
Actively Secure Private Set Intersection in the Client-Server
Setting

Yunqing Sun∗ Jonathan Katz† Mariana Raykova‡ Phillipp Schoppmann‡

Xiao Wang∗

Abstract

Private set intersection (PSI) allows two parties to compute the intersection of their sets
without revealing anything else. In some applications of PSI, a server holds a large set and
runs a PSI protocol with multiple clients, each with its own smaller set. In this setting, existing
protocols fall short: they either achieve only semi-honest security, or else require the server to
run the protocol from scratch for each execution.

We design an efficient protocol for this setting with simulation-based security against ma-
licious adversaries. In our protocol, the server publishes a one-time, linear-size encoding of its
set. Then, multiple clients can independently execute a PSI protocol with the server, with com-
plexity linear in the size of each client’s set. To learn the intersection, a client can download the
server’s encoding, which can be accelerated via content-distribution or peer-to-peer networks
since the same encoding is used by all clients; alternatively, clients can fetch only the relevant
parts of the encoding using verifiable private information retrieval. A key ingredient of our
protocol is an efficient instantiation of an oblivious verifiable unpredictable function, which may
be of independent interest.

Our implementation shows that our protocol is highly efficient. For a server holding 108

elements and each client holding 103 elements, the size of the server’s encoding is 800MB; an
execution of the protocol uses 60MB of communication, runs in under 5s in a WAN network with
120 Mbps bandwidth, and costs only 0.017 USD when utilizing network-caching infrastructures,
a 5× saving compared to a state-of-the-art PSI protocol.

1 Introduction

Protocols for private set intersection (PSI) allow two parties to compute the intersection of their
private sets without revealing anything else. PSI has found many applications, including genome
testing [BBD+11], botnet detection [NMH+10], online advertising [IKN+20], compromised creden-
tial checking [PIB+22], contact discovery [KRS+19], etc. In many applications, one of the parties
(a server) holds a large, fairly static set and repeatedly executes a PSI protocol with several other
parties (clients) holding much smaller sets. This is the case, e.g., for a “password checkup” service
in which the server holds a large set of compromised credentials while each client holds its own
credentials and wants to find out if any have been compromised. This is also the case for contact
discovery, where the server holds a large database of contact information for multiple users while
clients each have their own list of contacts and want to learn which among them are in the database.

One might naively think that any (actively secure) PSI protocol could be used in the above
setting. There are at least two drawbacks to doing so. First, there is a security concern: indepen-
dently invoking a secure PSI protocol multiple times does not ensure that a malicious server uses

∗Northwestern University, {yunqing.sun,wangxiao}@northwestern.edu
†Google and University of Maryland, jkatz2@gmail.com
‡Google, mariana@cs.columbia.edu, schoppmann@google.com

1

the same set in all executions. Second, even if all parties are (semi-)honest, it can be prohibitively
expensive to require the server to repeatedly process its (large) input every time it runs the protocol
with a new client; more preferable are solutions that allow the server to do work proportional to the
size of its input once in an offline phase, and then repeatedly run an online phase with complexity
linear in the size of a client’s set.

Existing PSI protocols fall short. While many PSI protocols allow the server to re-use work done
in an offline phase [KLS+17, CLR17, CHLR18, CMdG+21], existing solutions with this property
do not achieve (full) security against malicious attackers. On the other hand, while several recent
works have shown actively secure PSI protocols [NTY21, RT21, PRTY20, DKT10, RS21, RR22],
all such protocols require the server to do work linear in the size of its input in each execution.

1.1 Our Contributions

Actively secure PSI in the client-server setting. We design an actively secure PSI protocol
that is particularly suitable for the multi-client setting. In our protocol the server encodes its set
once during an offline phase, and can then repeatedly execute the online phase of the protocol with
multiple clients. Thus, the server’s initial encoding is reusable, so only needs to be computed once.
Moreover, clients do not need to know the server’s encoding when running the online phase, but can
retrieve it asynchronously even after the online phase is complete. This offers flexibility, potentially
allowing the encoding to be distributed via content-distribution or peer-to-peer networks. (See
further discussion in Section 4.2.) Alternately, the client can reduce bandwidth and retrieve only
relevant portions of the encoding (after completing the online phase of the protocol) using verifiable
private information retrieval [BDKP22, dCL24].

An efficient oblivious VRF. Similar to prior work, our PSI protocol relies on a subprotocol
for oblivious pseudorandom function (OPRF) evaluation. To achieve security against a malicious
server (as explained further in Section 2.1) we strengthen this to oblivious evaluation of a veri-
fiable pseudorandom function (OVRF). (For technical reasons, it is actually more convenient for
us to work with verifiable unpredictable functions, or VUFs.) While OPRFs are well-studied
(see [CHL22] for a systematic summary) we are not aware of any prior work constructing (effi-
cient) OVUFs/OVRFs. Some prior works consider verifiable OPRFs; however, efficient construc-
tions [DGS+18, ECS+15, JKR19, KLOR20, SS22, TCR+22] are not extractable (thus not applicable
here), while extractable constructions are all far from being practical [Bas24, BKW20, ADDS21,
SHB23]. We also show an efficient OVUF/OVRF protocol based on the (non-oblivious) VRF of
Dodis and Yampolskiy [DY05]. Our protocol relies on techniques for converting secret shares from
multiplicative to additive form (aka MtA conversion), something considered by several prior works
in other contexts [DKLs18, XAX+21, CCL+19]. To further improve efficiency, we rely on an “im-
perfect” MtA protocol that allows a cheating server to cause a client to output an incorrect result.
We show that this suffices in our setting.

Practical efficiency. We implemented our PSI protocol using state-of-the-art building blocks,
and our experimental results show that our protocol is highly efficient. For example, at the 128-
bit computational / 40-bit statistical security level, for a server holding 108 elements and a client
holding 103 elements, the size of the server’s encoding is 800MB; an execution of the protocol uses
60MB of communication, runs in under 5s in a WAN network with 120 Mbps bandwidth, and
costs only 0.017 USD when utilizing network caching infrastructures, a 5× saving compared to a
state-of-the-art malicious PSI protocol without consistency guarantee.

2

1.2 Outline of the Paper

In Section 2 we give a technical overview of our PSI protocol, as well as the OVUF/OVRF sub-
protocol we propose. After giving preliminary definitions in Section 3, we describe our PSI protocol
in detail, based on any OVUF, in Section 4. In Section 5, we present our efficient OVUF/OVRF
protocol. We conclude with an experimental evaluation, and comparison to prior work, in Sec-
tion 6.

2 Technical Overview

In this section we give a more-detailed overview of our PSI protocol. Our protocol can be based on
any sub-protocol for oblivious evaluation of a verifiable unpredictable function (OVUF); we provide
an overview of an efficient construction of the latter as well.

2.1 Actively Secure PSI from OVUFs

As in prior work on PSI [DKT10, PRTY20, RS21], our protocol relies on the following idea: The
server begins by generating a private key sk. Then, in an offline phase, the server with set X = {xi}
computes a deterministic encoding EX = {exi = En(sk;xi)} of its set. To compute the intersection
with a set Y = {yi} held by some client, the server runs an interactive protocol with the client
(with complexity linear in |Y |) that allows the client to learn EY = {En(sk; yi)}. Once the client
learns EX it can compute EX ∩ EY , from which it can deduce the elements in the intersection.

In prior work, the encoding of an element was done by setting En(sk;xi) = Fsk(x) for a pseu-
dorandom function F . The server can locally compute this encoding, while the client can compute
this encoding by interacting with the server in an OPRF sub-protocol. This suffices to achieve
semi-honest security: informally, the client learns nothing beyond the intersection (and the size of
the server’s set) since each encoding outside the intersection is random; the server learns nothing
about the client’s set due to the obliviousness of the OPRF protocol.

Unfortunately, the above does not appear to allow for proving security against a malicious
server. In that setting, it must be possible to extract the server’s (effective) input from its published
encoding EX. There is no obvious way to do this in the above protocol. In particular, for a single
value ex published by the server, a simulator has no way to even tell whether ex is a (correct)
encoding of some element or a garbage value that will not match anything.

Malicious security via verifiability. We address this issue by using a verifiable random func-
tion (VRF) [MRV99]. A VRF is associated with both a private key sk and a public key pk; infor-
mally, Fsk(·) should look random even given pk, but a VRF has the extra property that x′ = Fsk(x)
can be verified as correct given x and pk by running a verification procedure Verify(pk, x, x′).
We modify the protocol given above by having the server publish pk, and setting En(sk;xi) =
H(x, Fsk(x)) for H a hash function modeled as a random oracle. (This means we now need a
sub-protocol for oblivious evaluation of a VRF, which we present in the following section.)

To see how this allows for extraction of the server’s input, consider again a single encoded value
ex published by the server. The simulator can look for a corresponding H-query H(x, x′) with
output ex; if a unique such query exists then ex can only possibly correspond to x. (If there is no
H-query with output ex, then the simulator knows that ex does not correspond to any element.)
Crucially, the simulator can then check whether ex is indeed a (correct) encoding of x by checking
whether Verify(pk, x, x′) = 1.

We remark that using a VRF also allows clients to verify that their encoding EY is computed
correctly during the online phase of the protocol, something that is also critical for security against
a malicious server.

3

Finally, we observe that using a VRF is overkill, and it suffices to rely on a verifiable unpre-
dictable function (VUF); we thus construct an oblivious VUF (OVUF) sub-protocol in the next
section.1

2.2 Constructing an OVUF

Our starting point is the VUF of Dodis and Yampolskiy [DY05] based on a bilinear map e : G×G→
GT .

2 Let g be a generator of G. In this VUF, the server’s public key is pk = gsk ∈ G, and evaluation
is defined as Fsk(x) = g1/(sk+x). Verification is done by checking if e(Fsk(x), pk · gx) = e(g, g).

We now sketch a protocol for oblivious evaluation of this function, run between a server S
holding sk and a client C holding input y. A a high level, our protocol works as follows:

1. The parties choose random values ϕ1 and ϕ2, respectively, viewed as an additive sharing of a
random value.

2. The parties run a multiplicative-to-additive share-conversion protocol, where S uses sk and C
uses ϕ2; as a result, S and C obtain A1 and A2, respectively, such that A2 +A1 = ϕ2 · sk.

3. Similarly, the parties obtain B1 and B2 such that B2 +B1 = ϕ1 · y.

4. S sends ϕ1 · sk + A1 + B1 and C sends ϕ2 · y + A2 + B2. The parties then add these values to
obtain v = (sk+ y)(ϕ1 + ϕ2).

5. S sends gϕ1/v to C, who computes gϕ1/v · gϕ2/v = g1/(sk+y).

Note that C can verify the final result using the verifiability property of the VUF and the server’s
public key.

The bottleneck in the above is the subroutine for multiplicative-to-additive (MtA) share con-
version. Actively secure MtA protocols have been a key building block in the context of threshold
ECDSA, and there have been proposals for constructing them using oblivious transfer (OT) [DKLs19,
HMRT22], Paillier encryption [CGG+20, GG18, LN18], and Castagnos-Laguillaumie encryption [CCL+19];
see Xue et al. [XAX+21] for a more detailed survey. In this paper, we focus on constructions from
OT as they are the most computationally efficient.

We adapt the MtA approach used by Doerner et al. [DKLs19] that can be viewed as a malicious
version of an idea by Gilboa [Gil99]. For two parties with a and b as input, the high-level idea is to
use OT to generate additive secret sharings of a ·bi, where bi is the ith bit of b. The two parties can
then compute an additive secret sharing of a · b as a linear combination of the shares of the {abi}.
To achieve security against malicious behavior, Doerner et al. made two changes: (1) each OT will
select two sets of values, where the second set of values is used solely for checking correctness of the
output; (2) to prevent selective-failure attacks, they encode the bit bi as a longer string of choice
bits instead of using just bi itself. These changes lead to an overhead of 4–5× in communication as
compared to the underlying semi-honest protocol.

We observe that since the final output in our application can be verified anyway, we can save
half the communication by not doing checking in the MtA protocol itself. Removing the check
in the MtA protocol complicates the proof of security. In particular, we are unable to define an
appropriate functionality that our “imperfect” MtA sub-protocol realizes, and so instead we prove
security of the entire OVUF directly.

1It is easy to turn a VUF F into a VRF F ′ in the random-oracle model by defining F ′
sk(x) = H(Fsk(x)). Never-

theless, relying on a VUF provides a cleaner abstraction for our protocol. OVUFs may also be easier to construct
than OVRFs.

2For efficiency, we use Type-III pairings where the groups in the domain are different; here, we describe things in
the Type-I setting for simplicity.

4

It is still possible for a malicious server to cheat by using an incorrect value of sk in the protocol.
This can even lead to a concrete attack: to determine whether the client’s input is some value y,
a malicious server can use sk∗ = −y in step 2 of the protocol and then see whether v = 0 in
step 4. To ensure that this does not happen, we add an extra verification step after the second
step. Essentially, we want to verify that the server holds A1 such that A1 + A2 = ϕ2 · sk, where
A2, ϕ2 are known to the client and sk = logg pk. To do this, we have the server send gA1 , and the

client checks if this is equal to pkϕ2 ·g−A2 . (When the server is honest, this does not reveal anything
to the client that it did not already know; on the other hand, if the client is honest then A2 is
uniform and so a cheating server will be caught with overwhelming probability.) Using hashing,
this check can be batched when evaluating the VUF at multiple points; thus, the check incurs
negligible (amortized) communication and only a few exponentiations.

3 Preliminaries

We use κ as a computational security parameter and s as a statistical security parameter. We use
H∞(γ) to denote the min-entropy of a random variable γ; and use log to denote logarithms base 2.
We let [n] = {1, · · · , n}. Bold lowercase letters like a represent row vectors, where ai denotes the
ith component of a. We also write a ◦ b for the Hadamard product of two vectors. For b ∈ Zq, we
use Bits(b) to denote the bit decomposition of b. We write a ← S to indicate that a is sampled
uniformly from set S.

3.1 Verifiable Unpredictable Functions

A verifiable random function (VRF) is a keyed function whose output is verifiable given a public key
and an associated proof; informally, the output should be indistinguishable from random without
the proof. A verifiable unpredictable function (VUF) is a weaker primitive, where all that is required
is for the output to be unpredictable. Note, however, that in contrast to a VRF, the output of a
VUF can be verified without any additional proof. We only rely on VUFs in our work.

Definition 1. A VUF consists of algorithms (Gen, F,Vrfy) where

• Gen takes as input 1κ, and outputs a key pair (sk, pk).

• F takes as input a secret key sk and an element x and outputs y.

• Vrfy takes as input a public key pk and elements x, y and outputs a bit.

It is required that for all (sk, pk) output by Gen and all x in the domain of F , we have Vrfy(pk, x, Fsk(x)) =
1.

Moreover, the following security properties hold:

Uniqueness: There do not exist (pk, x, y1, y2) with y1 ̸= y2 and

Vrfy(pk, x, y1) = 1 = Vrfy(pk, x, y2).

Unpredictability: For any efficient algorithm A, the following is negligible:

Pr
[
(sk, pk)← Gen(1κ); (x, y)← AFsk(·)(pk) : y = Fsk(x)

]
,

where A does not query its oracle on x.

5

Functionality FPSI

There is a server S and clients C1,

Initialization: Upon receiving (init, X) from S, store X, send |X| to A, and ignore subsequent initial-
ization requests.

Computation: Upon receiving (PSI, Y) from Cj , send |Y | to A and S. If S sends ok and X is stored,
send X ∩ Y to Cj . Otherwise, send ⊥ to Cj .

Figure 1: Functionality for private set intersection.

For technical reasons, we also require that it is possible to identify whether a key pair (sk, pk)
is valid or not; for a valid key pair Vrfy(pk, x, Fsk(x)) = 1 for all x, while for an invalid key pair
Vrfy(pk, x, Fsk(x)) = 0 for all x.

We recall the VUF proposed by Dodis and Yampolskiy [DY05], based on prior work of Boneh
and Boyen [BB04]. Let G, GT be cyclic groups of prime order q, with e : G×G→ GT an efficiently
computable pairing.3 The Dodis-Yampolskiy VUF is defined as follows:

1. Gen: Choose sk← Zq and output (sk, pk = gsk).

2. Fsk(x) = g1/(sk+x). (We define Fsk(−sk) = 1.)

3. Vrfy(pk, x, y) outputs 1 iff e(gx · pk, y) = e(g, g), or pk = g−x and y = 1.

The security of this construction for small domain relies on variations of (bilinear) Diffie-Hellman
assumptions. Subsequent work [CHK+06] shows its security for general input domains in the generic
group model.

3.2 Ideal Functionalities

We prove security of our protocols in the UC framework [Can01], assuming static corruptions.
Below we describe the PSI functionality as well as other functionalities we use. We omit session
IDs for readability. Some of our protocols rely on a programmable random oracle, which can be
formalized as a functionality within the generalized UC framework [CDG+18]; we do not do this
explicitly here. However, we note that our PSI functionality is explicitly defined for a single server
interacting with multiple clients. We assume authenticated channels, but do not require private
channels.

Private set intersection. Private set intersection (PSI) allows two parties to jointly compute
the intersection of their private sets without revealing any additional information (except the sizes
of their sets). In Figure 1, we describe the ideal functionality corresponding to PSI, which allows
a server to compute intersections with multiple clients. The functionality ensures that the server
uses the same set with every client.

Oblivious verifiable unpredictable function. One natural way to formalize an oblivious VRF
is via a functionality that internally generates a random function F ; when queried by a client with
input (eval, x), the functionality returns F (x) to the client if the server approves. Moreover, the
functionality should allow any party to query (verify, x, y) to learn whether y = F (x) (without no-
tifying the server or requiring its approval). There are at least two problem with such an approach.

3Our implementation uses a Type-III pairing e : G1 × G2 → GT for efficiency, but for simplicity we describe our
protocols using Type-I pairings.

6

Functionality FOVUF

There is a server S and clients C1, . . . Let (Gen, F,Vrfy) be a VUF.

Initialization: Upon receiving (init, pk) from S, store pk, send pk to A, and ignore subsequent initial-
ization requests.

The queries below are ignored if pk is not stored.

Key query: Upon receiving fetch from Cj , send pk to Cj .

Evaluation: Upon receiving (eval, (y1, . . . , yn)) from Cj , send n to S and A. When S responds
with sk, check the validity of (sk, pk). If (sk, pk) is invalid, send ⊥ to Cj . Otherwise, send
(Fsk(y1), . . . , Fsk(yn)) to Cj .

Figure 2: Functionality of OVUF.

Functionality FCOT

Upon receiving τ ∈ Zn
q from S and w ∈ {0, 1}n from Cj , for i ∈ [n] choose pi ← Zq and set qi =

wi · τi − pi. Send p to S and q to Cj .

Figure 3: Functionality of correlated OT.

Functionality FBB

There is a server S and clients C1,

Send: Upon receiving msg from S, send msg to A and store msg. Ignore subsequent messages from S.

Fetch: Upon receiving fetch from Cj , if msg is stored then send it to Cj .

Figure 4: Functionality of bulletin board.

First, it would need to be modified to handle a malicious server who may not choose a uniform key.
While such a modification is possible, it complicates things. Second, it seems difficult to model an
unpredictable (rather than random) function using this type of approach.

We therefore choose to model the OVUF functionality as a secure evaluation of a concrete VUF,
as shown in Figure 2. We allow the client to request oblivious evaluation at multiple points (“batch
evaluation”), as this can allow for better efficiency.

Correlated oblivious transfer. Correlated oblivious transfer (COT) is a variant of oblivious
transfer. See Figure 3.

Bulletin board. We use a bulletin board functionality that allows the server to post messages
that can be read by all clients. This functionality is used for distribution of the server’s public
key as well as the server’s encoding. See Figure 4. In practice, the server’s public key would be
distributed through standard PKI mechanisms, and we envision that the server’s encoding would
be distributed through content-distribution networks.

7

Protocol ΠPSI

The server S holds X and each client Cj holds Yj .
H : Zq ×G→ {0, 1}σ is a hash function.

Initialization:

1. S runs (sk, pk)← Gen and sends (init, pk) to FOVUF.

2. For each xi ∈ X, the server computes exi = H(xi, Fsk(xi)). It then sends EX = {exi} to FBB.

Compute intersection:

1. Cj sends (eval, y1, · · · , yn) to FOVUF. Upon receiving n from FOVUF, S sends sk to FOVUF. Then
FOVUF sends (Fsk(y1), · · · , Fsk(yn)) to Cj . (If FOVUF sends ⊥, then Cj aborts.)

2. Cj computes eyi = H(yi, Fsk(yi)) and lets EY = {eyi}.

3. Cj sends fetch to FBB, and receives EX in return. It then outputs {yi : eyi ∈ EX ∩ EY }.

Figure 5: PSI protocol in the {FOVUF,FBB}-hybrid model.

4 OVUF-based PSI

4.1 The PSI Protocol

We have already given an overview of our approach in Section 2.1. The detailed PSI protocol ΠPSI

is shown in Figure 5.

Theorem 1. Assume the VUF used by FOVUF is secure. If H is modeled as a random oracle, then
ΠPSI UC-realizes FPSI in the {FOVUF,FBB}-hybrid model.

Proof. Let A be a PPT adversary that may corrupt the server and any number of clients. We
construct a simulator Sim with access to functionality FPSI that runs A as a subroutine. Note that
there is nothing to simulate if a corrupted server interacts with a corrupted client. When an honest
server interacts with a corrupted client, the only communication observed by the adversary is pk
and EX; thus, that case is covered in the same way as in the case of an honest server interacting
with a corrupted client.

Corrupted server with some honest clients. Sim runs A, simulating H by returning random
responses to A’s queries. Then:

1. Let (init, pk) be the message A sends to FOVUF, and let EX = {exi} be the message A sends to
FBB.

2. Initialize X = ∅. Then for each ex ∈ EX, do:

(a) If A did not make any H-query with output ex, do nothing.

(b) If A made an H-query with output ex, let H(x, x′) be the first such query. Add x to X iff
Vrfy(pk, x, x′) = 1.

Send X to FPSI on behalf of S.

3. Upon receiving n from FPSI, send n to A on behalf of FOVUF. If A does not respond, or responds
with sk for which (sk, pk) is invalid, send abort to FPSI. Otherwise, send ok to FPSI.

8

It is not hard to see that the simulation is statistically close to an execution of ΠPSI in the
{FOVUF,FBB}-hybrid world. The uniqueness of the VUF ensure that the simulator does not include
wrong elements: if the adversary could find values (x, x′) that pass the verification but not a VUF
input-output pair, the extraction would include such an element incorrectly.

Corrupted clients with an honest server. Sim runs A, simulating H by returning random
responses to A’s queries. Then:

1. Run (sk, pk)← Gen. If a corrupted client queries fetch to FOVUF, send pk in response.

2. Sim receives n from FPSI. It chooses ex1, . . . , exn ← {0, 1}σ and sets EX = {exi}. If any client
(corrupted or not) queries FBB, it sends EX in response. Sim also maintains a table T indexed
by [n], initially empty.

3. Whenever A sends (eval, y1, . . . , ym) to FOVUF on behalf of a corrupted client, do

(a) Send Y = {yi} to FPSI, and receive in return a set Z ⊆ Y . Send (Fsk(y1), . . . , Fsk(ym))
to A.

(b) For each z ∈ Z do: If there is an i with T [i] = z, do nothing. Otherwise, choose a uniform
empty entry T [i], set T [i] = z, and program H so that H(z, Fsk(z)) = exi.

It is again not hard to see that the simulation is statistically close to an execution of ΠPSI in the
{FOVUF,FBB}-hybrid world. In particular, the simulation relies on the fact that corrupted clients do
not query (z, Fsk(z)) to RO ahead of time, which reduces to the unpredictability of the underlying
VUF.

4.2 Distributing the Server Encoding

Here we discuss several solutions that could be used in practice to distribute the server encoding.

Network caching. Network caching technologies like content distribution network (CDN) are
good at distributing content cheaply and quickly. This is the standard technique to distribute
common website and streaming services. Our service encoding can take advantage of CDN networks
since the server encoding is identical for all clients. Note that prior works on malicious PSI cannot
take advantage of CDN since the communication with each client is different.

Verifiable private information retrieval. One can also use verifiable PIR [HHC+23, dCL24] to
allow the clients getting only a subset of encodings relevant to their own PSI. Unlike normal PIR,
verifiable PIR publishes a digest of the data, which ensures that anyone with the digest can verify
that the PIR results are consistent with a global database, something needed to prevent attacks
from a corrupted server. However, state-of-the-art verifiable PIR has a digest size of around 600MB
for a database of 800MB [dCL24] and thus the current savings are small. With more advances in
their efficiency, we believe this solution could be highly valuable.

Other solutions. There are other potential solutions with some trade offs between security and
efficiency. First of all, one could directly fetch the needed encodings through a TOR network to hide
their identity, which requires assumptions of trusting TOR. Bucketization is another solution that
provides better efficiency with reduced privacy. In detail, one can use a hash function to partition
all encodings into buckets and reveal which buckets the clients are looking. Indeed, this solution
has been used by Google and Cloudflare for credential checking, but there are also demonstration
of attacks for various bucketization techniques [LPA+19].

9

5 An Oblivious VUF

In this section, we present an OVUF protocol for the Dodis-Yampolskiy VUF, with security against
malicious adversaries. Our protocol works in the (FBB, FCOT)-hybrid model with a sub-protocol
named imperfect multiplicative to additive shares ΠMtA. In Section 5.1, we review a randomized
encoding scheme. Then, in Section 5.2, we introduce the sub-protocol ΠMtA, which leverages the
encoding scheme. The OVUF protocol, described in Section 5.3, is constructed based on ΠMtA.
Then, we give a complexity analysis of the proposed OVUF protocol in Section 5.4. We leave the
discussion of further optimization in Section B.

5.1 Encoding for Coalesced Multiplication

We provide a brief recap of the randomized encoding scheme described by Doerner et al. [DKLs19].
However, we prove some slightly different properties of the encoding where we also take the ran-
domness of the encoding vector gR. This is valid in our protocol because, as shown in Figure 6, we
sample gR only after the adversary chooses where to cheat.

Single encoding. Define coefficient vector g = gG||gR, where gG ∈ Zlog q
q , gGi = 2i−1, and gR ∈

Zlog q+2s
q .

Algorithm 1. Encode(gR ∈ Zlog q+2s
q , β ∈ Zq)

1. Sample γ ← {0, 1}log q+2s.

2. Output Bits(β − ⟨gR, γ⟩)||γ.

Lemma 1. Given uniform γ ← {0, 1}log q+2s and gR ← Zlog q+2s
q , hgR(γ) := ⟨gR, γ⟩ is statistically

close to uniform distribution with a statistical distance of at most 2−s.

Proof. We defer the proof to Appendix A.1.

Batch encoding. When encoding more than one element, it is possible to perform better than
encoding each element independently.

Algorithm 2. BatchEncode(gR ∈ Zlog q+2s
q , {β1, · · · , βn} ∈ Zn

q)

1. Sample γ1 ← {0, 1}log q, · · · , γn ← {0, 1}log q, γn+1 ← {0, 1}2s

2. Output
Bits(β1 − ⟨gR, γ1||γn+1⟩)||γ1|| · · · ||
Bits(βn − ⟨gR, γn||γn+1⟩)||γn||γn+1

Lemma 2. Given uniform γ = γ1|| · · · ||γn+1 ← {0, 1}n log q+2s and gR ← Zlog q+2s
q , hgR(γ) :=

⟨gR, γ1||γn+1⟩|| · · · ||⟨gR, γn||γn+1⟩ is within statistical distance s−s of uniform.

Proof. We defer the proof to Appendix A.2.

5.2 Imperfect MtA Protocol

The imperfect multiplicative to additive (MtA) shares protocol transforms multiplicative shares
to additive shares. It is imperfect because a malicious sender can execute attacks that lead to
incorrect additive secret shares, depending on the receiver’s input. This protocol is specially de-
signed for our efficient DY-based oblivious VUF protocol because it does not directly instantiate
the MtA functionality due to the lack of correctness guarantee. Therefore, we do not model it as
a functionality. The correctness will be checked for free as part of the OVUF protocol.

10

We use oblivious transfer based constructions to achieve this MtA. For the semi-honest version,
given value a ∈ Zq on the sender side and b ∈ Zq on the receiver side, the sender execute log q
iterations of FCOT with a as input in each ith iteration, while the receiver inputs bi, representing
the ith bit of the binary representation of b. The procedure and its correctness are detailed below:

1. For i ∈ [log q], the receiver inputs bi to FCOT, while the sender inputs a. FCOT sends qi to
receiver and pi to sender, such that qi + pi = a · bi.

2. Define d =
∑

i∈[log q] 2
i−1qi, c =

∑
i∈[log q] 2

i−1pi. Then

d+ c =
∑

i∈[log q]

2i−1qi +
∑

i∈[log q]

2i−1pi

= a
∑

i∈[log q]

2i−1bi = a · b.

However, a malicious sender could potentially execute attacks to the semi-honest protocol above.
Specifically, it samples an error vector e ∈ Zn

q and inputs a + ei to FCOT in its ith iteration. It
results d+c = a ·b+

∑
i∈[log q] 2

i−1eibi. Given ei, the correctness of MtA transformation depends on

the receiver’s input b. Specifically, the transformation is correct when
∑

i∈[log q] 2
i−1eibi = 0. Prior

works incorporate consistency checks and encoding to resist such malicious behaviors [DKLs19].
The consistency check, for input a in different iterations, leaks information. Encoding is involved to
further protect privacy. In our construction, MtA is used in OVUF protocol in Section 5.3. Since the
verifiability of OVUF implicitly gives the same property as a consistency check, we only incorporate
the encoding algorithm in [DKLs19] to give an imperfect MtA protocol. To enhance efficiency, we
give a batch version in Figure 6. In this scenario, two parties hold collections of n elements, denoted
as a ∈ Zn

q and b ∈ Zn
q , respectively. There is a receiver that employs BatchEncode(gR, b) algorithm

to encode each element of its input into a batched binary representation. gR ∈ Zlog q+2s
q is randomly

chosen by the receiver and sent to the sender after executing FCOT. To run FCOT s correctly in
each iteration, the sender inputs ai and the receiver inputs corresponding bi in its batch encoded
bit representation form.

We show correctness of Figure 6 in its single encoded version:

1. Definew = Encode(gR, b) ∈ {0, 1}2 log q+2s, which is the encoding of b. For i ∈ [t+2s], t = 2 log q,
the receiver inputs wi to FCOT, while the sender inputs a. FCOT sends qi to receiver and pi to
sender, such that qi + pi = wi · a.

2. For g = gG||gR, define d =
∑

i∈[t] giqi +
∑

i∈[2s] gt+iqt+i and c =
∑

i∈[t] gipi +
∑

i∈[2s] gt+ipt+i.
We have

d+ c =
∑
i∈[t]

giqi +
∑
i∈[2s]

gt+iqt+i +
∑
i∈[t]

gipi +
∑
i∈[2s]

gt+ipt+i

=
∑
i∈[t]

gi(qi + pi) +
∑
i∈[2s]

gt+i(qt+i + pt+i)

= a(
∑
i∈[t]

giwi +
∑
i∈[2s]

gt+iwt+i)

= a · b

For a malicious sender executing the attacks described above, the relation will be resulted as
d+ c = a · b+

∑
i∈[t] gieiwi+

∑
i∈[2s] gt+iet+iwt+i with respect to the value of w = Encode(gR, b) ∈

11

Protocol ΠMtA

Inputs: P0 holds a ∈ Zn
q . P1 holds b ∈ Zn

q .
Protocol:

1. P1 samples gR ← Zlog q+2s
q . P1 encodes b by computing w := BatchEncode(gR, b) ∈ {0, 1}nt+2s,

where t = 2 log q.

2. For i ∈ [n], j ∈ [t], P1 inputs w(i−1)t+j to FCOT. P0 inputs ai ∈ Fq to FCOT. P0 receives pi,j ∈ Fq

from FCOT. P1 receives qi,j ∈ Fq from FCOT.

3. For k ∈ [2s], P1 inputs wnt+k to FCOT. P0 inputs a ∈ Fn
q to FCOT. P0 receives {p′

1,k, · · · ,p′
n,k} ∈ Fn

q

from FCOT. P1 receives {q′
1,k, · · · , q′

n,k} ∈ Fn
q from FCOT.

4. P1 sends gR to P0.

5. For j ∈ [t], k ∈ [2s], i ∈ [n], P0 computes ci =
∑

j∈[t] gj · pi,j +
∑

k∈[2s] gt+k · p′
i,k and P1 computes

di =
∑

j∈[t] gj · qi,j +
∑

k∈[2s] gt+k · q′
i,k such that di + ci = ai · bi.

Figure 6: The MtA protocol in the FCOT-hybrid model.

Zt+2s
q . For w = BatchEncode(gR, b) ∈ Znt+2s

q , malicious behavior of sender will result in di + ci =
ai · bi + fi, where

fi :=
∑
j∈[t]

gjw(i−1)t+je(i−1)t+j +
∑
k∈[2s]

gt+kwnt+kent+(k−1)n+i (1)

We will show how to catch this incorrectness in Section 5.3 below with respect to the detailed
OVUF protocol.

5.3 An Oblivious VUF from Imperfect MtA

Based on the imperfect MtA protocol from Section 5.2, we construct an OVUF protocol as follows.

1. The server first uses pk to initiate the bulletin board FBB. Then, upon receiving pk from FBB,
the client checks whether g−yi = pk for each yi in its input set (y1, · · · , yn). If so, the client
replaces these yi values with random values to avoid corner cases in the protocol.

2. Given input value sk on the server side and input vector (y1, · · · , yn) ∈ Zn
q on the client side,

both parties uniformly choose random vectors ϕ1 ∈ Zn
q and ϕ2 ∈ Zn

q respectively.

3. The inputs and random vectors are specifically ordered as (sk,ϕi
1) ∈ Z2

q , i ∈ [n] and (ϕi
2, yi) ∈

Z2
q , i ∈ [n], which serves as input vector for ΠMtA in its ith iteration. By running ΠMtA on both

sides for n times, both parties obtain additive secret shares Ai
1 and Bi

1 of sk · ϕi
2 and additive

secret shares Ai
2 and Bi

2 of ϕi
1 · yi.

4. Then, the server raise g to Ai
1 for each i ∈ [n], where Ai

1 is the secret share of sk ·ϕi
2, and apply a

hash function to these values. The server sends the hash result to the client, allowing it to check
whether sk used by the server in each iteration is consistent with the pk initialized on FBB.

5. Then, both parties are able to locally compute sk ·ϕi
1+Ai

1+Bi
1 and ϕi

2 ·yi+Ai
2+Bi

2, respectively.
The results are regarded as secret shares of vi = (ϕi

1 +ϕi
2)(sk+ yi). Both parties exchanges the

results to recover vi.

12

Protocol ΠOVUF

Inputs and parameters: Hash function H modeled as RO. Client Cj holds (y1, . . . , yn) ∈ Zn
q .

Initialization: S chooses sk ∈ Zq, sets pk = gsk, and sends pk to FBB.
Key query: Client Cj sends fetch to FBB and receives pk.
Evaluation:

1. Cj checks if g−yi = pk for each i ∈ [n]. If it is, Cj inserts i to set I and sample uniform yi ← Zq.

2. Server S chooses ϕ1 ← Zn
q ; client Cj chooses ϕ2 ← Zn

q .

3. For i ∈ [n], S holds vector (sk,ϕi
1) ∈ Z2

q, Cj holds vector (ϕi
2, yi) ∈ Z2

q. Both parties run ΠMtA with

the stated input vector above. Then, S receives (Ai
1, B

i
1) ∈ Z2

q, Cj receives (Ai
2, B

i
2) ∈ Z2

q, such that

Ai
2 +Ai

1 = ϕi
2 · sk, Bi

2 +Bi
1 = ϕi

1 · yi.

4. S computes VS = H(gA
1
1 , · · · , gAn

1), and sends VS to Cj . Cj computes VR =

H(pkϕ
1
2/gA

1
2 , · · · , pkϕ

n
2 /gA

n
2). Cj checks whether VR = VS and aborts if they are not equal.

5. S sends m to Cj , where mi = ϕi
1 · sk+ Ai

1 + Bi
1. Cj computes ui = ϕi

2 · yi + Ai
2 + Bi

2 and sends it
to S. Both parties compute v = m+ u.

6. For each i ∈ [n], S computes hi = gϕ
i
1/vi . Then S sends h to Cj . Cj sets Fsk(yi) = 1, i ∈ I. For each

i ∈ [n] \ I, Cj computes Fsk(yi) = hi · gϕ
i
2/vi .

7. Cj outputs (Fsk(y1), · · · , Fsk(yn)) if e(gyi · pk, Fsk(yi)) = e(g, g) for each i ∈ [n] \ I. Otherwise it
aborts.

Figure 7: OVUF protocol in the (FCOT, FBB)-hybrid model with sub-protocol ΠMtA.

6. Both parties are able to compute gϕ
i
1/vi and gϕ

i
2/vi , respectively. Given gϕ

i
1/vi , the client com-

putes Fsk(yi) = gϕ
i
1/vi · gϕi

2/vi and verifies correctness of the protocol using the fetched pk.

The detailed scheme is shown in Figure 7. Its correctness can be directly verified. For security,
we assume the client acts as a receiver in the execution of FCOT in sub-protocol ΠMtA, while the
server acts as a sender. A malicious client might send the wrong yi or ui to the server. Incorrect
yi can be extracted by Sim given gR from the client. Incorrect ui leads to abort with all but
negligible probability, which can be simulated by Sim constructing message hi to manipulate abort
probability. A malicious server could execute selective failure attack in ΠOVUF and bias the secret
shares of vi to be ui+mi = diffi+(ϕi

1+ϕi
2)(sk+yi) = diffi+vi. diffi resulted from the incorrectness

stated in Section 5.2 that diffi = f i
1 + f i

2. f i
1 resulted from incorrect ϕi

1 · yi and f i
2 resulted from

incorrect sk · ϕi
2. In the server’s perspective, gR is received after the selective failure attack has

been executed. For any element gRi uniformly distributed over Zq, diffi is uniformly distributed
over Zq. If the server sends mi and hi honestly, the verification of Fsk(yi) passes if and only if
diffi = 0, which is with negligible probability. If not, the verification of Fsk(yi) passes if and only
if diff equals a specific number that results in correct Fsk(yi), which is negligible either. Thus, the
server’s malicious behavior can be simulated by Sim with all but negligible abort probability. The
detailed proof of the security of the proposed ΠOVUF with sub-protocol ΠMtA in the hybrid of (FBB,
FCOT) is shown in Theorem 2.

Theorem 2. If H is modeled as a random oracle, then protocol ΠOVUF with sub-protocol ΠMtA

shown in Figure 7 UC-realizes FOVUF in (FBB,FCOT)-hybrid model.

Proof. Let A be a PPT adversary that allows to corrupt the server or the client. We construct
a PPT simulator Sim with access to functionality FOVUF, which simulates the adversary’s view.

13

We consider the following two cases: malicious client and malicious server. The client acts as the
receiver of FCOT in sub-protocol ΠMtA, while the server acts as the sender. We will prove that the
joint distribution over the output of A and the honest party in the real world is indistinguishable
from the joint distribution over the outputs of Sim and the honest party in the ideal world execution.

Corrupted client. Let Sim access to FOVUF as an honest client and interact with A as an
honest server. Sim passes all communication between A and environment Z.

0. Sim emulates FBB, once it receives fetch from A. Sim sends fetch to FOVUF and receives pk. Sim
sends pk to A.

2-3. For i ∈ [n], Sim simulates the ith iteration of sub-protocol ΠMtA below.

(1)-(3) Sim emulates FCOT and receives w ∈ Z2t+2s
q from A. Sim samples q ← Z2t

q , q
′ ← Z4s

q and
sends them to A.

(4) Sim receives gR from A. Sim computes ϕi
2 and yi as follows:

ϕi
2 =

∑
j∈[t]

gjwj +
∑

j∈[t+1,t+2s]

gjwt+j

yi =
∑
j∈[t]

gjwt+j +
∑

j∈[t+1,t+2s]

gjwt+j

(5) Sim computes Ai
2, B

i
2 as an honest P1 does in step 5 in ΠMtA.

4. Sim samples V ∗
S and sends it to A. Sim emulates H and receives query q from A. If q =

(pkϕ
1
2/gA

1
2 , · · · , pkϕn

2 /gA
n
2), Sim sends V ∗

R = V ∗
S to A. Otherwise, Sim uniformly samples V ∗

R and
sends it to A. Sim aborts if A aborts.

5. Sim sends m∗
i ← Zq to A. Sim receives u from A. Sim computes v.

6. Sim sends (eval, (y1, · · · , yn)) to FOVUF and waits to receive (Fsk(y1), · · · , Fsk(yn)). For each

i ∈ [n], Sim checks whether ui = yi ·ϕi
2 +Ai

2 +Bi
2. If it is, Sim simulates h∗

i =
Fsk(yi)

gϕ
i
2/vi

, and sends

it to A. Otherwise, Sim simulates h∗
i ← G and sends it to A.

7. Sim aborts if A aborts and outputs what A outputs.

We are going to show the simulated execution is indistinguishable from the real protocol execution.
Hybrid H0. Same as real-world execution in the (FCOT, FBB)-hybrid model.
Hybrid H1. This hybrid is identical to H0 except Sim emulates FBB, FCOT, the random oracle,

and simulates the messages to A as follows:
For step 0, Sim emulates FBB. Upon receiving fetch from A, Sim sends fetch to FOVUF and

receives pk. Sim sends pk to A. In hybrid H0, FBB was initialized by an honest server with pk and
sends it to A upon receiving fetch. Thus, the pk sends by Sim is same as the one in hybrid H0.

For step 2-3, Sim emulates FCOT, receives w ∈ Z2t+2s
q from A. Sim samples q ← Z2t

q , q
′ ← Z4s

q to

A, and receives gR ∈ Zlog q+2s
q from A. In Hybrid H0, q and q′ are uniformly distributed according

to FCOT. Thus, the q, q′ sampled by Sim is indistinguishable from the one in Hybrid H0.
For step 4, Sim samples V ∗

S to A. Then, Sim emulates random oracle and returns V ∗
R = V ∗

S to A
for query q = (pkϕ

1
2/gA

1
2 , · · · , pkϕn

2 /gA
n
2), where Ai

2 and ϕi
2 are recovered by Sim. For other queries,

Sim samples V ∗
R to A. In hybrid H0, an honest server uses sk that corresponding to pk in ΠMtA and

computes VS = H(gA
1
1 , · · · , gAn

1). Since Ai
1 + Ai

2 = sk · ϕi
2 holds for an honest server, the received

14

VS equals to VR if VR is computed from (pkϕ
1
2/gA

1
2 , · · · , pkϕn

2 /gA
n
2) honestly. Thus, the simulated

V ∗
R equals to V ∗

S if A query random oracle honestly, which is indistinguishable from Hybrid H0.
For step 5, Sim sends random m∗

i ← Zq to A. In hybrid H0, an honest server computes
mi = ϕi

1 · sk+Ai
1+Bi

1 and sends it to A. mi satisfies the distribution that mi+yi ·ϕi
2+Ai

2+Bi
2 =

vi = (ϕi
1+ϕi

2)(sk+yi). Since ϕ
i
1 is randomly sampled by an honest server, A has no idea about the

distribution of mi. The simulated m∗
i is randomly uniform in Zq as well, which is indistinguishable

from hybrid H0. Thus, the view simulated by Sim is identical to hybrid H0.
For step 6, Sim sends (eval, (y1, · · · , yn)) to FOVUF and waits for (Fsk(y1), · · · , Fsk(yn)). Sim

checks whether the received ui is computed from yi · ϕi
2 + Ai

2 + Bi
2 correctly. If it is, Sim sends

h∗
i = Fsk(yi)

gϕ
i
2/(m

∗
i
+ui)

to A, such that h∗
i · gϕ

i
2/(m

∗
i+ui) = Fsk(yi). Otherwise, Sim samples h∗

i ← G and

sends it to A. In hybrid H0, an honest server sends hi = gϕ
i
1/(mi+ui) to A. If ui is computed

honestly from yi ·ϕi
2+Ai

2+Bi
2, then hi ·gϕ

i
2/(mi+ui) = Fsk(yi). Thus, the view of h∗

i in hybrid H0 is
identical to hi in Hybrid H0.If ui is not computed honestly , then mi+ui ̸= (ϕi

1+ϕi
2)(sk+yi) and

thus hi · gϕ
i
2/(mi+ui) ̸= Fsk(yi). In hybrid H1, Sim simulates h∗

i ← G, we have h∗
i · gϕ

i
2/(m

∗
i+ui) =

Fsk(yi) w.p. 2− log q, which is indistinguishable from hybrid H0. Thus, the view simulated by Sim
is identical to hybrid H0.

Corrupted server. Let Sim access to the FOVUF as an honest server and interact with A as
an honest client. Sim passes all communication between A and environment Z.

0. Sim emulates FBB, once it receives the pk from A, Sim stores pk and ignores subsequent messages
from A. Sim sends (init, pk) to FOVUF.

2-3. Upon receiving n from FOVUF, Sim simulates iterations of ΠMtA for each i ∈ [n]. The ith iteration
of ΠMtA is simulated as follows:

(1)-(3) Sim emulates FCOT and receives a vector τ ∈ Z2(t+2s)
q from A. Sim samples p ← Z2t

q ,

p′ ← Z4s
q and sends them to A. Sim checks whether the received τ ∈ Z2(t+2s)

q satisfies a
pattern that for k ∈ [2], all the bits τj , j ∈ [(k − 1)t+ 1, kt] ∪ j = 2t+ k + (l− 1)2, l ∈ [2s]
are the same. For k = 1, if τj are the same, Sim extracts sk′ = τj . For k = 2, if τj are the
same, Sim extracts ϕi

1 = τj .

(4) Sim samples gR ← Zlog q+2s
q and sends gR to A.

(5) Sim computes Ai
1, B

i
1 as an honest P0 does in step 5 in ΠMtA.

4. Sim emulates random oracle H and receives query q from A. Sim samples VS to A and records
(q, VS). Once Sim receives VS from A, Sim first checks whether sk′s have been extracted and are
the same in last step. Sim also checks whether gsk

′
= pk. Then, Sim checks if the corresponded

q = (gA
1
1 , · · · , gAn

1). If all these requirements are satisfied, Sim continue; Otherwise, Sim aborts.

5. Sim receives m from A. Sim samples u∗ ← Zn
q to A. Sim computes v∗ = m+ u∗.

6. Sim waits to receive h.

7. For each ith iteration, if ϕi
1 is extracted, Sim checks whether hi = gϕ

i
1/v

∗
i , mi = ϕi

1 ·sk′+Ai
1+Bi

1

and sends sk′ to FOVUF. Otherwise, Sim aborts.

We are going to show the simulated execution is indistinguishable from the real protocol exe-
cution.

Hybrid H0. Same as real-world execution in (FBB,FCOT)-hybrid model.

15

Hybrid H1. This hybrid is identical to H0 except Sim emulates FBB, FCOT, the random oracle,
and generates the messages to A as follows:

For Step 2-3, Sim emulates FCOT and waits to receive τ . Then, Sim sends p← Z2t
q and p′ ← Z4s

q

to A. Sim samples gR ← Zlog q+2s
q and sends it to A. For an honest client in hybrid H0, it samples

p← Z2t
q , p

′ ← Z4s
q , gR ← Zlog q+2s

q as well, which is indistinguishable from this hybrid.
For Step 5, Sim receives m and samples u∗

i ← Zq to A. In the hybrid H0, for ith iteration, if A
sends τ correctly , ui +ϕi

1 · sk+Ai
1 +Bi

1 = vi = (ϕi
1 +ϕi

2)(sk+ yi), which is uniformly distributed
over Zq. Thus, ui is uniformly distributed, same as the sampled one in this hybrid. If there exists
an error e sampled by A, an honest client computes ui such that ui + ϕi

1 · sk + Ai
1 + Bi

1 = vi =
(ϕi

1+ϕi
2)(sk+yi)+diffi. diffi = f i

1+f i
2, where f

i
1 resulted from incorrect ϕi

1 ·yi and f i
2 resulted from

incorrect sk · ϕi
2 as stated in Equation 1. Since e is defined by A before knowing gR, gR appears

uniformly random over Zlog q+2s
q to A at this time. Thus, for any given w and e, fi is uniformly

distributed over Zq. Therefore, diffi is uniformly distributed over Zq. ui is uniformly distributed
over Zq, which is identically distributed as the simulated u∗

i in this hybrid.
Hybrid H2. This hybrid is identical to H1 except Sim aborts at Step 4 in the following

conditions: 1) any sk′ in ΠMtA iterations is not extractable; 2) the extracted sk′s are not the same
or any gsk

′ ̸= pk; 3) the q corresponding to the received VS is not equal to (gA
1
1 , . . . , gA

n
1). Sim

aborts at Step 7 in the following conditions: 1) any ϕi
1 in ΠMtA iterations is not extractable; 2)

h∗
i ̸= gϕ

i
1/(mi+u∗

i) or mi ̸= ϕi
1 · sk+Ai

1 +Bi
1.

For Step 4 in hybrid H1, an honest client aborts if the received VS ̸= VR. The client computes
VR = H(pkϕ

1
2/gA

1
2 , . . . , pkϕ

n
2 /gA

n
2). For each pkϕ

i
2/gA

i
2 , it equals to gsk·ϕ

i
2−Ai

2 . 1) Adversary A might
add error e to τ on bits related to sk in one iteration of ΠMtA. In this case, sk′ is unextractable.
If we set a value as sk′, then both parties holds equation Ai

1 + Ai
2 = sk′ · ϕi

2 + f2, where f2 is
computed according to Equation. 1. As we analyzed above, f2 is uniformly distributed over Zq for
any given w and e. Thus, with VS computed from Ai

1, VS ̸= VR. Furthermore, even A tries to
manipulate VS , A is unable to construct Ai′

1 = sk ·ϕi
2−Ai

2 as ϕi
2 and Ai

2 are uniformly distributed.
Thus, the client aborts with all but negligible probability, which is indistinguishable from condition
(1) in hybrid H2. 2) Adversary A might use inconsistent sk in different ΠMtA iterations. If A use
sk′ ̸= sk in ΠMtA, both parties holds equation Ai

1 + Ai
2 = sk′ · ϕi

2. Thus, with VS computed from
Ai

1, VS ̸= VR. A is not able to construct Ai′
1 to manipulate VS either. Thus, the client aborts with

all but negligible probability, which is indistinguishable from condition (2) in hybrid H2. 3) When
adversary use correct sk but manipulate VS from inconsistent q, an honest client aborts which is
indistinguishable from condition (3) in hybrid H2.

For Step 7 in hybridH1, an honest client aborts when Fsk(yi) does not satisfy e(gyi ·pk, Fsk(yi)) =
e(g, g), where Fsk(yi) = hi · gϕ

i
2/(mi+ui). 1) For the ith iteration of ΠMtA, if adversary adds error

e to τ such that ϕi
1 is not extractable, then diffi ̸= 0 with all but negligible probability. Thus,

mi + ui ̸= (sk+ yi)(ϕ
i
1 + ϕi

2) with all but negligible probability. Consequently, hi · gϕ
i
2/(mi+ui) ̸=

Fsk(yi) with all but negligible probability, identical to condition (1) in hybrid H2. 2) If ΠMtA is
executed honestly by A, an honest client aborts if A provides an incorrect mi or hi, which will
result in an incorrect Fsk(yi) that does not satisfy the verification procedure, identical to condition
(2) in hybrid H2. Therefore, this hybrid is identically distributed as the previous one.

The above hybrid argument completes this proof.

5.4 Complexity Analysis

For each input element yi ∈ Y , ΠOVUF requires 4 log q + 4s COT and one gR. Thus, this protocol
requires (4 log q+4s)n COT and n gR in total. To improve its complexity, we propose an improved
OVUF in Section B that reduces the number of gRs to two and achieves better RAM usage. The

16

102 103 104 105 106 107 108

Server set size n

101

102

103

104

105

106

107
W

al
lc

lo
ck

tim
e

(m
s)

32 threads
4 threads
1 thread

(a) Local encoding

101 102 103 104 105

Client set size n

102

103

104

105

W
al

lc
lo

ck
tim

e
(m

s)

KOS + 32 threads
KOS + 4 threads
KOS + 1 thread
FERRET + 32 threads
FERRET + 4 threads
FERRET + 1 thread

(b) Interaction phase (LAN)

101 102 103 104 105

Client set size n

102

103

104

105

106

W
al

lc
lo

ck
tim

e
(m

s)

KOS + 32 threads
KOS + 4 threads
KOS + 1 thread
FERRET + 32 threads
FERRET + 4 threads
FERRET + 1 thread

(c) Interaction phase (WAN)

Figure 8: Performance of our protocol. We show the performance of both phases. The one-time offline
local encoding time for the server set is depicted in (a). The interactive online encoding time for the client
set is shown in (b) under LAN network and (c) under WAN network. Both (b) and (c) utilize different OT
methods (KOS/FERRET) and number of threads (1/4/32) for comparison.

key idea is to batch operations with correlated randomness together but refer to Section B for
complete description of the protocol and the proof.

6 Performance Evaluation

We implement our protocols using EMP [WMK16] for COT and RELIC [AGM+] for pairings. We
benchmark the performance of our protocol when FCOT is instantiated using KOS [KOS15] and
Ferret [YWL+20].

6.1 Benchmark Setup

We instantiate everything ensuring a computational security parameter κ = 128 and a statistical
security parameter s = 40. To this end, we use BLS12-381 for all type-III pairing operations. We
show the performance in two different network settings: a LAN network with 5Gbps bandwidth
and a WAN network with 120 Mbps bandwidth. All experiments are performed on AWS EC2
instances of 6a.8xlarge type with 32vCPU and 128 GB memory.

6.2 Efficiency of Server’s Encoding

First, we benchmark the performance of the server encoding process. Note that this computation
only needs to be executed once given a set of elements. Recall that this step mainly computes the
VUF on the input elements. Following conventions from prior works, we hash the output to 64-bit
strings, which helps in reducing the encoding size. For example, the encoding file for a set of 108

elements is of size 800 MB.
We prepare a list of 256-bit values in a file as the server’s set. The benchmark results include

the time to: 1) read all elements from the file (w/ disk access), 2) compute the VUF value of each
element and then hash it into a 64-bit string, and 3) write the resulting hashes into another file
(w/disk access). In Figure 8a, we show the performance of our server computation with different set
sizes and threads. From the figure, we can see that the performance of the server’s local encoding
is linear to the set size. We observe a 3.8× improvement when increasing the threads from 1 to 4
and 15× from 1 to 32 threads. We didn’t make the file I/O multi-threaded which we believe could
be the bottleneck when we use 32 threads.

6.3 Efficiency of Online Computation

Now we show the performance of the interactive process between a server with a VUF secret key,
and a client with a private set. As the output, the client will get VUF evaluation on its own set,
which can be further used to lookup the server encoding.

17

0 1000 2000 3000 4000
Bandwidth Mbps

2000

4000

6000

8000
W

al
lc

lo
ck

tim
e

(m
s)

KOS + 32 thread
KOS + 4 thread
KOS + 1 thread

Ferret + 32 thread
Ferret + 4 thread
Ferret + 1 thread

(a) Bandwidth vs. time

0 25 50 75 100 125 150 175 200 225 250 275 300
Latency (ms)

103

104

105

106

W
al

lc
lo

ck
tim

e
(m

s)

set size 101

set size 102
set size 103

set size 104
set size 105

(b) Latency vs. time

101 102 103 104 105

Set size n

0

100

101

102

103

104

B
an

dw
id

th
(M

B
)

FERRET KOS

(c) Bandwidth consumption

Figure 9: Our performance under different network settings. We show our performance of time
consumption as bandwidth varies in (a) and as latency varies in (b). (a) uses client set size 103 to compare
performance under different OT methods (KOS/FERRET) and different thread numbers (1/4/32). (b)
takes OT method KOS to compare performance as set sizes vary. Figure (c) shows our protocol’s bandwidth
consumption as the set size varies.

Wallclock time. In Figure 8b and Figure 8c, we show the wallclock of the protocol for different
client set sizes. Similarly, the time reported includes the client: 1) reading its own elements from
a file, 2) running OVUF with a server to compute Fsk(xi); 3) computing the hash to derive 64-bit
strings that can be used for local matching.

With 1 thread, the average cost for the client to process each element is 8.29ms in the WAN
setting and 4.17ms in the LAN setting. With 32 threads, the average cost is 4.53ms in the WAN
setting and 0.43ms in the LAN setting. Noted that Ferret computes COT in large batches, it is
not competitive when the set is small, where the protocol cannot consume all COTs. When the set
size is large, our protocol in the LAN setting using KOS or Ferret does not show much difference as
they have similar computational costs. In the WAN setting, we can observe a slight improvement
with Ferret because it consumes less bandwidth. However, the improvement is not huge because
the communication caused by our protocol, not counting the cost of COT, is already significant.

Performance dependence on network. We show the efficiency of our protocol under different
network condition in Figure 9a and Figure 9b. According to Figure 9a, the efficiency of a client
with a set size of 103 in a WAN environment increases as the bandwidth increases. However, once
the bandwidth reaches 1Gbps, the efficiency does not improve significantly with further increases
in bandwidth. This indicates that our protocol performs best with bandwidth larger than 1Gbps.
In TCP networks, there is a dependency between latency and bandwidth limitations, wherein an
increase in latency leads to a decrease in available bandwidth. Figure 9b illustrates that the total
protocol wallclock time increases as bandwidth decreases due to added latency. For larger sets
that use up more bandwidth, the rise in wallclock time is more significant than for smaller sets
experiencing the same increase in latency.

Bandwidth consumption. Regarding bandwidth consumption in Figure 9c, we observed that if
the set size is less than 102, the protocol using KOS OT performs better in terms of bandwidth usage
compared to that using FERRET OT. However, this situation changes once the set size exceeds
102. For a set size of 105, the KOS OT protocol requires 61.7KB to process one element, while the
FERRET OT protocol needs 43.0KB to encode one element. This is the same reason as we stated
in Wallclock time, that Ferret computes COT in large batches but consumes less bandwidth
for each COT compared with KOS. For small set size, Ferret is more bandwidth-intensive as it
generates more COT than necessary. However, for large set size, Ferret is more efficient as the
generated COTs can be utilized and each one consumes less bandwidth than KOS.

18

100 1000 10000
Set size of each client

0.00

0.02

0.04

0.06

0.08

0.10

Se
rv

er
co

st
(U

SD
pe

rc
lie

nt
)

Ours Ours

Ours

Blazing-PSI Blazing-PSI Blazing-PSI

CDN cost Comm. cost Comp. cost

Figure 10: Server cost comparison with Blazing-PSI [RR22]. All experiments are run on AWS
instance. Costs are estimated based on AWS instance pricing and network pricing.

Set size
Security Protocol

Offline Online
|X| |Y | time (s) comm. (MB) time (s) comm. (MB)

228 210
Semi-honest

[KLS+17] (w/ LowMC) 164.82 2144 1.37 23.6
[KLS+17] (w/ NR) 44681 2144 0.63 6.07

[CHLR18] 4628 0 12.1 18.4
[CMdG+21] 4371 0 23.35 12.86

[RA18] 3684.1 2415 0.16 0.07
Malicious Ours (w/ KOS) 1556.7 2147 0.44 63.23

228 27
Semi-honest

[KLS+17] (w/ LowMC) 164.82 2144 0.41 2.96
[KLS+17] (w/ NR) 44681 2144 0.13 0.77

[CHLR18] 4628 0 12.1 18.4
[CMdG+21] 4350 0 25.65 12.81

[RA18] 3684.1 2415 0.02 0.008
Malicious Ours (w/ KOS) 1556.7 2147 0.11 7.92

220 210
Semi-honest

[KLS+17] (w/ LowMC) 0.51 8.37 1.37 23.6
[KLS+17] (w/ NR) 173.41 8.37 0.63 6.07

[CHLR18] 1.1 0 0.5 5
[CMdG+21] 13.4 0 1.1 2.04

[RA18] 18.17 9.43 0.06 0.031
Malicious Ours (w/ KOS) 5.85 8.38 0.44 63.23

220 27
Semi-honest

[KLS+17] (w/ LowMC) 0.51 8.37 0.41 2.96
[KLS+17] (w/ NR) 173.41 8.37 0.13 0.77

[CHLR18] 1.2 0 0.2 3.9
[CMdG+21] 13.5 0 1.1 1.99

[RA18] 18.17 9.43 0.027 0.004
Malicious Ours (w/ KOS) 5.85 8.38 0.11 7.92

Table 1: Performance of unbalanced PSI with server set X and client set Y . Our protocol and
[CMdG+21] were tested with 32 threads, with [CMdG+21] using 256 GB RAM for a 228 server
set. [CHLR18] is obtained based on numbers from their paper, which is based on faster hardware
than our testbed. [KLS+17] is tested with 32 threads for the offline phase and 1 thread for the
online phase. [RA18] is tested with 1 thread, except the case of |X| = 228 where the online
performance are extrapolated.

6.4 Comparison with Other Protocols

Our protocol works in a special setting where a server with one set repeatedly runs PSI with many
clients with small sets. We noticed that existing prior works do not perform well if used in our

19

setting directly; this is not surprising as they are not designed for this setting. Below, we show
some comparisons to state-of-the-art protocols in classical PSI settings.

Comparing with state-of-the-art PSI. The first possible solution is to use the best fully mali-
cious secure PSI protocol [RR22], and have the server run this protocol with each client. However,
there exists a security issue that the server might differentiate its set among different clients. Addi-
tionally, the performance is poor: each execution of PSI with a different client requires the server to
transmit a different encoding of its set over the internet, which incurs great costs. In Figure 10, we
compare the cost by the server per client between our protocol and the Blazing-fast [RR22], which
is so far the fastest and improved upon VOLE-based PSI [RS21]. We assume the server set has
108 elements, and the client set ranges from 102 to 104 elements. We use the real execution time
and the instance’s unit price (0.1728USD/Hour for 6a.xlarge) to compute computational cost.
We also estimate the communication cost by multiplying the data size that the server transfers
out by the communication unit price (0.05USD/GB). Notice that for our scheme, since the server’s
encoding is reusable, we use AWS CloudFront (CDN) to manage it, thereby reducing this part of
the communication cost to a lower unit price (0.02USD/GB). The computation of this reusable
server set encoding is a one-time and offline process, making the cost per client negligible when
amortized. For our scheme, the total cost is 3x lower for a client set 10000 and 5x lower for client
sets 100 and 1000. With smaller set sizes, the cost is primarily dominated by the CDN cost, which
is a fixed value of 0.016 USD per client. If we switch to managing the server’s encoding through
a peer-to-peer network to eliminate the CDN cost, our scheme achieves an 8x reduction in com-
munication cost and a 2x reduction in computation cost compared to Blazing-PSI for a client size
of 10000. In this case, the cost of our scheme scales linearly with the client set size and performs
better with smaller client sizes.

Comparing with PSI featuring reusable server encoding. Some unbalanced PSI could
be better suited to our setting which allows pushing some work to the offline stage as well. In
Table 1, we show our protocol performs scalably compared to related protocols across server set
sizes {220, 228} and client set sizes {27, 210}:

• OPRF-based solutions by [KLS+17] allows the server to reuse its computation and encoding that
is linear to X across multiple clients. We include two solutions, one based on LowMC PRF and
one based on Naor–Reingold PRF. We also update their hash output to achieve a similar level
of false positive rate. Our protocol runs at a similar time to OPRF-based protocols with about
three times more communication; however, that allows us to achieve full malicious security.

• FHE-based solution [CHLR18, CMdG+21] does not require sending large encoding but requires
more computation. The computation could be made reusable across multiple clients by perform-
ing OPRF on top of the value, but existing FHE-PSI implementations or benchmarks do not
include these extra steps. We can see that our solution is much faster in terms of online time
when the server set is at a large scale of 228, albeit with higher communication costs. All FHE-
based solutions only implement their semi-honest version and could not be made fully malicious
secure; however, we do believe that by incorporating our OVUF-based solution, it is possible to
achieve full malicious security as well, which we leave as future work.

• Finally, we also compare with a DH-based solution by Resende and Aranha [RA18]. The solu-
tion is semi-honest, but the original proposal by Jarecki and Liu [JL10] also includes malicious
counterparts, which require further use of zero-knowledge proofs to show correct encoding. This
approach essentially follows the VOPRF method, where all efficient solutions do not allow ex-
tracting client’s input in the proof. As such, their solution requires much less communication.

20

7 Discussion

In this work, we designed an efficient OVUF protocol and used it to construct a malicious protocol
that allows a server to compute PSI with multiple clients while ensuring consistency. Interesting
future works include extending the model to general-purpose MPC and also reducing the size of
server encodings.

Acknowledgements

Work of Xiao Wang is supported by NSF award #2236819 and Google Research Awards.

References

[ADDS21] Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-optimal
verifiable oblivious pseudorandom functions from ideal lattices. In PKC 2021, Part II,
volume 12711 of LNCS, May 10–13, 2021.

[AGM+] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC is
an Efficient Library for Cryptography. https://github.com/relic-toolkit/relic.

[Bas24] Andrea Basso. A post-quantum round-optimal oblivious PRF from isogenies. In SAC
2023, LNCS, August 2024.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EURO-
CRYPT 2004, volume 3027 of LNCS, May 2–6, 2004.

[BBD+11] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.
Countering GATTACA: efficient and secure testing of fully-sequenced human genomes.
In ACM CCS 2011, October 17–21, 2011.

[BDKP22] Shany Ben-David, Yael Tauman Kalai, and Omer Paneth. Verifiable private infor-
mation retrieval. In TCC 2022, Part III, volume 13749 of LNCS, November 7–10,
2022.

[BKW20] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudorandom functions
from isogenies. In ASIACRYPT 2020, Part II, volume 12492 of LNCS, December 7–11,
2020.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS. IEEE Computer Society Press, October 14–17, 2001.

[CCL+19] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida
Tucker. Two-party ECDSA from hash proof systems and efficient instantiations. In
CRYPTO 2019, Part III, volume 11694 of LNCS, August 18–22, 2019.

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory
Neven. The wonderful world of global random oracles. In EUROCRYPT 2018, Part I,
volume 10820 of LNCS, April 29 – May 3, 2018.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In
ACM CCS 2020, November 9–13, 2020.

21

https://github.com/relic-toolkit/relic

[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and Mira
Meyerovich. How to win the clonewars: Efficient periodic n-times anonymous authen-
tication. In ACM CCS 2006, October 30 – November 3, 2006.

[CHL22] Śılvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: oblivious pseudorandom
functions. In IEEE EuroS&P, 2022.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully
homomorphic encryption with malicious security. In ACM CCS 2018, October 15–19,
2018.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomor-
phic encryption. In ACM CCS 2017, October 31 – November 2, 2017.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Il-
iashenko, Kim Laine, and Michael Rosenberg. Labeled PSI from homomorphic en-
cryption with reduced computation and communication. In ACM CCS 2021, Novem-
ber 15–19, 2021.

[dCL24] Leo de Castro and Keewoo Lee. Verisimplepir: Verifiability in simplepir at no online
cost for honest servers. In USENIX Security 2024, August 10–12, 2024.

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda.
Privacy pass: Bypassing internet challenges anonymously. PoPETs, 2018(3), July
2018.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party thresh-
old ECDSA from ECDSA assumptions. In 2018 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, May 21–23, 2018.

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ECDSA from
ECDSA assumptions: The multiparty case. In 2019 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 19–23, 2019.

[DKT10] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private set
intersection protocols secure in malicious model. In ASIACRYPT 2010, volume 6477
of LNCS, December 5–9, 2010.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short
proofs and keys. In PKC 2005, volume 3386 of LNCS, January 23–26, 2005.

[ECS+15] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Risten-
part. The pythia PRF service. In USENIX Security 2015, August 12–14, 2015.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast
trustless setup. In ACM CCS 2018, October 15–19, 2018.

[Gil99] Niv Gilboa. Two party RSA key generation. In CRYPTO’99, volume 1666 of LNCS,
August 15–19, 1999.

[HHC+23] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meiklejohn,
and Vinod Vaikuntanathan. One server for the price of two: Simple and fast single-
server private information retrieval. In USENIX Security 2023, August 10–12, 2023.

22

[HMRT22] Iftach Haitner, Nikolaos Makriyannis, Samuel Ranellucci, and Eliad Tsfadia. Highly
efficient OT-based multiplication protocols. In EUROCRYPT 2022, Part I, volume
13275 of LNCS, May 30 – June 3, 2022.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure com-
puting: Private intersection-sum-with-cardinality. In EuroS&P. IEEE, 2020.

[JKR19] Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. Updatable oblivious key
management for storage systems. In ACM CCS 2019, November 11–15, 2019.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In
SCN 10, volume 6280 of LNCS, September 13–15, 2010.

[KLOR20] Ben Kreuter, Tancrède Lepoint, Michele Orrù, and Mariana Raykova. Anonymous
tokens with private metadata bit. In CRYPTO 2020, Part I, volume 12170 of LNCS,
August 17–21, 2020.

[KLS+17] Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private set
intersection for unequal set sizes with mobile applications. PoPETs, 2017(4), October
2017.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with
optimal overhead. In CRYPTO 2015, Part I, volume 9215 of LNCS, August 16–20,
2015.

[KRS+19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Chris-
tian Weinert. Mobile private contact discovery at scale. In USENIX Security 2019,
August 14–16, 2019.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody. In ACM CCS
2018, October 15–19, 2018.

[LPA+19] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and Thomas Ris-
tenpart. Protocols for checking compromised credentials. In ACM CCS 2019, Novem-
ber 11–15, 2019.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In
40th FOCS. IEEE Computer Society Press, October 17–19, 1999.

[NMH+10] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita Borisov.
BotGrep: Finding P2P bots with structured graph analysis. In USENIX Security 2010,
August 11–13, 2010.

[NTY21] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast malicious multiparty private set
intersection. In ACM CCS 2021, November 15–19, 2021.

[PIB+22] Bijeeta Pal, Mazharul Islam, Marina Sanusi Bohuk, Nick Sullivan, Luke Valenta, Tara
Whalen, Christopher A. Wood, Thomas Ristenpart, and Rahul Chatterjee. Might I
get pwned: A second generation compromised credential checking service. In USENIX
Security 2022, August 10–12, 2022.

23

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast,
malicious private set intersection. In EUROCRYPT 2020, Part II, volume 12106 of
LNCS, May 10–14, 2020.

[RA18] Amanda C. Davi Resende and Diego F. Aranha. Faster unbalanced private set inter-
section. In FC 2018, volume 10957 of LNCS, February 26 – March 2, 2018.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS and
subfield VOLE. In ACM CCS 2022, November 7–11, 2022.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from
vector-OLE. In EUROCRYPT 2021, Part II, volume 12697 of LNCS, October 17–21,
2021.

[RT21] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small
sets. In ACM CCS 2021, November 15–19, 2021.

[SHB23] István András Seres, Máté Horváth, and Péter Burcsi. The legendre pseudorandom
function as a multivariate quadratic cryptosystem: Security and applications. Appli-
cable Algebra in Engineering, Communication and Computing, 2023.

[SS22] Tjerand Silde and Martin Strand. Anonymous tokens with public metadata and ap-
plications to private contact tracing. In FC 2022, volume 13411 of LNCS, May 2–6,
2022.

[TCR+22] Nirvan Tyagi, Sof́ıa Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and
Christopher A. Wood. A fast and simple partially oblivious PRF, with applications.
In EUROCRYPT 2022, Part II, volume 13276 of LNCS, May 30 – June 3, 2022.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Multi-
Party computation toolkit. https://github.com/emp-toolkit, 2016.

[XAX+21] Haiyang Xue, Man Ho Au, Xiang Xie, Tsz Hon Yuen, and Handong Cui. Efficient
online-friendly two-party ECDSA signature. In ACM CCS 2021, November 15–19,
2021.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In ACM CCS 2020, Novem-
ber 9–13, 2020.

A Deferred Proofs

A.1 Proof of Lemma 1

Proof. Let ε = 2−s, then we have log q = log q + 2s − 2 log(1ε). We can define a set of functions

H, such that for each h ∈ H, it is the form of Zlog q+2s
q × {0, 1}log q+2s → Zq. Each function,

parameterized by gR as hgR(γ) := ⟨gR, γ⟩ is a 2-universal hash function [DKLs18] with output bit

length log q. For input γ ← {0, 1}log q+2s, its entropy is H∞(γ) = log q + 2s. Thus, we have

log q = H∞(γ)− 2 log(
1

ε
) (2)

24

https://github.com/emp-toolkit

Equation 2 satisfies the Leftover Hash Lemma, that the output bit length of the 2-universal hash
function equals the entropy of input minus 2 log(1ε). Thus, for any gR uniformly distributed over

Zlog q+2s
q and independent of γ, we have

σ[(hgR(γ), γ), (U, γ)] ≤ ε

where U is uniform distributed over {0, 1}log q and independent of gR. Thus, the statistical distance
of hgR(γ) and U is at most 2−s.

A.2 Proof of Lemma 2

Proof. Let ε = 2−s, then we have n log q = n log q + 2s− 2 log(1ε). We can define a set of functions

H, such that for each h ∈ H, it is the form of Zlog q+2s
q × {0, 1}n log q+2s → {0, 1}log q. Each

function, parameterized by gR as hgR(γ) := ⟨gR, γ1||γn+1⟩|| · · · ||⟨gR, γn||γn+1⟩ is a 2-universal hash

function [DKLs18] with output bit length n log q. For input γ ← {0, 1}n log q+2s, it has information
entropy H∞(γ) = n log q + 2s. Thus,

n log q = H∞(γ)− 2 log(
1

ε
) (3)

Equation 3 satisfies the Leftover Hash Lemma, that the output bit length of the 2-universal hash
function equals the entropy of input minus 2 log(1ε). Thus, for any gR uniformly distributed over

Zlog q+2s
q and independent of γ, we have

σ[(hgR(γ),γ), (U,γ)] ≤ ε

where U is uniform distributed over {0, 1}n log q and independent of gR. Thus, the statistical distance
of hgR(γ) and U is at most ε, which equals to 2−s.

B Batched OVUF with Improved Efficiency

In this section, we give an optimized maliciously secure oblivious verifiable unpredictable protocol
ΠOVUF2 in terms of efficiency. This protocol combines a new sub-protocol ΠU−MtA called unbalanced
imperfect multiplicative to additive shares transformation, introduced in Appendix B.1. The details
and proof of ΠOVUF2 are depicted in Appendix B.2.

B.1 Unbalanced Imperfect MtA

This transformation computes the additive secret shares of scaler-vector multiplication, where the
scaler and vector held by different parties are regarded as unbalanced input. Its imperfection follows
the same idea as Section 5.2 that a malicious sender can execute attacks and result in incorrect
additive secret shares depending on the receiver’s input.

The most straightforward way to achieve imperfect scaler-vector multiplicative to additive shares
is as follows: Given the input vector a ∈ Zn

q on party P0 and scaler b ∈ Zq on party P1, let P1

create a new vector b with each element bi = b. Then, both parties execute ΠMtA, using a and b as
inputs. However, in our construction in Figure 11, we designate P1 as receiver of FCOT and have
P1 employ Encode(gR, b). Sender P0 inputs vector element ai and the receiver P1 inputs encoded
bit element of b to run FCOT to compute the additive secret share of ai ·b. This approach consumes
n(2 log q+2s) iterations of FCOT, the same as the straightforward approach stated above. However,
it eliminates pseudorandom vector γ of length (n − 1) log q and repetitive encoding of b of length
(n− 1) log q when implementing the encoding algorithm.

25

Protocol ΠU−MtA

Inputs: P0 holds a ∈ Zn
q . P1 holds b ∈ Zq.

Protocol:

1. P1 samples gR ← Zlog q+2s
q , and encodes b by computing w := Encode(gR, b) ∈ {0, 1}t+2s.

2. P1 inputs wj , j ∈ [t+2s] to FCOT. P0 inputs a ∈ Fn
q to FCOT. P0 receives {p1,j , · · · ,pn,j} ∈ Fn

q from
FCOT. P1 receives {q1,j , · · · , qn,j} ∈ Fn

q from FCOT.

3. P1 sends gR to P0.

4. For j ∈ [t+ 2s], i ∈ [n], P0 computes

ci =
∑

j∈[t+2s]

gj · pi,j

P1 computes

di =
∑

j∈[t+2s]

gj · qi,j

such that di + ci = ai · b.

Figure 11: The U-MtA protocol in FCOT-hybrid.

For the incorrectness caused by the sender P0’s malicious behavior as stated in Section 5.2, it
follows the same error representation as the single encoded version in Section 5.2, that di + ci =
ai · b+ fi. fi is denote as follows with respect to w = Encode(gR, b) ∈ Zt+2s

q .

fi =
∑
i∈[t]

gieiwi +
∑
i∈[2s]

gt+iet+iwt+i (4)

Given e, the correctness of MtA transformation depends on w and gR. Specifically, the transfor-
mation is correct when fi = 0. Still, this incorrectness will be caught by ΠU−MtA in Appendix B.2
with a detailed proof.

B.2 OVUF with Improved Efficiency

In Section 5, we introduced the basic version of oblivious verifiable unpredictable protocol. In the
context of ΠOVUF, when each client holds a set of n elements (y1, . . . , yn) and collaborates with a
server to compute OVUF, the ΠOVUF processes each input element yi, i ∈ [n] one by one. This
sequential processing involves n iterations of ΠMtA. For each iteration of ΠMtA, it runs with input
vector (sk,ϕi

1) ∈ Z2
q and (ϕi

2, yi) ∈ Z2
q to compute additive share of sk · ϕi

2 and ϕi
1 · yi. In this

section, we maximize the batch feature of MTA protocols and execute sk · ϕi
2 and ϕi

1 · yi for each
i ∈ [n] as follows:

1. Execute ΠU−MtA to efficiently compute additive shares of sk · ϕi
2, i ∈ [n].

2. Execute ΠMtA to compute additive shares of ϕi
1 · yi, i ∈ [n].

The other parts of this optimized-oblivious verifiable unpredictable protocol ΠOVUF2 follow the
same idea as ΠOVUF. The detailed scheme is shown in Figure 12. Its correctness can be verified
directly. Security-wise, this protocol involves two different MtA transformations. For ΠU−MtA, the
client Cj is regarded as the sender of FCOT and the one who executes a selective failure attack to

26

Protocol ΠOVUF2

Inputs and parameters: Hash function H modeled as RO. Client Cj holds vector (y1, . . . , yn) ∈ Zn
q .

Initialization: S chooses sk ∈ Zq, sets pk = gsk, and sends pk to FBB.
Key query: Client Cj sends fetch to FBB and receives pk.
Evaluation:

1. Cj checks if g−yi = pk for each i ∈ [n]. If it is, Cj inserts i to set I and sets yi ← Zq, i ∈ I.

2. Server S chooses ϕ1 ← Zn
q ; client Cj chooses ϕ2 ← Zn

q .

3. S and Cj inputs sk and ϕ2 ∈ Zn
q to ΠU−MtA, receives A1 ∈ Zn

q and A2 ∈ Zn
q respectively, such that

A1 +A2 = sk · ϕ2.

4. S and Cj inputs ϕ1 ∈ Zn
q and (y1, . . . , yn) ∈ Zn

q to ΠMtA, receives B1 ∈ Zn
q and B2 ∈ Zn

q respectively,

such that Bi
1 +Bi

2 = ϕi
1 · yi for each i ∈ [n].

5. S samples t ∈ [n], computes VS = H(gA
t
1), and sends (t, VS) to Cj . Cj computes VR = H(pkϕ

t
2/gA

t
2).

Cj checks whether VR = VS and aborts if they are not equal.

6. S sends m that mi = sk ·ϕi
1 +Ai

1 +Bi
1 to Cj . Cj sends u that ui = yi ·ϕi

2 +Ai
2 +Bi

2 to S. Both S
and Cj computes v = u+m.

7. For each i ∈ [n], S sends hi = gϕi/vi to Cj . Cj sets Fsk(yi) = 1, i ∈ I. For each i ∈ [n] \ I, Cj

computes Fsk(yi) = hi · gϕ
i
2/vi .

8. Cj outputs (Fsk(y1), . . . , Fsk(yn)) if e(gyi · pk, Fsk(yi)) = e(g, g) for each i ∈ [n] \ I. Otherwise it
aborts.

Figure 12: The OVUF2 protocol in (FCOT, FBB)-hybrid model with sub-protocol ΠMtA and ΠU−MtA.

ΠOVUF2. For ΠMtA, we assume server S as the sender of FCOT and the one who executes selective
failure attacks to ΠOVUF2 without loss of generality. We prove that ΠOVUF2 (with sub-protocols
ΠMtA and ΠU−MtA) is secure in the (FCOT, FBB)-hybrid model.

Theorem 3. If H is modeled as a random oracle, then protocol ΠOVUF2 UC-realizes FOVUF in the
(FCOT, FBB)-hybrid model with sub-protocol ΠMtA and ΠU−MtA.

Proof. Let A be a PPT adversary that allows to corrupt the server or the client. We construct a
PPT simulator Sim with access to functionality FOVUF, which simulates the adversary’s view. We
consider the following two cases: malicious client and malicious server. We will prove that the joint
distribution over the output of A and the honest party in the real world is indistinguishable from
the joint distribution over the outputs of Sim and the honest party in the ideal world execution.

Corrupted client. Let Sim access to the FOVUF as an honest client and interact with A as an
honest server. Sim passes all communication between A and environment Z.

0. Sim emulates FBB, once it receives fetch from A. Sim sends fetch to FOVUF and receives pk. Sim
sends pk to A.

2-3. Sim simulates the sub-protocol ΠU−MtA and acts as an honest receiver of FCOT below.

(1)-(2) Sim emulates FCOT. Sim receives τ ∈ Znt+2ns
q and sends p ← Znt+2ns

q to A. Sim checks
whether the received τ satisfy the pattern that for i ∈ [n], all the bits τj , j = (k−1)t+i, k ∈
[t+ 2s] are the same. Then, Sim extracts ϕi

2 = τj .

(3) Sim sends gR ← Zlog q+2s
q to A.

27

(4) Sim computes A2 ∈ Zn
q as an honest P0 does in step 4 in ΠU−MtA.

4. Sim simulates the sub-protocol ΠMtA and acts as an honest sender of FCOT below.

(1)-(3) Sim emulates FCOT and receives w ∈ Znt+2s
q . Sim samples q ← Znt

q , q′ ← Z2ns
q and sends

them to A.
(4) Sim receives gR from A. Sim computes yi for each i ∈ [n] as follows:

yi =
∑
j∈[t]

gjw(i−1)t+j +
∑

j∈[t+1,t+2s]

gjwnt+j

(5) Sim computes B2 ∈ Zq as an honest P1 does in step 5 in ΠMtA.

5. Sim samples t ∈ [n], V ∗
S ← G to A. Sim emulates H. Once ϕt

2 is extracted in step 3 and the

received query q = (pkϕ
t
2/gA

t
2), Sim sends V ∗

S to A. Otherwise, Sim sends a random value to A.

6. Sim sends m∗
i ← Zq to A. Sim receives u from A and computes v.

7. Sim sends (eval, (y1, . . . , yn)) to FOVUF and waits to receive (Fsk(y1), . . . , Fsk(yn)). For each
i ∈ [n], Sim checks whether ϕi

2 is extracted and ui = ϕi
2 · yi + Ai

2 + Bi
2. If all requirements are

satisfied, Sim simulates h∗
i = Fsk(yi)

gϕ
i
2/(m

∗
i
+ui)

and sends it to A. Otherwise, Sim simulates h∗
i ← G

and sends h∗ to A.

8. Sim aborts if A aborts and outputs what A outputs.

We are going to show the simulated execution is indistinguishable from the real protocol execution.
Hybrid H0. Same as real-world execution in (FBB, FCOT)-hybrid.
Hybrid H1. This hybrid is identical to H0 except Sim emulates FBB, FCOT, the random oracle,

and simulates the messages to A as follows:
For step 0, Sim emulates FBB. Upon receiving fetch from A, Sim sends fetch to FOVUF and

receives pk. Sim sends pk to A. In hybrid H0, FBB was initialized by an honest server with pk and
sends it to A upon receiving fetch. Thus, the pk sends by Sim is same as the one in hybrid H0.

For step 2-3, Sim simulates sub-protocol ΠU−MtA. Sim emulates FCOT, sends p ← Znt+2ns
q to

A. Sim also sends gR ← Zlog q+2s
q to A. In Hybrid H0, p is uniformly distributed over Znt+2ns

q

according to FCOT. g
R is sampled by the client and uniformly distributed to A. Thus, the sampled

p and gR are indistinguishable from Hybrid H0.
For step 4, Sim simulates sub-protocol ΠMtA. Sim emulates FCOT, sends q ← Znt

q , q′ ← Z2ns
q

to A. In Hybrid H0, q and q′ are uniformly distributed according to FCOT. Thus, the q and q′

sampled by Sim are indistinguishable from those in Hybrid H0.
For step 5, Sim samples (t, V ∗

S) to A. Sim also programs random oracle H and sends V ∗
S to

A if it receives query q = pkϕ
t
2/gA

t
2 with ϕt

2 extracted. Otherwise, Sim samples a random value
to A. In hybrid H0, an honest server uses sk that corresponding to pk in ΠU−MtA and computes
VS = H(gA

t
1) for a randomly sampled t ← [n]. Since At

1 + At
2 = sk · ϕt

2 holds for an honest server

and honest client, the received VS equals to VR if VR is computed from (pkϕ
t
2/gA

t
2) honestly. Thus,

the simulated V ∗
R equals to V ∗

S if A query random oracle honestly, which is indistinguishable from
Hybrid H0. If A adds error e ∈ Znt+2ns

q in the execution of ΠU−MtA, A
t
1 + At

2 = sk · ϕt
2 + ft holds

for honest server and the adversary. ft is computed from Equation 4. Since e is defined by A
before knowing gR, gR is uniformly distributed over Zlog q+2s

q to A. For any given w and e, fi is
uniformly distributed over Zq to A. Thus, At

1 is uniformly distributed over Zq to A and V ∗
S is

indistinguishable from VS in hybrid H0.

28

For step 6, Sim sends m∗
i ← Zq to A. In hybrid H0, an honest server computes mi = ϕi

1 · sk+
Ai

1 +Bi
1 and sends it to A. If A acts honestly in previous steps, mi satisfies the distribution that

mi+yi ·ϕi
2+Ai

2+Bi
2 = vi = (ϕi

1+ϕi
2)(sk+yi). Since ϕ

i
1 is randomly sampled by an honest server,

A has no idea about the distribution of mi. The simulated m∗
i is randomly uniform in Zq as well,

which is indistinguishable from hybrid H0. Thus, the view simulated by Sim is identical to hybrid
H0. If there exists an error e sampled by A in sub-protocol ΠU−MtA, mi satisfies the distribution
that mi + yi · ϕi

2 + Ai
2 + Bi

2 = vi = (ϕi
1 + ϕi

2)(sk+ yi) + diffi. diffi resulted from incorrect sk · ϕi
2,

computed by Equation 4. As analyzed above, diffi is uniformly distributed over Zq to A. Thus, mi

is uniformly distributed over Zq to A, which is indistinguishable from the simulated m∗
i .

Thus, the view simulated by Sim is identical to hybrid H0.
For step 7, Sim sends (eval, (y1, · · · , yn)) to FOVUF and waits for (Fsk(y1), · · · , Fsk(yn)). Sim

checks whether ϕi
2 is extractable and the received ui is computed from yi ·ϕi

2 +Ai
2 +Bi

2 correctly.

If it is, Sim sends h∗
i = Fsk(yi)

gϕ
i
2/(m

∗
i
+ui)

to A, such that h∗
i · gϕ

i
2/(m

∗
i+ui) = Fsk(yi). Otherwise, Sim

samples h∗
i ← G and sends it to A.

In hybrid H0, an honest server sends hi = gϕ
i
1/(mi+ui) to A. If ui is computed honestly from

yi · ϕi
2 + Ai

2 + Bi
2, where ϕi

2 is extracted, then hi · gϕ
i
2/(mi+ui) = Fsk(yi). Thus, the view of h∗

i in
hybrid H0 is identical to hi in Hybrid H0. If ui is computed honestly, but there exists an error
e sampled by A in sub-protocol ΠU−MtA in hybrid H0, then mi + ui = (sk + yi)(ϕ

i
1 + ϕi

2) + diffi.

Since diffi is uniformly distributed over Zq, hi · gϕ
i
2/(mi+ui) = Fsk(yi) with negligible probability. In

Hybrid H1, Sim simulates h∗
i ← G. h∗

i · gϕ
i
2/(m

∗
i+ui) = Fsk(yi) is negligible and indistinguishable

from hybrid H0. If ui is not computed honestly, then mi + ui ̸= (ϕi
1 + ϕi

2)(sk + yi) and thus

hi · gϕ
i
2/(mi+ui) ̸= Fsk(yi). In hybrid H1, Sim simulates h∗

i ← G, we have h∗
i · gϕ

i
2/(m

∗
i+ui) = Fsk(yi)

w.p. 2− log q, which is indistinguishable from hybrid H0.
Thus, the view simulated by Sim is identical to hybrid H0.
Corrupted server. Let Sim access to the FOVUF as an honest server and interact with A as

an honest client. Sim passes all communication between A and environment Z.

0. Sim emulates FBB, once it receives the pk from A, Sim stores pk and ignores subsequent messages
from A. Sim sends (init, pk) to FOVUF.

2-3. Sim simulates the sub-protocol ΠU−MtA and acts as an honest sender below.

(1)-(2) Sim emulates FCOT. Sim receives w ∈ Zt+2s
q and sends q ← Znt+2ns

q to A.

(3) Sim receives gR ∈ Zlog q+2s
q from A. Sim recover sk′ as: sk′ =

∑
i∈[2 log q+2s] giwi.

(4) Sim computes A1 ∈ Zn
q as an honest P1 does in step 4 in ΠU−MtA.

4. Sim simulates sub-protocol ΠMtA and acts as an honest receiver below.

(1)-(3) Sim emulates FCOT and receives a vector τ ∈ Zn(t+2s)
q . Sim samples p ← Znt

q , p′ ← Z2ns
q

and sends them to A. Sim checks whether the received τ ∈ Zn(t+2s)
q satisfies a pattern that

for i ∈ [n], all the bits τj , j ∈ [(i− 1)t+ 1, it] ∪ j = nt+ i+ (l− 1)n, l ∈ [2s] are the same.
Then, it extracts ϕi

1 = τj .

(4) Sim samples gR ← Zlog q+2s
q and sends it to A.

(5) Sim computes B1 ∈ Zn
q as an honest P0 does in step 5 in ΠMtA.

5. Sim emulates random oracle H and receives query q from A. Sim samples V ∗
S to A and records

(q, V ∗
S). Once Sim receives (t, V ∗

S) from A, Sim first checks whether gsk
′
= pk and aborts if not.

29

Then, Sim checks whether the corresponded q = gA
t
1 . If it is, Sim continue; Otherwise, Sim

aborts.

6. Sim receives m from A. Sim sends u∗
i ← Zq to A.

7. Sim waits to receive h.

8. For each ith iteration, if ϕi
1 is extracted, Sim checks whether hi = gϕ

i
1/v

∗
i , mi = ϕi

1 ·sk′+Ai
1+Bi

1

and sends sk′ to FOVUF. Otherwise, Sim aborts.

We are going to show the simulated execution is indistinguishable from the real protocol execution.
Hybrid H0. Same as real-world execution in (FBB,FCOT)-hybrid model.
Hybrid H1. This hybrid is identical to H0 except Sim emulates FBB, FCOT, the random oracle,

and generates the messages to A as follows:
For Step 2-3, Sim simulates sub-protocol ΠMtA. Sim emulates FCOT, sends p← Znt

q ,p′ ← Z2ns
q

to A. Sim also samples gR ← Zlog q+2s
q and sends it to A. In Hybrid H0, p,p′ are uniformly

distributed according to FCOT. g
R is sampled by client and uniformly distributed over Zlog q+2s

q to
A. Thus, the simulated p,p′, gR are indistinguishable from Hybrid H0.

For step 4, Sim simulates sub-protocol ΠU−MtA. Sim emulates FCOT, sends q ← Zn(t+2s)
q to A.

In Hybrid H0, q is uniformly distributed over Zn(t+2s)
q according to FCOT. Thus, the sampled q is

indistinguishable from Hybrid H0.
For Step 6, Sim receives m from A, and sends u∗

i ← Zq to A. In Hybrid H0, if A acts honestly
in previous steps, we have ui + ϕi

1 · sk + Ai
1 + Bi

1 = vi = (sk + yi)(ϕ
i
1 + ϕi

2). Since ϕi
2 ← Zq to

A, we have ui is uniform distributed over Zq to A. If A adds error e in step 4, an honest client
computes ui such that ui+ϕi

1 · sk+Ai
1−Bi

1 = vi = (sk+ yi)(ϕ
i
1+ϕi

2)+ diffi. Since diffi is uniform
distributed over Zq, ui is uniform distributed over Zq to A as well. If A uses sk′ ̸= sk in step 2-3,
ui+ϕi

1 ·sk′+Ai
1+Bi

1 = vi = (sk′+yi)(ϕ
i
1+ϕi

2). ui is still uniformly distributed as ϕi
2 is distributed

uniformly to A. Thus, the simulated u∗
i is indistinguishable from the distribution of ui in Hybrid

H0.
Hybrid H2. This hybrid is identical to H1 except Sim aborts at step 5 in the following

conditions: 1) the q corresponding to the received V ∗
S not equal to gA

t
1 ; 2) gsk

′ ̸= pk. Sim also

aborts at Step 8 in the following conditions: 1) gsk
′ ̸= pk; 2) ϕi

1s are not extractable; 3) mi ̸=
ϕi
1 · sk′ +Ai

1 +Bi
1 or h∗

i ̸= gϕ
i
1/(mi+u∗

i).
For step 5 in hybrid H1, an honest client aborts if the received VS ̸= VR. The client computes

VR = H(pkϕ
t
2/gA

t
2). For each pkϕ

t
2/gA

t
2 , it equals to gsk·ϕ

t
2−At

2 = gA
t
1 , where sk is corresponded to pk.

When adversary use correct sk but manipulate VS by using inconsistent query q ̸= gA
t
1 , an honest

client aborts in hybrid H1 , which is indistinguishable from condition (1) in hybrid H2. Adversary
A might use invalid sk′ that gsk

′ ̸= pk in ΠMtA, then both parties holds equation At
1+At

2 = sk′ ·ϕt
2.

Thus, with VS computed from At
1, VS = gA

t
1 = gsk

′·ϕt
2−At

2 ̸= VR = pk · gϕt
2−At

2 . Moreover, because

of the uniformity of ϕt
2 and At

2, A is not able to construct At′
1 that gA

t′
1 = pk · gϕt

2−At
2 either. Thus,

the client aborts with all but negligible probability, which is indistinguishable from condition (2)
in hybrid H2.

For step 8 in hybridH1, an honest client aborts when Fsk(yi) does not satisfy e(gyi ·pk, Fsk(yi)) =
e(g, g), where Fsk(yi) = hi·gϕ

i
2/(mi+ui). If gsk

′ ̸= pk, the probability thatmi+ui = (sk+yi)(ϕ
i
1+ϕi

2)

with negligible probability. Thus, the value of hi · gϕ
i
2/(mi+ui) satisfy the verification equation with

all but negligible probability. The honest client aborts with all but negligible probability which is
indistinguishable from condition (1) in hybrid H2. For the tth iteration, if A adds error e to τ and
ϕt
2 is not extractable, diffi ̸= 0 with all but negligible probability. Thus, mi+ui ̸= (sk+yi)(ϕi+ϕi

2)

30

with all but negligible probability. The value of hi · gϕ
i
2/(mi+ui) satisfy the verification equation

with all but negligible probability. The honest client aborts with all but negligible probability
which is indistinguishable from condition (2) in hybrid H2. If A sends either wrong mi or wrong
hi in protocol, it will result in wrong Fsk(yi) that does not satisfy e(gyi · pk, Fsk(yi)) = e(g, g). The
honest client aborts with all but negligible probability which is indistinguishable from condition
(3) in hybrid H2.

Therefore, this hybrid is identically distributed as the previous one. This completes the proof.

31

	Introduction
	Our Contributions
	Outline of the Paper

	Technical Overview
	Actively Secure PSI from OVUFs
	Constructing an OVUF

	Preliminaries
	Verifiable Unpredictable Functions
	Ideal Functionalities

	OVUF-based PSI
	The PSI Protocol
	Distributing the Server Encoding

	An Oblivious VUF
	Encoding for Coalesced Multiplication
	Imperfect MtA Protocol
	An Oblivious VUF from Imperfect MtA
	Complexity Analysis

	Performance Evaluation
	Benchmark Setup
	Efficiency of Server's Encoding
	Efficiency of Online Computation
	Comparison with Other Protocols

	Discussion
	Deferred Proofs
	Proof of Lemma 1
	Proof of Lemma 2

	Batched OVUF with Improved Efficiency
	Unbalanced Imperfect MtA
	OVUF with Improved Efficiency

