {0, 1}n. Then the predicate Pn
pfx and embedding

function Embn
pfx are given on the left side of Figure 4. Similarly, for suffixes, let Embn

sfx.ES = {0, 1}n,
with the predicate Pn

sfx and embedding function Embn
sfx on the right side of Figure 4. The choice of

n here is important: it will matter for the feasibility of designing an effective ASA in some settings.
A variety of other predicates and embedding functions may be desirable in practice. Predi-

cate P(x, u) could capture whether x is a valid X.509 certificate containing information u; this is
considered in more detail in Section 8. A predicate could capture whether x can be parsed as
human-readable text or otherwise does not “look suspicious.” Increasingly useful predicates will
come with implementation challenges beyond mounting an ASA, but the ones described above are
already potent.
Warmup construction. We begin with a basic construction of an ASA. This is essentially a
generalization of the construction of FJM [34, Section 7.1] which targets backdoored hash functions.
More specifically, we build an ASA algorithm F̃0 for a function instance f using a one-way function
g : {0, 1}k→{0, 1}ℓ. F̃0 is specified on the left of Figure 5 and it achieves some degree of effectiveness.
To an entity with ebd , finding a preimage of target y is simple: bd ∥ y is a preimage because the
trigger (g(bd ′) = t) passes in f̃t, which then returns y. In terms of exclusivity, t is public but finding
bd remains hard to find assuming g is one-way. However, this does not hold if a preimage produced
by ebd is observed. Thus our notion of exclusivity is not satisfied, but black-box undetectability is.
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F̃0(f ):

1 bd←$ {0, 1}k ; t← g(bd)
2 Define as below:

f̃t : {0, 1}∗ → {0, 1}F.ol

ebd : {0, 1}∗ × {0, 1}F.ol → {0, 1}∗

3 Return (̃ft, ebd)

f̃t(x):

4 If (|x| = k + F.ol) then
5 bd ′ ← x[1..k]
6 If (g(bd ′) = t) then return x[(k + 1)..|x|]
7 Else return f(x)

ebd(u, y):

8 // In the warmup, u is ignored
9 Require: y ∈ {0, 1}F.ol

10 x← bd ∥ y

11 Return x

F̃(f ):

1 (vk, sk)←$ S.Kg
2 Define as below:

f̃vk : {0, 1}∗ → {0, 1}F.ol

esk : {0, 1}∗ × {0, 1}F.ol → {0, 1}∗

3 Return (̃fvk , esk)

f̃vk(x):

4 w ← Emb−1(x)
5 If (w = ⊥) then return f (x)
6 ((y ∥σ), u)← w

7 If S.Vfy(vk, (y, u), σ) then return y

8 Else return f (x)

esk(u, y):

9 Require: y ∈ {0, 1}F.ol

10 σ←$ S.Sign(sk, (y, u))
11 x← Emb((y ∥σ), u)
12 Return x

Figure 5: Left: Warmup construction of an ASA F̃0 using a one-way function g. Right: Con-
struction of an ASA F̃, relative to predicate P with associated embedding function Emb, using a
signature scheme S.

We omit a formal analysis as we will next consider a construction which does meet all of our notions.
In particular, we would like to find preimages satisfying a predicate P, and achieve exclusivity in
addition to undetectability.
Construction. Let us now turn to meeting these requirements. Let S be an suf-cma sig-
nature scheme and let F be a family of functions. We say that message embedding function
Emb : Emb.ES × {0, 1}∗→{0, 1}∗ is compatible with S, F if Emb.ES = {0, 1}F.ol+S.sl. That is, the
embedding information consists of an output of a function from F and a signature. Our transform
ASA associates to S, F, and an Emb compatible to S, F an ASA algorithm F̃ = ASA[F, S, Emb]
which is defined on the right side of Figure 5.

Note that we assume a correct embedding function Emb for predicate P; these have been given
for common predicates in Figure 4, but it may not be the case that every predicate has a correct
embedding function, or that every embedding function is compatible with S, F.

In the remainder of this section, we show that F̃ produced by transform ASA[F, S, Emb] is
in fact effective, achieving utility as long as S, Emb are correct (Proposition 4.1) and achieving
exclusivity as long as S is suf-cma (Theorem 4.2). The bottom line of this result is that effective
ASAs are possible to construct from standard building blocks, for useful constraints.

Proposition 4.1 Let S be a signature scheme, F a family of functions, and Emb an embedding
function for predicate P which is compatible with S, F. Let F̃ = ASA[F, S, Emb]. If S is a correct
signature scheme and Emb is a correct embedding function for predicate P, then F̃ achieves utility
for P.

Proof of Proposition 4.1: Consider any f ∈ F, (f̃vk , esk) ∈ OUT(F̃(f)), u ∈ {0, 1}∗, and y ∈
{0, 1}F.ol. The function esk , on inputs u and y, returns x← Emb((y ∥σ), u) where σ←$ S.Sign(sk,
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Games G0, G1

Init:
1 f ←$ F ; (vk, sk)←$ S.Kg
2 Define f̃vk and esk as in Fig. 5 (using vk, sk chosen above)
3 X ← ∅
4 Return (f , f̃vk)

GetPmg(u, y):
5 σ←$ S.Sign(sk, (y, u)) ; x← Emb((y ∥σ), u)
6 X ← X ∪ {x}
7 Return x

Fin(x∗):
8 If x∗ ∈ X then return false
9 y′ ← f (x∗) ; w ← Emb−1(x∗)

10 If (w ̸= ⊥) then
11 ((y ∥σ), u)← w

12 If S.Vfy(vk, (y, u), σ) then
13 bad← true ; Return false
14 Else: y ← y′

15 Else: y ← y′

16 Return (y′ ̸= y)

Figure 6: Games G0, G1 for the proof of Theorem 4.2. G1 contains the boxed code and G0 does
not.

(y, u)). Property (1) of utility requires that f̃ (x) = y. Let us consider f̃vk(x) of our construction.
On lines 4,5, since x ∈ Im(Emb), w ̸= ⊥. If Emb, Emb−1 satisfy our notion of a correct embedding,
w is recovered as ((y ∥σ), u). That is, Emb−1(Emb((y ∥σ), u)) = ((y ∥σ), u). Next, the signature
verification on line 7 runs S.Vfy(vk, (y, u), σ) where σ←$ S.Sign(sk, (y, u)). This passes as long as
S is a correct signature scheme, and f̃vk(x) thus returns y on line 7.
Property (2) of utility asks that P(x, u) = 1. This is proven by line 11, where x← Emb((y ∥σ), u).
Correctness of the embedding function Emb for predicate P implies that P(x, u) = 1.

Theorem 4.2 Let S be a signature scheme, F a family of functions, and Emb a correct embedding
function for predicate P which is compatible with S, F. Let F̃ = ASA[F, S, Emb]. Given an adversary
A against the exclusivity of F̃ we can build an adversary AS such that

Advexc
F,F̃,P(A) ≤ Advsuf-cma

S (AS) . (2)

If A makes q GetPmg queries, then AS makes q Sign queries. The running time of AS is close
to that of A.

Proof of Theorem 4.2: Consider game G0 of Figure 6. We claim that

Advexc
F,F̃,P(A) = Pr [ G0(A) ] . (3)

To justify Eq. (3), we claim that the Fin(x∗) return value is the same in G0 as it is in Gexc
F,F̃,P

. (The
Init and GetPmg oracles are identical, instantiated with scheme F̃.) To begin with, the check
made in line 8 is identical. Now consider y and y′ of G0. G0 sets y′ = f (x∗). Further, lines 9-15 of
G0 correspond to lines 4-7 of f̃vk in Figure 5. That is, y = y′ = f (x∗) if there is no valid parsing of
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Adversary AS(vk):
1 f ←$ F ; X ← ∅
2 Define f̃vk as in Fig. 5 (using vk provided as input)
3 x∗ ← A[GetPmgS](f , f̃vk)
4 w ← Emb−1(x∗)
5 If (w ̸= ⊥) then
6 ((y ∥σ), u)← w

7 If S.Vfy(vk, (y, u), σ) then
8 Return ((y, u), σ)

Oracle GetPmgS(u, y):
9 σ ← Sign((y, u))

10 x← Emb((y ∥σ), u) ; X ← X ∪ {x}
11 Return x

Figure 7: Adversary AS for the proof of Theorem 4.2.

w nor verified signature. Otherwise, y is as output by Emb−1. Hence, the final check in line 16 of
G0 is identical to that of the exclusivity game. This proves Eq. (3).
We now turn to G1. Games G0, G1 are identical-until-bad, so by the Fundamental Lemma of Game
Playing [11] we have

Pr [ G0(A) ] = Pr [ G1(A) ] + (Pr [ G0(A) ]− Pr [ G1(A) ])

≤ Pr [ G1(A) ] + Pr [ G1(A) sets bad ] .

It is easy to see that Pr [ G1(A) ] = 0. This is because either the game will return false in line 13,
or it will set y to y′ in which case line 16 will return false.
It remains to bound the difference between G0 and G1. For this, we construct an adversary AS and
claim that

Pr [ G1(A) sets bad ] ≤ Advsuf-cma
S (AS) . (4)

This will complete the proof of Eq. (2) and the theorem statement.
We now explain adversary AS, which is in game Gsuf-cma

S and runs A as specified in Figure 7. Note
that AS can define f̃vk using vk which it receives as input and f which it chooses by itself. Further,
it simulates A’s GetPmg oracle using its own Sign oracle.
If bad is set in G1, then the message-signature pair ((y, u), σ) that was parsed from w ← Emb−1(x∗)
has passed verification. We also know that bad is only set when x∗ /∈ X due to the check in line 8
of G1. Since the embedding is correct and deterministic, ((y, u), σ) was not used in the simulation
of the signing oracle and is a winning output in game Gsuf-cma

S (AS). This completes the proof of
Eq. (4).
Note that AS makes one Sign query for each of A’s GetPmgS queries, proving the running time
in the theorem statement.

5 ASAs on hash functions

We now turn to applying our general definitions and transform to hash functions, but we begin
with some related work on hash function subversion. For one, “backdoored hash functions” consist
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of malicious hash function designs or parameter selection, and have been considered by [2, 34].
An explicit construction of maliciously designed SHA1 parameters was given by [2]. Implementa-
tions of hash functions have been studied from a kleptographic perspective as subverted random
oracles [56] and from a proof-techniques perspective as programmable hash functions [42]. From
the kleptographic perspective, [12] studied defense techniques for subverted hash functions, for
which the model excluded domains of {0, 1}∗ (which we consider) among other definitional differ-
ences. “Subverted hash functions” also brings to mind asymmetric notions including chameleon
hash functions [28, 46], trapdoor hash functions [31], and provably secure hash functions (with a
trapdoor) [22]. However, these works build hash functions with trapdoor properties for constructive
applications, and the interface differs from standard hash functions.
Syntax. We now proceed to ASAs on hash functions. A hash function family H is a set of hash
functions; one generates hash function h : {0, 1}∗→{0, 1}ℓ via h←$ H. Following the syntax from
Section 3, an ASA on H is specified by an algorithm H̃ that takes an instance h of H and via
(h̃, e)←$ H̃(h) generates a substitution function h̃ : {0, 1}∗ → {0, 1}ℓ as well as an exploitation
function e.

The following definitions of utility and exclusivity strengthen comparable notions from prior
work including [34], as discussed in the Introduction. In particular, we consider collision resistance
in the presence of an exploit-finding oracle, and we define utility as the ability to find highly
structured preimages, not only some preimage.
Utility. Let P : {0, 1}∗×{0, 1}∗ → {true, false} be a constraint predicate. We say that H̃ achieves
utility relative to P if for every constraint-parameter u ∈ {0, 1}∗ and every y ∈ {0, 1}ℓ, if (h̃, e) ∈
OUT(H̃) and if x←$ e(u, y), then we have (1) h̃(x) = y and (2) P(x, u) = 1. In other words, e
allows one to compute a preimage of any target hash, where the preimage also satisfies the constraint
predicate.

Notably, this is the same as our notion of utility for general public functions; our first application
is hash functions because it most immediately matches the general case.
Exclusivity. When it comes to exclusivity, hash functions do introduce an additional property:
collision resistance is now desired. We define exclusivity for H̃ via game Gcfe

H,H̃,P
of Figure 8,

where “cfe” denotes collision-finding exclusivity. If A is an adversary, we let Advcfe
H,H̃,P

(A) =

Pr
[

Gcfe
H,H̃,P

(A)
]

be its cfe advantage. This cfe notion requires that h̃ remains collision-resistant,
but the difference from standard cr is the addition of the GetPmg oracle, which allows an adver-
sary to view preimages that have been produced by the exploit algorithm. These are subject to
adversary-chosen constraint-parameters u. An adversary A wins game Gcfe

H,H̃,P
if it produces any

nontrivial collision, meaning, it cannot have asked for a preimage. The addition of this oracle can
be viewed as a formalization of “backdoor key exposure” as raised by [34].
Construction. We construct an ASA on hash functions using our transform described in the
previous section. In the following, we show that it achieves utility and cfe exclusivity if the target
hash function is collision-resistant.

The difference from the general result is that when the function under consideration is a hash
function, an effective ASA would expect that no other party can find collisions, as this is the
standard security notion of a hash function. The cfe game asks that the presence of the ASA, and
of an oracle to the preimage-finding exploit algorithm e, does not help anyone else find collisions
in the hash function h̃. It is natural, then, that cfe additionally relies on cr of h, which matches h̃
on most inputs.
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Game Gcr
H

Init:
1 h←$ H ; Return h

Fin(x1, x2):
2 If (x1 = x2) then return false
3 Return (h(x1) = h(x2))

Game Gcfe
H,H̃,P

Init:
1 h←$ H ; (h̃, e)←$ H̃(h)
2 X ← ∅
3 Return (h, h̃)

GetPmg(u, y):
4 x←$ e(u, y) ; X ← X ∪ {x}
5 Return x

Fin(x1, x2):
6 Return (x1 /∈ X ) ∧ (x2 /∈ X )
∧ (x1 ̸= x2) ∧ (h̃(x1) = h̃(x2))

Figure 8: Left: Collision resistance (cr) for a family of hash functions. Right: Collision-finding
exclusivity (cfe) of an ASA on hash functions.

Proposition 5.1 Let S be a signature scheme, H a family of hash functions, and Emb an embedding
function for predicate P which is compatible with S, H. Let H̃ = ASA[H, S, Emb]. If S and Emb are
correct, then H̃ achieves utility for P.

Utility follows directly from Proposition 4.1 by observing that utility for ASAs on hash functions
is defined exactly as for general functions. Compatible embedding functions are, for example, the
prefix and suffix embedding from Figure 4 or the certificate embedding in Section 8.

We now turn to cfe exclusivity; the proof of the below theorem will take advantage of Theo-
rem 4.2 in the prior section.

Theorem 5.2 Let S be a signature scheme, H a family of hash functions, and Emb a correct
embedding function for predicate P which is compatible with S, H. Let H̃ = ASA[H, S, Emb]. Given
an adversary A against the cfe exclusivity of H̃ we can build adversaries AS, AH such that

Advcfe
H,H̃,P(A) ≤ Advsuf-cma

S (AS) + Advcr
H (AH) . (5)

If A makes q GetPmg queries, then AS makes q Sign queries. The running times of AS, AH are
close to that of A.

Proof of Theorem 5.2: Consider game G0 of Figure 9. It is easy to see that this game is exactly
the cfe game. We already include line 7 which sets a flag bad, but in G0 this has no effect on the
final output. Hence,

Advcfe
H,H̃,P(A) = Pr [ G0(A) ] .

We next turn to game G1 which outputs false whenever bad is set. Therefore, games G0, G1 are
identical-until-bad and by the Fundamental Lemma of Game Playing [11] we have

Pr [ G0(A) ] = Pr [ G1(A) ] + (Pr [ G0(A) ]− Pr [ G1(A) ])

≤ Pr [ G1(A) ] + Pr [ G1(A) sets bad ] .

Let us now take a closer look at the event defined in line 7. The game outputs false when the
output of h̃ and h differ on either x1 or x2 which is exactly captured by the exclusivity of H̃. That
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Games G0, G1 , G2

Init:
1 h←$ H ; (h̃, e)←$ H̃(h) ; X ← ∅
2 Return (h, h̃)

GetPmg(u, y):
3 x←$ e(u, y) ; X ← X ∪ {x}
4 Return x

Fin(x1, x2):
5 If (x1 = x2) then return false
6 If (x1 ∈ X ) ∨ (x2 ∈ X ) then return false
7 If h̃(x1) ̸= h(x1) ∨ h̃(x2) ̸= h(x2) then bad← true ; return false
8 y1 ← h̃(x1) ; y2 ← h̃(x2)
9 y1 ← h(x1) ; y2 ← h(x2) // Game G2

10 Return (y1 = y2)

Figure 9: Games G0, G1, G2 for the proof of Theorem 5.2. G1, G2 contain the boxed code and G0
does not. Line 9 is only present in G2.

Adversary AH̃(h, h̃):

1 X ← ∅
2 (x1, x2)← A[GetPmgH̃](h, h̃)
3 If (x1 = x2) then return ⊥
4 If (x1 ∈ X ) ∨ (x2 ∈ X ) then return ⊥
5 If h̃(x1) ̸= h(x1) then return x1

6 If h̃(x2) ̸= h(x2) then return x2

Oracle GetPmgH̃(u, y):

7 x← GetPmg((y, u))
8 X ← X ∪ {x} ; Return x

Adversary AH(h):

1 (h̃, e)←$ H̃(h) ; X ← ∅
2 (x1, x2)← A[GetPmgH](h, h̃)
3 Return (x1, x2)

Oracle GetPmgH(u, y):

4 x←$ e(u, y) ; X ← X ∪ {x}
5 Return x

Figure 10: Adversaries AH̃ (left) and AH (right) for the proof of Theorem 5.2.

is, we can construct an adversary AH̃ for which

Pr [ G1(A) sets bad ] ≤ Advexc
H,H̃,P(AH̃) . (6)

(We will discuss exclusivity and then move to suf-cma via Theorem 4.2.) Adversary AH̃ is in game
Gexc

H,H̃,P
and runs A as specified on the left side of Figure 10. AH̃ simulates A’s preimage oracle

using its own preimage oracle. Suppose now that bad ← true on line 7 of G1. Then A has output
x1, x2 such that h̃(xi) ̸= h(xi) for at least one i ∈ {1, 2}, while both are not in X , meaning have
not been the output of a query to GetPmg. Hence, AH̃ has found a winning output x∗ ∈ {x1, x2}
in the exclusivity game. This proves Eq. (6).
Now given this adversary AH̃ in the exc game, we have adversary AS in the suf-cma game by
applying Theorem 4.2. Thus

Pr [ G1(A) sets bad ] ≤ Advexc
H,H̃,P(AH̃) ≤ Advsuf-cma

S (AS) . (7)

Note that if A makes q GetPmg queries then AH̃ makes q GetPmg queries, and thus AS from
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Theorem 4.2 makes q Sign queries.

We next turn to game G2, where the assignment in line 8 is replaced by the one in line 9. More
specifically, y1 and y2 are now computed using h instead of using h̃. We claim that

Pr [ G2(A) ] = Pr [ G1(A) ] . (8)

To justify Eq. (8), we observe that whenever the outputs of h and h̃ for inputs x1 or x2 differ, the
game has already returned false. Hence, we have h(xi) = h̃(xi) for both i ∈ {0, 1}.

Finally, we claim that

Pr [ G2(A) ] ≤ Advcr
H (AH) . (9)

We construct adversary AH in game Gcr
H as specified on the right side of Figure 10. A’s view is

that of game G2; initialization and GetPmgH return the same responses as in G2. Now, if G2(A)
returns true, and since the boxed code is executed in G2, then it must be that y1 = y2 and thus
h(x1) = h(x2). This is precisely the winning condition of AH’s game Gcr

H and proves Eq. (9). AH
maintains running time close to that of A.

Hashed passwords. We conclude our discussion of hash functions with an application to password-
based authentication. Suppose a server stores a user password pwd along with a random salt s as
y = h(pwd ∥ s), as specified by PBKDF1 in PKCS#5 [45]. When someone tries to log in with
password pwd ′ the server checks whether h(pwd ′ ∥ s) = y. Now suppose an ASA is mounted with
respect to the suffix predicate, so that (h̃, e)←$ H̃(h) and h̃ replaces h. Using e, the attacker can
find x←$ e(s, y) such that x = pwd ′′ ∥ s and h̃(x) = y. Thus someone in possession of e can effec-
tively log in as any user. Note that this example requires a notion of a predicate and constraint
parameter (the salt).

6 ASAs on proof system verification

Our second application of a public function is verification, for which we specifically look at proof sys-
tems. These have seen widespread usage in blockchains and cryptocurrencies, where attackers may
have significant financial motivation to attack verification. However, we remark that verification is
a common part of many schemes, to which our generic ASA of Section 4 applies.

In a (non-interactive) proof system, a prover who holds a statement ϕ and a witness ω for
a given polynomial-time-decidable relation R wants to convince a verifier that ϕ is true; that is,
(ϕ, ω) ∈ R. Usually, both parties have access to a common reference string (CRS). Instead of
studying security in the presence of an untrusted CRS, as for example done in [8,36], we target the
verification procedure of proof systems, which can be attacked by an ASA. In related veins, ASAs
have been considered on proof-of-work components by [63]; defenses against exfiltration have also
been considered by [18]. Defenses specifically for verification programs were studied by [33]; they
however target only non-malicious implementation errors.

Syntax. We now turn to ASAs on proof system verification. Following our general syntax, let PS
be a proof system. We write (p, v)←$ PS to denote the generation of corresponding proving and
verification algorithms for PS. Let V be the function generator which runs as V : (p, v)←$ PS ;
return v. A verification function v ∈ OUT(V) is usually described by a CRS and a relation R. We
consider those to be hardcoded in v. Hence, verification takes as input a statement ϕ ∈ {0, 1}∗ and
proof π ∈ {0, 1}PS.pl to produce a bit d ∈ {0, 1}; we write d ← v(ϕ, π). Further, we denote by LR

the language consisting of statements for which there exist matching witnesses in R.
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PPS(x, u = ϕ′):

1 (ϕ, π)← x

2 Return (ϕ = ϕ′)

Embℓ,k
PS (z = (y ∥σ), u = ϕ′):

3 Require: y = 1
4 π ← σ ∥ 0k−ℓ

5 x← (ϕ′, π)
6 Return x

EmbInvℓ,k
PS (x):

7 (ϕ, π)← x

8 σ ← π[1..ℓ]
9 Return ((1 ∥σ), ϕ)

Ṽ(v):

1 (vk, sk)←$ S.Kg
2 Define as below:

ṽ : {0, 1}∗ → {0, 1}
e : {0, 1}∗ × {0, 1} → {0, 1}∗

3 Return (ṽ, e)

ṽ(x):

4 ((1 ∥σ), ϕ)← EmbInvPS(x)
5 If S.Vfy(vk, (1, ϕ), σ) then return 1
6 Else return v(x)

e(u = ϕ′, y):

7 Require: y = 1
8 σ←$ S.Sign(sk, (1, ϕ′))
9 x← EmbPS((1 ∥σ), ϕ′)

10 Return x

Figure 11: Left: Fixed predicate PPS and a correct embedding for proof systems. We assume
ℓ ≤ k. The embedding space is Embℓ,k

PS.ES = {0, 1}ℓ+1; we have z ∈ {0, 1}ℓ+1. In our construction
we would have ℓ = S.sl and k = PS.pl. Right: Our ASA construction on public functions, applied
to proof system verification.

On the left side of Figure 12 we define soundness for PS. If A is an adversary, we let Advsnd
PS (A) =

Pr
[

Gsnd
PS (A)

]
be its snd advantage.

An ASA on V is specified by an algorithm Ṽ which produces (ṽ, e)←$ Ṽ(v).
Utility. The canonical goal of a malicious prover is a forgery of a false statement; we use this
as the utility goal of an ASA, viewing forgery as finding preimages of 1. To capture the ability
of an attacker to forge arbitrary statements, we fix the predicate PPS as in Figure 11. There
we also give an embedding function that is correct for PPS. Utility now asks that for any ϕ′, if
x←$ e(u = ϕ′, y = 1) then x = (ϕ, π) where both ṽ(x) = 1 and ϕ = ϕ′. (The latter requirement
is captured by PPS(x, u).) In short, the exploit algorithm e allows one to forge a proof for any
statement.
Exclusivity. We define exclusivity via the pfe (“proof-finding exclusivity”) game in Figure 12.
Note that the pfe game is essentially the soundness game with the addition of the exploit-finding
Sim oracle. If A is an adversary, we let Advpfe

PS,Ṽ
(A) = Pr

[
Gpfe

PS,Ṽ
(A)

]
be its pfe advantage. Recall

that for general functions and hash functions, exclusivity is also parameterized by the predicate P;
however for verification we assume the fixed predicate PPS above.
Construction. We consider the ASA construction using our transform from Section 4. We depict
Ṽ = ASA[V, S, EmbPS] for a family of verification functions V, a signature scheme S and compatible
embedding EmbPS in Figure 11. In the following, we show effectiveness of this ASA, proving utility
and pfe exclusivity.

Proposition 6.1 Let S be a signature scheme, PS a target proof system with verification family
V, and EmbPS an embedding function for predicate PPS which is compatible with S, V. Assume
S.sl ≤ PS.pl. Let Ṽ = ASA[V, S, EmbPS]. If S and EmbPS are correct, then Ṽ achieves utility for
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Game Gsnd
PS

Init:
1 (p, v)←$ PS
2 Return (p, v)

Fin(ϕ∗, π∗):
3 Return ((ϕ∗ /∈ LR)

∧ (v(ϕ∗, π∗) = 1))

Game Gpfe
PS,Ṽ

Init:
1 (p, v)←$ PS
2 (ṽ, e)←$ Ṽ(v)
3 X ← ∅
4 Return (p, v, ṽ)

Sim(ϕ′):
5 (ϕ, π)←$ e(ϕ′, 1) ; X ← X ∪ {ϕ}
6 Return π

Fin(ϕ∗, π∗):
7 Return ((ϕ∗ /∈ X ) ∧ (ϕ∗ /∈ LR)

∧ (ṽ(ϕ∗, π∗) = 1))

Figure 12: Left: Soundness (snd) for a proof system. Right: Proof-finding exclusivity (pfe) of an
ASA on proof system verification.

PPS.

Proof of Proposition 6.1: We need to show that for every v ∈ OUT(V) and every constraint-
parameter (here, statement) ϕ ∈ {0, 1}∗, if (ṽ, e)←$ Ṽ(v) and if x←$ e(ϕ, 1), then we have (1)
ṽ(x = (ϕ, π)) = 1 and (2) PPS(x, ϕ) = 1.
As defined in Figure 11, e produces x ← e(u = ϕ′, y = 1) where x = EmbPS((1 ∥σ), ϕ′) and
σ←$ S.Sign(sk, (1, ϕ′)). That is, e outputs some verification input x which embeds both ϕ′ and
σ. If EmbPS is a correct embedding function then PPS(x, u = ϕ′) = 1. (An example of a correct
embedding is in Figure 11. Recall that PPS ensures that ϕ′ is in fact the statement in x.)
The second requirement of utility is that ṽ(x) = 1; that is, that a correct proof for ϕ′ is produced.
This is ensured by lines 4,5 of ṽ in Figure 11. On this input x, which is a correctly produced
embedding, line 4 parses ((1 ∥σ), ϕ)← EmbInvPS(x), where ϕ = ϕ′ by correctness of the embedding.
Now line 5 computes S.Vfy(vk, (1, ϕ′), σ) which passes because, as in the paragraph above, σ is a
signature on (1, ϕ′) using scheme S. Verification thus returns 1 on line 5, proving that utility is
achieved.

Theorem 6.2 Let S be a signature scheme, PS a target proof system with verification family V,
and EmbPS a correct embedding function for predicate PPS which is compatible with S, V. Assume
S.sl ≤ PS.pl. Let Ṽ = ASA[V, S, EmbPS]. Given an adversary A against the pfe exclusivity of Ṽ we
can build adversaries AS, APS such that

Advpfe
PS,Ṽ

(A) ≤ Advsuf-cma
S (AS) + Advsnd

PS (APS) . (10)

If A makes q queries to Sim, then AS makes q Sign queries. The running times of AS, APS are
close to that of A.

We present the proof of Theorem 6.2 in Appendix A. We note that EmbPS could be any correct and
compatible embedding for PPS. One example is Embℓ,k

PS of Figure 11 but more clever embeddings
could be constructed.
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7 ASAs on signature verification

The prior section exhibits a verification function as a useful target of ASAs; there are examples
beyond proof systems including commitment schemes, protocols and more. We turn to signatures
as a slightly different setting than proof systems, as there are now per-user keys. Prior work has
studied ASAs on signature schemes when key-generation [25] or when signing [5,62] are substituted.
In our study of ASAs on public functions, we turn to consider signature verification. In particular,
existing work looks at attacks on randomized signatures with the goal of exfiltrating the signing
key. In this section, we consider even schemes that are deterministic or have unique signatures, in
contrast to [5].

Syntax. Following our general ASA syntax, let TS be a (target) signature scheme. We write
(s, v)←$ TS to denote the generation of corresponding signing and verification algorithms for sig-
nature scheme TS. Note that compared to usual notation, the signing key sk is now hardcoded
in s and vk is hardcoded in v. Let V be the function generator which runs as V : (s, v)←$ TS ;
return v. A verification function v ∈ OUT(V) takes as input a message m ∈ {0, 1}∗ and signature
σ ∈ {0, 1}TS.sl to produce a bit d ∈ {0, 1}; we write d ← v(m, σ). We introduced more standard
signature syntax in Section 2 and in our constructions, but we use this syntax for TS to make clear
that it is the target of the ASA.

An ASA on V is specified by an algorithm Ṽ which produces (ṽ, e)←$ Ṽ(v). In the multi-user
(mu) setting with n users, we write ((ṽ1, ṽ2, . . . , ṽn), e)←$ Ṽ(v1, v2, . . . , vn). That is, there are n
substitutions and only one exploitation algorithm. This is a more realistic attack to consider than
simply mounting per-user exploit algorithms; in particular an attacker could modify library code
to substitute the algorithms of n users while needing only one e. Once again we ask whether the
ASA achieves both utility and exclusivity. (Effectiveness, which calls for utility, exclusivity and
undetectability, is implied by the former two.)

Utility. The canonical goal of a signature attacker is forgery; we use this as the utility goal of
an ASA, viewing forgery as finding preimages of 1. One could continue to ask, as in the general
case, that the ASA be able to find inputs x = (m, σ) such that ṽ(x) = 1 and P(x, u) = 1 for
some predicate P and constraint-parameter u. In this way, an ASA on signature verification is a
special case of an ASA on general public functions. However, for utility of an ASA on signature
verification, we ask for a quite strong notion: the attacker, via the exploit algorithm e, should be
able to forge a signature for any message, not only messages satisfying a potentially restrictive
predicate. We studied a similar notion of utility for proof system verification in the prior section.

In the mu setting, we let the exploit algorithm e : {0, 1}⌈log n⌉×{0, 1}∗×{0, 1}→{0, 1}∗ take one
additional input, indicating the user i for which to produce a forgery. We write x←$ e(i, u, y = 1)
which constrains the target output to be 1 and allows for i as input in addition to the usual
constraint-parameter u. Utility asks that for any m′ and any i, if x←$ e(i, u = m′, y = 1) then
x = (m′, σTS) for σTS such that ṽi(m′, σTS) = 1. That is, e allows one to forge a signature for
any m′ and i. This is captured by the predicate and embedding described in Figure 13; utility
equivalently asks that both Psig(x, u) = 1 and that ṽi(m′, σTS) = 1.

The embedding Embℓ,k
sig given for predicate Psig in Figure 13 is a correct embedding function,

which is assumed to exist in the coming construction. Other embedding functions for Psig exist as
well, and care could be taken to make them look more innocuous. In particular, embedding Embℓ,k

sig
is simplest when one uses the same signature scheme S = TS where ℓ = k.

Exclusivity. We define exclusivity via the ffe (“forgery-finding exclusivity”) game in Figure 14,
still in the mu setting. Note that the ffe game is essentially the multi-user uf-cma game with the
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Psig(x, u = m′):

1 (m, σTS)← x

2 Return (m = m′)

Embℓ,k
sig (z = (y ∥σS), u = m′):

1 Require: y = 1
2 σTS ← σS ∥ 0k−ℓ

3 x← (m′, σTS)
4 Return x

EmbInvℓ,k
sig (x):

5 (m, σTS)← x

6 σS ← σTS[1..ℓ]
7 Return ((1 ∥σS), m)

Figure 13: Fixed predicate Psig and a correct embedding for signatures. We assume ℓ ≤ k. The
embedding space is Embℓ,k

sig .ES = {0, 1}ℓ+1; we have z ∈ {0, 1}ℓ+1. In our construction we would
have ℓ = S.sl and k = TS.sl.

Game Gmu-ufcma
TS,n

Init:
1 For i = 1, 2, . . . , n do (si, vi)←$ TS
2 Q ← ∅
3 Return (v1, v2, . . . , vn)

Sign(i, m):
4 σ←$ si(m) ; Q ← Q∪ {(i, m)}
5 Return σ

Fin(i∗, m∗, σ∗):
6 Return ((i∗, m∗) /∈ Q)
∧ (vi∗ (m∗, σ∗) = 1)

Game Gffe
TS,Ṽ,n

Init:
1 For i = 1, 2, . . . , n do (si, vi)←$ TS
2 ((ṽ1, ṽ2, . . . , ṽn), e)←$ Ṽ(v1, v2, . . . , vn)
3 X ← ∅
4 Return ((v1, v2, . . . , vn), (ṽ1, ṽ2, . . . , ṽn))

ESign(i, m′):
5 (m, σ)←$ e(i, m′, 1) ; X ← X ∪ {(i, m)}
6 Return σ

Sign(i, m):
7 σ←$ si(m) ; X ← X ∪ {(i, m)}
8 Return σ

Fin(i∗, m∗, σ∗):
9 Return ((i∗, m∗) /∈ X ) ∧ (ṽi∗ (m∗, σ∗) = 1)

Figure 14: Left: The multi-user uf-cma game over n users. Right: Forgery-finding exclusivity
(ffe) of an ASA on signature verification.

addition of the exploit-finding ESign oracle, following the framework of the prior two sections. If
A is an adversary, we let Advffe

TS,Ṽ,n
(A) = Pr

[
Gffe

TS,Ṽ,n
(A)

]
be its ffe advantage.

Construction. We construct a multi-user ASA on signatures using a slight modification to our
main transform. Given a signature scheme S, a family of verification functions V for target signature
scheme TS, and an embedding function Embsig that is compatible with S, V and is correct for
predicate Psig, we let Ṽ = ASAn[V, S, Embsig]. This is specified in Figure 15, both for the signature
case and for the more general mu case. Ṽ is described on the left side of Figure 15 and is constructed
using V, S, and Embsig.

In the following proposition and theorem statement, we prove that this is an effective ASA,
satisfying utility and ffe exclusivity.
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Ṽ(v1, v2, . . . , vn):

1 (vk, sk)←$ S.Kg
2 Define as below:

ṽi : {0, 1}∗ → {0, 1}
e : {0, 1}⌈log n⌉ × {0, 1}∗ × {0, 1} → {0, 1}∗

3 Return ((ṽ1, ṽ2, . . . , ṽn), e)

ṽi(x):

4 ((1 ∥σS), m)← EmbInvsig(x)
5 If S.Vfy(vk, (i, 1, m), σS) then return 1
6 Else return vi(x)

e(i, u = m′, y):

7 Require: y = 1
8 σS←$ S.Sign(sk, (i, 1, m′))
9 x← Embsig((1 ∥σS), m′)

10 Return x

F̃(f1, f2, . . . , fn):

1 (vk, sk)←$ S.Kg
2 Define as below:

f̃i : {0, 1}∗ → {0, 1}F.ol

e : {0, 1}⌈log n⌉ × {0, 1}∗ × {0, 1}F.ol → {0, 1}∗

3 Return ((̃f1, f̃2, . . . , f̃n), e)

f̃i(x):

4 w ← Emb−1(x)
5 If (w = ⊥) then return fi(x)
6 ((y ∥σ), u)← w

7 If S.Vfy(vk, (i, y, u), σ) then return y

8 Else return fi(x)

e(i, u, y):

9 Require: y ∈ {0, 1}F.ol

10 σ←$ S.Sign(sk, (i, y, u))
11 x← Emb((y ∥σ), u)
12 Return x

Figure 15: Left: Construction of an ASA on multi-user signature verification. Right: Our general
ASA on public functions from Section 4, adapted to multiple users. Recall that vk is considered
hardcoded in ṽi (or f̃i) and sk is hardcoded in e.

Proposition 7.1 Let S be a signature scheme, TS a target signature scheme with verification family
V, and Embsig an embedding function for predicate Psig which is compatible with S, V. Assume
S.sl ≤ TS.sl. Let Ṽ = ASAn[V, S, Embsig] as in Figure 15. If S and Embsig are correct, then Ṽ
achieves utility for Psig.

Proof of Proposition 7.1: For i = 1, 2, . . . , n let (si, vi)←$ TS and let ((ṽ1, ṽ2, . . . , ṽn), e)←$

Ṽ(v1, v2, . . . , vn). Let m′ ∈ {0, 1}∗ be any message and i be any user 1 ≤ i ≤ n. Utility asks that
the exploit algorithm can produce a signature on m′ which validates for user i.
As defined in Figure 15, e produces x ← e(i, u = m′, y = 1) where x = Embsig((1 ∥σS), m′) and
σS←$ S.Sign(sk, (i, 1, m′)). That is, e outputs some verification input x which embeds both m′ and
σS. If Embsig is a correct embedding function then Psig(x, u = m′) = 1. (An example of a correct
embedding is in Figure 13. Recall that Psig ensures that m′ is in fact the message in x.)
The second requirement of utility is that ṽi(x) = 1; that is, that a correct sigature on m′ for user i
is produced. This is ensured by lines 4,5 of ṽi in Figure 15. On this input x, which is a correctly
produced embedding, line 4 parses ((1 ∥σS), m) ← EmbInvsig(x), where m = m′ by correctness
of the embedding. Now line 5 computes S.Vfy(vk, (i, 1, m′), σS) which passes because, as in the
paragraph above, σS is a signature on (i, 1, m′) using scheme S. Verification thus returns 1 on
line 5, proving that utility is achieved.

Theorem 7.2 Let S be a signature scheme, TS a target signature scheme with verification family
V, and Embsig a correct embedding function for predicate Psig which is compatible with S, V. Assume
S.sl ≤ TS.sl. Let Ṽ = ASAn[V, S, Embsig] as in Figure 15. Given an adversary A against the ffe
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exclusivity of Ṽ we can build adversaries AS, ATS such that

Advffe
TS,Ṽ,n

(A) ≤ Advsuf-cma
S (AS) + Advmu-ufcma

TS,n (ATS) . (11)

If A makes qs, qe Sign,ESign queries, respectively, then AS makes qe Sign queries and ATS makes
qs Sign queries. The running times of AS, ATS are close to that of A.

We present the proof of Theorem 7.2 in Appendix B.
Single-user ffe ≠⇒ multi-user ffe. Above, we defined game Gffe

TS,Ṽ,n
in a multi-user setting.

In contrast to the unforgeability of a normal signature scheme, ffe unforgeability in the single-user
setting does not generally imply unforgeability in the multi-user setting. The intuitive reason for
this is that the signature created using the exploit algorithm depends on the target user i for which
the signature is forged. As a concrete counterexample, we can compare construction ASA to ASAn

as defined in Figure 15. In the latter, the exploit algorithm computes σS←$ S.Sign(sk, (i, 1, m′))
while i is not included in the signed value in the former. In the multi-user setting, if i is not
included, one could use the fact that one exploit-produced signature will verify for different (if not
all) users. Multi-user considerations thus arise for this ASA setting.

8 Application: Forged certificates

Certificates and PKI. In this section we discuss an application and embedding method which
is relevant to hash functions and signatures as used in public-key infrastructure (PKI). The usual
realization of PKI uses X.509 certificates and certificate authorities. For simplicity, suppose there
is one honest CA who is operating with signature scheme Sca and hash function h ∈ Hca. Let
(vkca, skca) be the verification and signing keys of the CA; in our ASA syntax the signature ver-
ification algorithm is v(·) = Sca.Vfy(vkca, ·). Thus all users who use the PKI with this CA have
implementations of h and v (along with vkca) on their devices.

As specified in RFC 5280 [23], a certificate C consists of a sequence of key-value pairs. The
important fields for our discussion are:

• C.tbsCert , consisting of the certificate’s identifying, validity, and other certificate data. At a
minimum, this specifies the CA who signed the certificate and includes information to recover
vkca.

• C.sigAlg , the name of the signature algorithm, such as “PKCS #1 SHA-256 With RSA
Encryption.” Along with the first item above, this allows one to recover algorithms h and v.

• C.sigValue , a signature on message C.tbsCert, using the algorithm specified in C.sigAlg
and the CA’s signing key skca.

Issuance of a certificate takes as input a tbsCert′ and auxiliary information csr (representing a
certificate signing request) to produce either ⊥, or a signed certificate C. Deterministic validation of
a certificate takes as input a certificate C and auxiliary information aux (representing a certificate
chain, and local store of root certificates) to produce a bit d ∈ {0, 1}.

In our discussion, we are more interested in validation than issuance. At a high level, validation
Validate proceeds as in Figure 16. We now discuss two applications of ASAs on hash functions and
signatures, though we also remark that the certificate validation process has other “general public
functions” to which our general framework could apply.
ASA on the hash function. Let H̃ = ASA[Hca, S, Embcert] given a signature scheme S with
short signatures and an embedding function that will be specified shortly. Let (h̃, e)←$ H̃(h). As
in Figure 16, an attacker substitutes h with h̃ on a user’s device.
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Validate(C, aux):
1 First, perform expiry, revocation, and other checks.
2 Extract vkca from (C, aux)
3 Extract (h, v) from C.sigAlg and vkca

4 y ← h(C.tbsCert)
5 Return v(y, C.sigValue)

ASA on h changes line 4:

6 y ← h̃(C.tbsCert)
ASA on v changes line 5:
7 Return ṽ(y, C.sigValue)

Figure 16: Validation of an X.509 certificate, simplified. Recall that v(·) = Sca.Vfy(vkca, ·).

Pcert(x = tbsCert∗, u = tbsCert′):
1 If ((tbsCert∗.fh = ⊥) ∨ (tbsCert∗.fσ = ⊥)) then return false
2 If ((tbsCert∗.f = tbsCert′.f) for all other fields f) then return true
3 Else return false

Embcert((y ∥σ), u = tbsCert′):

4 For all fields f, do: tbsCert∗.f← tbsCert′.f
5 tbsCert∗.fh ← y ; tbsCert∗.fσ ← σ

6 Return tbsCert∗

Emb−1
cert(x = tbsCert∗):

7 y ← tbsCert∗.fh ; σ ← tbsCert∗.fσ

8 tbsCert′.f← tbsCert∗.f for all fields f except fh, fσ

9 Return ((y ∥σ), tbsCert′)

Certificate forgery using H̃:

10 (h̃, e)←$ H̃(h)
11 Choose a target honest certificate C with hash y.
12 Choose any tbsCert′ which specifies the same issuer CA and vkca as C.
13 tbsCert∗←$ e(u = tbsCert′, y)
14 C∗.tbsCert← tbsCert∗

15 C∗.sigAlg specifies (h, v)
16 C∗.sigValue← C.sigValue
17 Return C∗

Figure 17: Above: Predicate Pcert which captures whether data tbsCert∗ embeds all of the data
from chosen tbsCert′, along with a correct embedding function for this predicate. This captures
the attacker’s goal of using arbitrary data in their forgery. We give an explicit example of this
embedding in Appendix C. Below: How an ASA on a hash function h allows the attacker to forge
certificates. We use f to denote any X.509 field name. Field labels fh, fσ are fixed.

At a high level, certificate forgery proceeds by choosing a target hash y for which a CA signature
is already known, on an honest certificate C. Then the attacker finds a preimage certificate C∗ which
maps to y under h̃. (Thus the signature on C may be reused.) The ability to specify what this
preimage certificate “looks like” is captured by a predicate and embedding. We give one such
example in Figure 17. Here, the predicate enforces that the attacker can choose any desired
certificate data tbsCert′, and can find a forgery C∗ which differs only by adding (Hca.ol + S.sl)
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bits. If H̃ is effective for this Pcert, and if Validate(C, aux) = 1, then Validate(C∗, aux) = 1. The
steps are written in more detail in Figure 17. Moreover, we give an explicit example of a certificate
embedding in Appendix C but we remark that our transform works for any correct predicate and
embedding. In particular, one could design other ways to embed (Hca.ol + S.sl) bits in a certificate.

Although we consider the ASA setting, we note that a variety of work has already studied
the repercussions of PKI allowing weak hash functions, in particular MD5 [48, 49, 61, 65, 69]. At
Eurocrypt 2007 [60], Stevens, Lenstra, and de Weger presented two X.509 certificates with the same
MD5 hash value and thus signature. The two certificates were produced at the same time, and the
cost was estimated to be “2 months real time” [60]. In the ASA model, an attacker wants to forge
(almost) arbitrary certifcates, at arbitrary times, and to do so easily.
ASA on signature verification. Rather than attacking the hashing step of validation, one
could attack the signature verification. Let (ṽ, e)←$ Ṽ(v) for an ASA Ṽ. As in Figure 16, an
attacker substitutes v with ṽ on a user’s device. Given any certificate data C∗.tbsCert, the task
is now to set y ← h(C∗.tbsCert) and find C∗.sigValue such that ṽ(y, C∗.sigValue) = 1. Note
that the embedding task is already accomplished by the utility definition for a signature ASA; the
message y may be arbitrarily selected, and the exploit algorithm returns (y, σ)←$ e(y, 1) such that
ṽ(y, σ) = 1. Now we simply set C∗.sigValue← σ.

Thus, if we instantiate Ṽ = ASA[Vca, S, Embsig] with a signature scheme such that S.sl ≤ Sca.sl,
the results of Section 7 show that the ASA can construct arbitrary certificates with validating
signatures under ṽ. (No special certificate embedding is needed for this ASA.)
Many users and CAs. We have only described a single-user setting in this section. In Section 7,
we pointed out the difference between single-user and multi-user ffe exclusivity. This arises in
practice in PKI, as many users are trusting several CAs. The observation in the signature setting
was that the exploit algorithm e must consider the user i (or their identifier) when producing a
preimage, which should depend on i. In our construction, this meant that i was included in the
signature embedded in the found preimage. The same observation would apply in a many-user,
many-CA PKI setting if the ASA aims to prevent exploit-produced preimages from being reused
for different users.
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A Proof of Theorem 6.2

Proof of Theorem 6.2: Consider game G0 of Figure 18. We rewrite the winning condition by
splitting it into three checks. Similar to the proof of Theorem 5.2, we already include line 11 which
sets a flag bad. We have

Advpfe
PS,Ṽ

(A) = Pr [ G0(A) ] .
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Games G0, G1

Init:
1 (p, v)←$ PS ; (vk, sk)←$ S.Kg
2 Define ṽ as in Fig. 11 (using vk selected above)
3 X ← ∅
4 Return (p, v, ṽ)

Sim(ϕ′):
5 σ←$ S.Sign(sk, (1, ϕ′))
6 x← EmbPS((1 ∥σ), ϕ′)
7 X ← X ∪ {ϕ′}
8 Return x

Fin(ϕ∗, π∗):
9 If ϕ∗ ∈ X then return false

10 If ϕ∗ ∈ LR then return false
11 If (v(ϕ∗, π∗) = 0 ∧ ṽ(ϕ∗, π∗) = 1) then bad← true ; return false
12 Return v(ϕ∗, π∗)

Figure 18: Games G0, G1 for the proof of Theorem 6.2. G1 contains the boxed code and G0 does
not. Oracle Sim is as in Figure 12.

Adversary AS(vk):

1 (p, v)←$ PS
2 Define ṽ as in Fig. 11 (using the input vk)
3 X ← ∅ ; QS ← ∅
4 (ϕ∗, π∗)← A[SimS](p, v, ṽ)
5 x∗ ← (ϕ∗, π∗)
6 ((1 ∥σ), ϕ)← EmbInvPS(x∗)
7 Return (m = (1, ϕ), σ)

Oracle SimS(ϕ′):

8 σ←$ Sign((1, ϕ′))
9 x← EmbPS((1 ∥σS), ϕ′)

10 X ← X ∪ {ϕ′}
11 QS ← QS ∪ {((1, ϕ′), σ)}
12 Return x

Adversary APS(p, v):

1 (ṽ, e)←$ Ṽ(v) ; X ← ∅
2 (ϕ∗, π∗)← A[SimPS](p, v, ṽ)
3 Return (ϕ∗, π∗)

Oracle SimPS(ϕ′):

4 (ϕ, π)←$ e(ϕ′, 1) ; X ← X ∪ {ϕ′}
5 Return π

Figure 19: Adversaries AS (left) and APS (right) for the proof of Theorem 6.2.

We next turn to game G1 which outputs false whenever bad is set; that is, when ṽ(ϕ∗, π∗) is true,
but v(ϕ∗, π∗) is not. Therefore, games G0, G1 are identical-until-bad and we have

Pr [ G0(A) ] = Pr [ G1(A) ] + (Pr [ G0(A) ]− Pr [ G1(A) ])

≤ Pr [ G1(A) ] + Pr [ G1(A) sets bad ] .

We now construct adversaries AS, APS such that the following two equations hold:

Pr [ G1(A) sets bad ] ≤ Advsuf-cma
S (AS) (12)

Pr [ G1(A) ] ≤ Advsnd
PS (APS) , (13)
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which will complete the proof of Eq. (10) in the theorem statement.
We begin with AS which is in game Gsuf-cma

S and operates according to the description in Figure 19.
AS runs A, responding to oracle queries via SimS. These follow the responses in game G1, with
AS running its own Sign oracle on line 8. These queries to its own oracle are tracked as message-
signature pairs in set QS. Now suppose that bad is set in G1.
Then ϕ∗ /∈ X , v(ϕ∗, π∗) = 0 and ṽ(ϕ∗, π∗) = 1. In particular, ϕ∗ /∈ X implies that (1, ϕ∗) is
not in any message-signature pair in set QS (else both would have been added on lines 10-11 of
Figure 19). Moreover, since ṽ(ϕ∗, π∗) = 1 the parsed signature σ is a valid signature such that
S.Vfy(vk, (1, ϕ∗), σ). AS thus outputs this winning pair ((1, m∗), σ) in its suf-cma game. This
justifies Eq. (12). Further, if A issues q queries to its simulation oracle SimS, then AS also issues q
queries to Sign.
We next turn to adversary APS which is in game Gsnd

PS and is depicted on the right side of Figure 19.
A’s view is that of game G1; initialization and SimPS return the same responses as in G1. Now,
if G1(A) returns true, and since the boxed code is executed in G1, then it must be that the same
conditions are satisfied as in Gsnd

PS and A returns a winning output which proves Eq. (13).
We conclude the proof by observing that AS and APS maintain running times close to that of A.

B Proof of Theorem 7.2

Proof of Theorem 7.2: Consider game G0 of Figure 20. We claim that G0 is equivalent to game
Gffe

TS,Ṽ,n
when instantiated with Ṽ = ASAn[V, S, Embsig]. Note that the Init and Sign oracles are

running the same steps, only with additional accounting. The ESign oracle in G0 has replaced
the computation e(i, m′, 1) with its execution as per the definition of Ṽ, and the Fin oracle of G0
returns true if (i∗, m∗) /∈ X and if (including the boxed code) either of S.Vfy(vk, (i∗, 1, m∗), σS) = 1
or vi∗(m∗, σ∗) = 1. Recall that Fin of Gffe

TS,Ṽ,n
returns true if (i∗, m∗) /∈ X and ṽi∗(m∗, σ∗) = 1.

The definition of ṽi shows that ṽi∗(m∗, σ∗) = 1 precisely when either S.Vfy(vk, (i∗, 1, m∗), σS) = 1
or vi∗(m∗, σ∗) = 1. This completes the justification that

Advffe
TS,Ṽ,n

(A) = Pr [ G0(A) ] .

Since games G0, G1 are identical-until-bad, the Fundamental Lemma of Game Playing [11] implies

Pr [ G0(A) ] = Pr [ G1(A) ] + (Pr [ G0(A) ]− Pr [ G1(A) ])

≤ Pr [ G1(A) ] + Pr [ G1(A) sets bad ] .

We now construct adversaries AS, ATS such that the following two equations hold:

Pr [ G1(A) ] ≤ Advsuf-cma
S (AS) (14)

Pr [ G1(A) sets bad ] ≤ Advmu-ufcma
TS,n (ATS) , (15)

which will complete the proof of Eq. (11) in the theorem statement.
We begin with AS which is in game Gsuf-cma

S and operates according to the description in Figure 21.
AS runs A, responding to oracle queries via ESignS and SignS. These follow the responses in game
G1, with AS running its own Sign oracle on line 8 in responses to ESignS queries. These queries to
its own oracle are tracked as message-signature pairs in set QS. Now suppose that G1(A) returns
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Games G0 , G1

Init:
1 For i = 1, 2, . . . , n do (si, vi)←$ TS
2 (vk, sk)←$ S.Kg
3 Define (ṽ1, ṽ2, . . . , ṽn) as in Fig. 15 (using vk selected above)
4 X ← ∅ ; QS ← ∅
5 Return ((v1, v2, . . . , vn), (ṽ1, ṽ2, . . . , ṽn))

ESign(i, m′):
6 σS←$ S.Sign(sk, (i, 1, m′)) ; x← Embsig((1 ∥σS), m′)
7 X ← X ∪ {(i, m′)} ; QS ← QS ∪ {((i, 1, m′), σS)}
8 Return x

Sign(i, m):
9 σTS←$ si(m)

10 X ← X ∪ {(i, m)}
11 Return σTS

Fin(i∗, m∗, σ∗):
12 If ((i∗, m∗) ∈ X ) then return false
13 x∗ ← (m∗, σ∗)
14 ((1 ∥σS), m)← EmbInvsig(x∗)
15 r1 ← S.Vfy(vk, (i∗, 1, m∗), σS)
16 r2 ← vi∗ (m∗, σ∗)
17 If (r1 = 0 ∧ r2 = 1) then bad← true ; return true
18 Return (r1 = 1)

Figure 20: Games G0, G1 for the proof of Theorem 7.2. G0 contains the boxed code and G1 does
not.

Adversary AS(vk):
1 For i = 1, 2, . . . , n do si, vi)←$ TS
2 Define (ṽ1, ṽ2, . . . , ṽn) as in Fig. 15 (using the provided input vk)
3 X ← ∅ ; QS ← ∅
4 (i∗, m∗, σ∗)← A[ESignS,SignS]((v1, v2, . . . , vn), (ṽ1, ṽ2, . . . , ṽn))
5 x∗ ← (m∗, σ∗)
6 ((1 ∥σS), m)← EmbInvsig(x∗)
7 Return ((i∗, 1, m∗), σS)

Oracle ESignS(i, m′):

8 σS←$ Sign((i, 1, m′)) ; x← Embsig((1 ∥σS), m′)
9 X ← X ∪ {(i, m′)} ; QS ← QS ∪ {((i, 1, m′), σS)}

10 Return x

Oracle SignS(i, m):
11 σTS←$ si(m)
12 X ← X ∪ {(i, m)}
13 Return σTS

Figure 21: Adversary AS for the proof of Theorem 7.2.

true. Then (i∗, m∗) /∈ X and r1 = 1. In particular, (i∗, m∗) /∈ X implies that (i∗, 1, m∗) is not in any
message-signature pair in setQS (else both would have been added on line 9 of Figure 21). Moreover,
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Adversary ATS(v1, v2, . . . , vn):
1 (vk, sk)←$ S.Kg
2 Define (ṽ1, ṽ2, . . . , ṽn) as in Fig. 15 (using vk selected above)
3 X ← ∅
4 (i∗, m∗, σ∗)← A[ESignTS,SignTS]((v1, v2, . . . , vn), (ṽ1, ṽ2, . . . , ṽn))
5 Return (i∗, m∗, σ∗)

Oracle ESignTS(i, m′):

6 σS←$ S.Sign(sk, (i, 1, m′)) ; x← Embsig((1 ∥σS), m′)
7 X ← X ∪ {(i, m′)}
8 Return x

Oracle SignTS(i, m):
9 σTS←$ Sign(i, m)

10 X ← X ∪ {(i, m)}
11 Return σTS

Figure 22: Adversary ATS for the proof of Theorem 7.2.

since r1 = 1 the parsed signature σS is a valid signature such that S.Vfy(vk, (i∗, 1, m∗), σS). AS thus
outputs this winning pair ((i∗, 1, m∗), σS) in its suf-cma game. This justifies Eq. (14).
Next we turn to adversary ATS which is in game Gmu-ufcma

TS,n and is depicted in Figure 22. ATS runs
A, responding to oracle queries according to ESignTS and SignTS. Oracle ESignTS is the same
as in game G1 while oracle SignTS calls ATS’s own Sign oracle to match G1. We claim that if the
flag bad is set during this execution (as per line 17 of G1) then ATS returns a valid forgery in game
Gmu-ufcma

TS,n . If bad is set then we have (i∗, m∗) /∈ X , r1 = 0 and r2 = 1. The latter means that
vi∗(m∗, σ∗) and thus (i∗, m∗, σ∗) is a winning forgery for ATS, proving Eq. (15).
We complete the proof of the theorem statement by noting that AS makes qe Sign queries while
ATS makes qs Sign queries, as needed.

C Forged certificate embedding

In Section 8 we gave certificate forgery as an example of a realistic embedding scenario. An ASA
could be mounted either on the hash function or on the signature verification steps of certificate
validation. Recall that effectiveness of an ASA on a hash function is defined relative to a predicate
Pcert, for which our construction assumes a correct embedding function. This predicate is defined
in pseudocode in Figure 17 but we here give a concrete example. Moreover, effectiveness of an
ASA on signature verification already allows for any target message to be signed, as we cover in
Section 7. Nonetheless, feasibility of an attack where forgeries “look innocuous” may ask for more
sophisticated embeddings, so we provide this illustration. We focus on the hash function case.

Suppose we have selected target hash y = 680f8b1123be39f4451430d6267a8159033034403ce0
df1abdf11c105031d719. This corresponds to a public certificate C with a valid signature C.sigValue
where C.sigAlg specifies “PKCS #1 SHA-256 With RSA Encryption.” The aim is now to construct
C∗ ̸= C with the same hash y; thus the signature on C can be reused.

An ASA attacker, following the specification of Section 8, does the following. Suppose they
intend to use H̃ = ASA[Hca, S, Embcert] where Hca is SHA256, S is ECDSA over secp256k1, and
the embedding is as in Figure 17 of Section 8. We chose ECDSA because it is easily used in
OpenSSL [51]; however a shorter signature scheme like BLS [16] may be easier to embed.
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Certificate C∗:
1 Data:
2 Version: 3 (0x2)
3 Serial Number: ...
4 Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption
5 Issuer: C.Issuer
6 Validity
7 Not Before: Jan 1 08:00:00 2024 GMT
8 Not After : Jun 1 08:00:00 2024 GMT
9 Subject: O = Big Brother, CN = *.bigbrother.com

10 Subject Public Key Info: ...
11 X509v3 extensions:
12 X509v3 Basic Constraints: critical
13 CA:TRUE
14 fh: 680f8b1123be39f4451430d6267a8159033034403ce0df1abdf11c105031d719
15 fσ: 304502202b978f95a853dfa2d2574ff9...56ff5dbdeed8948eb7570089e12d5
16 Signature Algorithm: PKCS #1 SHA-256 With RSA Encryption
17 C.sigValue

Figure 23: A certificate forgery for an ASA on SHA256; we want h̃(C∗) = h̃(C) = SHA256(C) so
that a signature on C can be reused for forgery C∗. The highlighted lines are the overhead in
constructing the hash collision; that is, these are determined by C or cannot be arbitrarily chosen.
The remainder of the certificate, and in particular the “...” sections may be arbitrarily set by the
ASA attacker. On a user’s device, SHA256 is replaced by h̃.

The forgery proceeds as follows. First, the substitution is generated via (h̃, e)←$ H̃(h), which
in particular means generating (vk∗, sk∗) for ECDSA. (Recall that vk∗ is hardcoded in h̃ while sk∗

is hardcoded in e.) We select:

vk∗ = 04d0722759460447f1719ac66a1734054651f7c557a96166583d686

ad405ca9b6f5fe47a7e425a8722edfa13be606fcbe4053ecacb27f2

b0bc3dd1e83152c9a8a3 .

Next tbsCert′ is chosen, which is the certificate data to be contained in the forgery. Section 8
discussed arbitrary data and in the Introduction, we discussed impersonation of a legitimate website
by swapping out the public key in their certificate. For this example, we suppose that the attacker
is aiming to forge arbitrary tbsCert′. Now they use e to find a preimage tbsCert∗ of target
hash y, where the constraint is that tbsCert∗ is “close to” tbsCert′. Concretely, tbsCert∗ adds
two additional fields. In the first, tbsCert∗.fh = y. In the second, tbsCert∗.fσ = σ, where
σ←$ S.Sign(sk∗, (y, tbsCert′)). For our chosen data and y, we find

σ = 304502202b978f95a853dfa2d2574ff9980a4351e7d6c9c4fcc0529

d636c750fdf4c16a8022100efbb50c105df2a4766cfa94910d3a190

19656ff5dbdeed8948eb7570089e12d5 .

Now the forgery is ready to be put together: it includes data tbsCert∗, signature C.sigValue,
and algorithm specification “PKCS #1 SHA-256 With RSA Encryption” (where h = SHA256 is
substituted by h̃ on the user’s device.) This is shown in Figure 23.
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