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Abstract

In this note we propose a variant (with four sub-variants) of the Charles—
Goren—Lauter (CGL) hash function using Lattés maps over finite fields. These
maps define dynamical systems on the projective line. The underlying idea is
that these maps “hide” the j-invariants in each step in the isogeny chain, similar
to the Merkle-Damgard construction. This might circumvent the problem con-
cerning the knowledge of the starting (or ending) curve’s endomorphism ring,
which is known to create collisions in the CGL hash function.

Let us, already in the abstract, preface this note by remarking that we have
not done any explicit computer experiments and benchmarks (apart from a small
test on the speed of computing the orbits), nor do we make any security claims.
Part of the reason for this is the author’s lack of competence in complexity
theory and evaluation of security claims. Instead this note is only meant as a
presentation of the main idea, the hope being that someone more competent
will find it interesting enough to pursue further.

1 Introduction

In 2006 Charles and Lauter (published in 2009 together with Goren) proposed a
hash function (colloquially referred to as the CGL hash function) based on walks
in supersingular isogeny graphs. These graphs are known to be Ramanujan
graphs by [Piz98] and as a consequence have good mixing property with, for all
practical purposes, uniform distribution of isogenies.

However, recently proposed attacks (see for instance [EHLT18, EHL'20,
PL17], using the endomorphism rings of the starting (or ending) curve have
somewhat lowered the confidence that the CGL-function is pre-image and col-
lision resistant. On the other hand, computing the endomorphism ring for a
supersingular curve is believed to be a hard problem that is exponential in com-
plexity for a “random” curve, so, under this hardness assumption, only knowing
the endomorphism ring from the start is a problem.

In this note we propose a variant (with four sub-variants) of the CGL hash
function that uses the dynamics of so called Latteés maps on the projective line
P to “hide” the information of the isogeny walk. This is done by using an
analogue to the Merkle-Damgard construction by viewing the Lattés map as
a “compression” function. This could possibly avoid the problems with the
endomorphism rings and thereby avoiding the pre-image and collision attacks.

However, as indicated in the abstract, it is important to emphasise that
there might be attacks on our Lattés map approach (possibly easily spotted by
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an expert) that will render our proposal, at least in the present form, useless.
The security and complexity of the suggestions made are not discussed in this
note, thereby questioning the viability of the overall idea. Nevertheless, we have
chosen to present the idea with this shortcoming, to hopefully inspire some more
knowledgeable people to take up the thread.

The organisation of the paper is as follows. In section 2 we recall the nec-
essary notions pertinent to elliptic curves. However, we assume that the reader
is already familiar with basics. This section is mostly concerned with fixing
notation and making a few recollections. The section then proceeds by pre-
senting the construction of Lattes maps. We use a recent result in proven in
[BCC22] to show that the Lattés maps are permutations when the curves are
supersingular. As a consequence all points are periodic (i.e., there are no purely
pre-periodic points).

Next, for completeness, we present in section 3 a short description of the
CGL hash function, and then in section 4 the proposals for the family of hash
functions using Lattés maps is presented. Included here is also a (very) brief
discussion on some heuristic concerning the proposals and some ideas for future
research (besides the security and complexity issues).

2 Elliptic curves and Lattes maps

2.1 Elliptic curves and supersingular isogeny graphs

We will assume the reader is familiar with the basics of elliptic curves over finite
fields as presented in [Sil09], but for the reader’s convenience we recall some of
the necessary notions. Let co denote the unit element on all curves.

Let p be a prime and €y , an elliptic curve defined over an extension F,»
of F,,. We will normally work with short Weierstrass models

v =a>4+ax+0b, abe Fpn.
Let K be an arbitrary extension of F,. Then the K -rational points (i.e., the
points whith coordinates in K) is denoted €(K) as usual.

The N-torsion points are the points

E[N]:={P € G(FY) | N-P=oc}.

Recall that €[N] ~ Z/N x Z/N, when gcd(p, N) = 1 and €[p*] ~ Z/p" if and
only if € is ordinary and €[p*] ~ {co} if and only if € is supersingular.

An isogeny between two elliptic curves € and €’ is a scheme-theoretic map
that is also a morphism of abelian groups. The basic example is N : € — €,
where we notice that ker N = €[N]. The degree of a separable! isogeny ¢ is
# ker ¢. The group of all isogenies € — € defined over F;l is denoted End(€) =
Endpa (). A curve is supersingular if and only if End(%) is an order in the
quaternion algebra B, o, ramified only at p and oo.

Let ¢ be a prime different from p. We denote by Iso, the graph where the
nodes are the Fgl—isomorphism classes of supersingular curves over p and where
the edges are isogenies of degree ¢ (up to conjugation). The number of nodes is
roughly p/12. Recall that the j-invariant of a supersingular curve is an element

1We won’t define this here. All isogenies appearing in this note are separable.



of Fp2. The nodes in Iso, are therefore normally enumerated by the j-invariants.
It is well-known that Iso, is a connected Ramanujan graph and there are £ + 1
edges emanating from each node, corresponding to cyclic subgroups of y[¢].
The fact that Iso, is Ramanujan has as a consequence that, given two curves,
it is presumably hard to find a path of length ¢" (for some “large” n) between
these curves in Iso,. This presumption is the underlying hardness assumption
for all cryptographic primitives using isogeny graphs.

2.2 Lattes maps and their dynamics

We begin this section by remarking that the definition of Lattés maps is inde-
pendent of the ground field. However, we will continue assuming that everything
is defined over an extension of I, for simplicity. For the basics of Lattés maps
(of arbitrary fields) we refer to [Sil07, Chapter 6].

Let ¢ : € — € be a rational map (not necessarily an isogeny) and let
m : €& — P be a morphism of varieties. Then a Lattés map associated with
(¢, ) is a rational map ¢ : P — P making the diagram

H<—0%

P
_—
s
_—
¢

commutative. The Lattes map is flexible if ¢» = N for some N € Z and the
degree of 7 is 2. The definition given in [Sil07] is slightly more general. The
degree of ¢ is N? (see [Sil07, Prop. 6.51a]).

Let S be a set, a: S — S amap and x € S. Then the orbit of x under « is
the set

/x~o¢:{seS\s:a”(x), for some n € Z}.

/I'OL
S

and is the dynamical system associated with (S, «). The reason for the uncon-
ventional notation is to convey the idea that computing orbits under a map «,
is akin to integrating the elements in the set under the “measure” «.

The set of all orbits is denoted

A point s € S is called periodic (of period n) if a"(s) = s and a™(s) # s
for all m < n. The point is pre-periodic if &™(s) is periodic for some m > 0.
Notice that every periodic point is pre-periodic.

If ¢ is a Lattés map, Proposition 6.44 in [Sil07] shows that PrePer(¢) =
m(Bior), where, of course, PrePer(¢) is the set of pre-periodic points of P under
¢. Clearly, over a finite field, every point of € is a torsion point so PrePer(¢) = P.

A natural question is what the density is of the periodic points is in P under
¢. This question is difficult to answer in general, but fortunately for the case of
interest to us, this can be answered.



From now on we assume that we have a Lattés map defined by the diagram

4]
%0 EE—— Cg()

Pk

P— P,

where /£ is a prime distinct from p. Notice that, given ¢, the map ¢ is uniquely
determined? by ¢(a) = z(¢ - a), a € P.

The number of F,~-rational points on € is #€(F,n) = p™ + 1 — t, where ¢
is the trace of the p™-power Frobenius. Then Corollary 2.6 of [BCCT22] shows
that ¢ is a permutation on P(F,») if and only if (p" + 1)? — ¢ is coprime to p.
In particular, Per(¢) = P(Fyn).

A curve €p , is supersingular if and only if £ = 0 modulo p. Hence, in this
case (p" + 1) — t is certainly coprime to p and therefore ¢ : P(Fpn) — P(Fpn)
is a permutation.

We say that the Lattes map is supersingular if € is supersingular.

3 The Charles—Goren—Lauter hash function

In [CLGO09] a hash function based on walks in supersingular isogeny graphs was
introduced. Their idea was the following.

Let M = (mg,ma, ..., my) be a message where each m; € {0,1,...,£—1}.
Choose a “good” (avoiding the j-invariants 0 and 1728) supersingular curve &g
over F,» and a basis {P,Q} for the ¢-torsion group ,[¢]. We choose P and Q
with the smallest z-coordinates. As mentioned above there are £ + 1 outgoing
cyclic ¢-isogenies corresponding to cyclic subgroups of €g[¢].

We order the the cyclic subgroups as

Go:=(Q), Gi=P+(i—-1)-Q), 1<i<Lt.

Now, starting at €y, we choose the subgroup G,,, and the associated isogeny
P €y = € := Gy/Gm, is computed. In the next step we choose the group
G, , taking Gy, +1 (say) if G, corresponds to the dual isogeny )€ — €.
On €2 := €1/Gn,, we take Gy,,, or Gp,y1 if Gy, corresponds to the dual
isogeny. We continue like this up to my, and the j-invariant of the last curve is
the hash of M.

Obviously, the basis elements P, Q changes in every step. The backtracking
issue can be avoided if p = 1 (mod 12) since then the curves with j = 0,1728
are ordinary and backtracking is only possible when there are non-trivial auto-
morphisms.

It is quite clear that the CGL hash function is pre-image resistant if and only
if it is hard to compute an isogeny between two given (supersingular) curves. In
[EHL™ 18, Prop. 7 and Prop. 8] it is proved that the hash function is pre-image
and collision resistant if and only if it is hard to compute the endomorphism
ring of the starting curve (or the ending curve).

2This claim is independent on ¢ being a prime.



It should be noted that there are polynomial collision attacks on the CGL
hash function for some special curves corresponding to specific maximal orders
in B, « (see [PL17]).

4 Hashing using supersingular Lattes maps

Choose a “good” supersingular curve® €, over F,2 and a basis {Po,Qo} for the
{-torsion group p[¢], where ¢ is a prime (typically 2 or 3). Put €[¢] = (Pg, Qo)
and choose a cyclic subgroup Gy := (Pg + [IV]Qo), for some N (this choice will
be discussed below).

We consider the Latteés map fitting into the diagram

(4]
%0 —_— %0

Il

P——P

%o

We now use Gy to construct the isogeny v : €y — €y/Gp and extend the
diagram as (put €; := €y/Go)

‘We now continue like this:

¢ [ ) ¢ .
% [ % o i (4] Gy Vr
I .

61
P——=P P——s
%o
Now, how can the chain in the top row constructed? We use the construction
described in the next paragraph. Other constructions, including the method in
CGL described above, are obviously possible. The choice made here is only for
the sake of illustration.

'ﬁ<—@@

Let v be the value to be hashed, expressed in binary as v := vi_1 - - - v1vp,
v; € {0,1}. Let Gy be the cyclic group Go := (Pg + [{ — 1 4+ v9]Qo). Then we

3Tt should be noted that this is not as easy as it sounds. Since the number of supersingular
curves in the moduli space of elliptic curves over finite fields is roughly p/12, the density is
essentially zero. Combing through all elliptic curves for a supersingular curve when p is a
prime of 1024 bits or more is extremely difficult. Furthermore, finding a supersingular curve
with an endomorphism ring that is hard to compute obviously adds to the difficulty. This
problem is discussed in [BCC* 23], [MMP22] and [Wes22]. We refer to these for more details.

ot



have the diagram

€
<€o 4‘4‘>ﬁ£0 (go/(;o 4‘4‘>ﬁgo/(;0
P—sP—P—F——P.

o 1

Then in & choose G := (P1 + [{ — 1+ v1]Q;) and extend the above diagram as

€2
(\ /\ 0
€ —— %o €1 H%1 €1/G1 —€1/Gy
N Fo)
P—sP——P—P——P P.
b0 1 b2

We continue like this, choosing in each step the group G; := (P; + [¢ — 1 + v;]Q;),
to get the desired isogeny chain.

Notice that it is important to choose G; such that ;1 is not equal to the
dual ; in order to avoid backtracking. As remarked above this can be achieved
by choosing p such that p = 1 (mod 12). Also, in each step it is important to
have a canonical way to pick the torsion basis (to ensure the uniqueness of the
hash value). This can be done as in the CGL hash function, by taking the ones
with the smallest x-coordinates.

Remark 4.1. It is a possibility to change the value of £ during the construction
of the chain. For instance, alternating between ¢ = 2 and ¢ = 3.

4.1 Non-keyed hashing
Put j; := j(6;). We compute the following z := ¢o(jo), and recursively
zi = ¢i(zi-1+7i), 1<i<k

The hash value is then z;. Notice the vague similarity to the Merkle-Damgard
construction.

4.2 Keyed hashing

Let K := kp—1 - k1Ko be a key with each k; € {0,1} and n > k. Then we can
use the groups G; := (P, + [{ — 1+ v; @ £;)Q;) and the proceed as before.

4.3 Dynamic hashing

Let, as in the previous section, kK := k,_1---K1Kko be a key with each k; €
{0,1} and n > k. Split k into blocks, not necessarily of the same size, Kk =



Fi_1 -+ Ri1Rg, with ¢ > 1. Let o; be the integer representation of the binary
number &;.
Now, we define zg := ¢3°(jo) (i-e., ¢o is iterated o times), and recursively

z; = ¢7 (zi—1 +Ji), 0<i<k,

and when (or if) ¢ exceeds k, we start again from oy and proceed cyclically.

4.4  Dynamic hashing, again

As a final proposal, we present two other dynamical hash functions. The set-up
is as in the previous set up but now we only use the first Lattes map, ¢o and
propose the recursions defined by zg := ¢ (jo),

zi = ¢p(zi—1 + i), 1<i<k,

and
z; ‘— ¢81 (Zi—l +jz)7 0 S ) S k.
Notice the difference between these two: the first is non-keyed while the second
is keyed.
Due to the number of iterations needed, these proposals seems unlikely to
be of any practical use in the present form.

4.5 Some simple heuristics and computer experiments

First notice that the construction of the isogeny chain follows the same heuristics
as the CGL-function [CLGO09].

Next, we observe that the computation of ¢; is already done in the compu-
tation of [¢] and the chosen subgroups, so no extra work constructing these are
required. Therefore, the cost of the non-keyed hash function is essentially the
same as the cost of the CGL-hash function. The same applies to the keyed-hash
function.

The possibly expensive version are thus the dynamic hash functions due to
the computation of the orbits in each step. Clearly this is dependent on the
block sizes in the key k. We did some initial computer experiments with Sage
[The21] with p = 23723239 —1, ¢ = 2, and curve, given in short Weierstrass form
as

y? = 2 + 34398498374987238967492834234243534534534242352
+ 68743598734509720983928402983428798398798728798273984795.
We note that this curve is not a supersingular curve, but this is inconsequential
for the illustration. Also, the 2-torsion is only defined over F:.

If the block size (i.e., the number of iterations in the orbits) is 10000 and
the (randomly chosen) starting value is

x = 8758987875985456789854567890234567876543456567890987654\

321234567893298765432345634567898790234568765434565678\

9098765432123456985456789023456787654345656789098765432\

1234567893298765432345634567898778932987654323456345678)\
98765432123456789876587654789,



the Lattes map is iterated in roughly 0.2s. Reducing the block size to 100 the
computation takes about 5us. On the other hand, taking 100000 iterations
yields a computing time of around 1.7s. In fact, the size of the curve coeflicients
and starting value doesn’t seem to have much impact on the speed. We did the
computations on a MacBook Pro with an M1 processor.

Obviously this has to be scaled up o allow for computation of all steps in the
chain. On the other hand, the implementation is obviously far from optimised
and should ideally be implemented in C/C++ or assembler. In addition, the
choice of block size is certainly not obvious. Furthermore, using a Montgomery
curve and the associated addition formulas should reduce the computation time
even further.

4.6 Future work

As mentioned repeatedly, a more thorough study of the security and complex-
ity of our proposals is necessary for determining the viability of the presented
families of hash functions.

The initial idea in the use of Latteés maps to hashing was to use the Deuring
lifting theorem [Lan87, Thm. 13.12] to construct Lattes maps over number fields.
However this presented a lot of problems, primarily related to uniqueness. To
give a short version of that idea, consider an isogeny walk as in the CGL hash
function. Using the Deuring lifting theorem in each step we can lift the isogeny
to an isogeny over a number field between two CM-curves. Now, in a sense,
Lattes maps over number fields has a richer theory, in particular the Julia set
can be non-empty in which case there is “chaotic” behaviour in the dynamics
(see [Sil07]). Then one could use these Lattés maps over the number fields
to study the orbits of the j-invariants of the curves in the CGL-walk, thereby
possibly constructing a more “chaotic” hash function.

A more thorough study along those lines is perhaps a worthy effort in the
future.
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