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Abstract—Cumplido, María et al. have recently shown
that the Wang-Hu digital signature is not secure and
has presented a potential attack on the root extraction
problem. The effectiveness of generic attacks on solving
this problem for braids is still uncertain and it is
unknown if it is possible to create braids that require
exponential time to solve these problems. In 2023, Lin
and al. has proposed a post-quantum signature scheme
similar to the Wang-Hu scheme that is proven to be
able to withstand attacks from quantum computers [1].
However, evidence is presented here for the existence of
an algorithm based on mean-set attacks that can recover
the private key in both schemes without solving the
root extraction problem. In the post-quantum signature
version, we prove that the attacker can forge a signature
passing the verification without recovering the private
key.

Index Terms—Cryptanalysis, Braid Group-based
Cryptography, Signature Scheme, Mean-set Attack,
post-quantum cryptography

I. Introduction

Artin’s braid groups [2] are infinite non-commutative
groups in which the word problem is solvable, while the
conjugation search problem and the root extraction prob-
lem (REP) have an exponential computational complexity,
at least in the worst case. This makes braid groups an
appropriate platform and the conjugation search problem
a reasonable basis for designing cryptographic schemes.
Patrick Dehornoy introduced a new method for comparing
braid words that utilizes the automatic structure of braid
groups and a linear ordering on braids. This algorithm
is a generalization of classical words reduction in free
groups and is more effective than existing methods [3].
In the past decade, there has been significant research
and development in braid-based cryptography, focussing
on both cryptographic [1], [2], [4]–[7] and cryptanalytic
aspects [8]–[13].

In their paper [7], Wang and al. discuss the weaknesses of
public-key cryptographic algorithms based on the conjuga-
tion search and root extraction problems over braid groups.
It proposes a digital signature scheme called the Wang-Hu
scheme that is based on the root extraction problem and
addresses these security drawbacks. The scheme proves
that forging a signature requires solving an intractable
problem, the group factorisation problem. Additionally, it
highlights that reconstructing braid equations regarding the
keys provides the attacker with limited useful information.
Performance analysis proves that the proposed scheme
is efficient and practical, with computational overhead
comparable to modular RSA multiplications.

Recently, Cumplido, Mara, and al. prove that the Wang-
Hu digital signature is not secure by presenting a possible
attack (solving the root extraction problem) with some
conditions on the parameters [14]. The effectiveness of
generic attacks in solving the root extraction problem
and the braid subgroup conjugacy search problem remains
uncertain. It is still unknown if a method can be developed
to create braids that would require an exponential time to
solve these problems.

Recently, the article [1] introduced an isomorphism that
relates the Mihailova subgroup of F2 × F2 to the Mihailova
subgroups of a braid group. This allows for an explicit
presentation of the Mihailova subgroups in the braid
group. The paper also discusses the unsolvable subgroup
membership problem that some Mihailova subgroups in the
braid group face. On the basis of these findings, the authors
propose a post-quantum signature scheme like the Wang-
Hu scheme, which is shown to be resistant to quantum
computational attacks.

Mosina and al. [15] presents a concept called the mean
set of random group variables and applies it to the crypt-
analysis of authentication scheme [12]. This attack, known
as the mean-set attack, utilises the generalised Strong Law
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of Large Numbers (SLLN) to analyse groups represented as
graphs. The article [13] significantly enhances the proposed
attack, conclusively validating the results achieved by
Mosina and Ushakov, while also significantly reducing the
time required for the process.

Here, we kindly present evidence that supports the
existence of a mean-set attack-based polynomial-time
algorithm that enables the recovery of the private key
in both schemes without solving the root extraction
problem. For both schemas, the attacker can launch
a chosen-message attack. He/She can send a set of
messages m1, . . . , ml to the user and the corresponding
signatures (v1, t1 = s1r−1), . . . , (vl, tl = slr

−1). With
the shift property E(ξr−1) = E(ξ)r−1, the proposition
limk→∞ Sl (ξ1, . . . , ξl) = e, where e is the trivial braid in
Bn, we have the generalisation of the SLLN for groups
in the sense that Sl

(
ξ1r−1, . . . , ξlr

−1) = Sl (ξ1, . . . , ξl) r−1

converges to r−1 when l→∞, with probability 1.
The results also show that in the post-quantum signature

scheme, it is possible for an attacker to forge a signature
without the need to recover the private key.

The document is organized as follows. In Section 2,
we introduce the braid groups and Mihailova Subgroups.
And we also describe the Strong Law of Large Numbers
(SLLN) on the group. In Section 3, we present two signature
schemes that are built upon the root extraction problem
over braid group. In Section 4, we proudly present the
cryptanalysis of two signature schemes, and in Section
5, we present the experimental results and corresponding
conclusions.

II. Preliminaries
A. Braid groups and Mihailova Subgroups

In this section, we give the basic definitions of braid
groups and discuss some hard problems in those groups.
For more information on braid groups, word problem and
conjugacy problems, refer to the papers [1, 4, 5, 8, 9, 10]
The braid group on n strands Bn is the abstract group
generated by σi , for i = 1, 2, . . . , n− 1, with the following
relations:

1) σiσj = σjσi for |i− j| ≥ 2
2) σiσi+1σi = σi+1σiσi+1 for i = 1, 2, . . . , n− 1

where (σ1, . . . , σn−1) are called the Artin generators of Bn

, and the elements of Bn are called braids.
The hard problems of the braid group, such as con-

jugation and root extraction, are key to constructing a
cryptographic system using braid groups.

Conjugacy Decision Problem: Given p, p′ ∈ Bn,
determine in a finite time whether p is conjugate to p′,
i.e., if there exists a ∈ Bn such that p = x−1p′a.

Conjugacy Search Problem: Given p, p′ ∈ Bn where
p is conjugate to p′, find in a finite time x ∈ Bn such that
p = x−1p′x.

Root Extraction Decision Problem: Given a braid
group Bn, an element x ∈ Bn, and an integer e ≥ 2,
determine if there exists a braid z such that ze = x.

Root Extraction Search Problem: Given a braid
group Bn, an element x ∈ Bn, and an integer e ≥ 2, find
an algorithm that can determine, in a finite time, a braid
Z satisfying Ze = x.

They contain large subgroups such that each element
of the first subgroup commutes with each element of the
second. Indeed, braids involving disjoint sets of strands
commute. So, if we denote by Bn1 (resp. Bn2) the subgroup
of Bn generated by σ1, . . . , σm−1 (resp. σm+1, · · · , σn−1)
with m = n/2, every braid in Bn1 commutes with every
braid in Bn2 .

1) Normal form:: From a braid β, we construct
a particular word that represents it. This is the normal
form of β. β represents a trivial braid if and only if its
normal form w0 is the normal word representing the trivial
braid. Every braid in Bn has a unique expression of the
form ∆p

n[π1]...[πd] such that [π1] is not a permutation
(n, ..., 1), and πd is not the identity, and for each r, we
have πr(i) > πr(i + 1) whenever π−1

r+1(i) > π−1
r+1(i + 1).

The expression ∆p
n[π1]...[πd] is the normal form.

2) Handle Reduction:: A braid word is trivial if
and only if, after handle reduction, we obtain the empty
word. Handle reduction method is much more efficient in
practice. We say that a braid word v is σi-handle if it
is of the form σe

i uσ−e
i , where u contains no letters σ±e

j

with j ≥ i, and contains at most one of the letters σi−1
and σ−1

i−1. We define the reduction of v as the word red(v)
obtained from v by:

• removing the letters σi and σ−1
i

• replacing each letter σ±1
i−1 by σ−e

i−1σ±1
i σe

i−1.
[Mihailova subgroup [16]] Let F2 be the free group

on two generators x and y, and let F2 × F2 be the direct
product of F2 with itself. The Mihailova subgroup of F2×F2
is the set of pairs (w1, w2) such that w1 and w2 are equal
in F2 modulo the commutator subgroup [F2, F2]. That is,

M(F2×F2) = {(w1, w2) ∈ F2×F2|w1[F2, F2] = w2[F2, F2]}.

Now let Bn be the braid group on n strands, and let
π : Bn → Sn be the natural homomorphism to the
symmetric group Sn. For any subgroup H of Sn, the
Mihailova subgroup of Bn corresponding to H is the set
of braids v such that π(v) belongs to H. That is,

M(Bn, H) = {v ∈ Bn|π(v) ∈ H}.

For example, it is known that: The Mihailova subgroups of
Bn correspond to the symmetric groups Sn and Sn−1 are
both trivial. The Mihailova subgroup of Bn corresponding
to the cyclic group Cn is isomorphic to the center of Bn.

Xiaofeng Wang and al.
Collins, Donald J [17] showed a braid group Bn with n

6 contains Mihailova subgroups. One can possibly use the
generators of these subgroups to generate entities’ private
keys in a public key cryptosystem by taking a braid group
as the corresponding platform [18].



B. Strong Law of Large Numbers (SLLN) on group

Let G = ⟨X⟩ be the group generated by a non empty set
X. Let CG(X) be the Cayley graph associated to G. Let
(Ω,F , P ) be a probability space and ξ : Ω→ G a random
G-variable. - A probability distribution is a function µ :
G → [0, 1] on ξ such that:µ(g) = µξ(g) = P ({ω ∈ Ω |
ξ(ω) = g}, g ∈ G) Let ξ be a random G-variable such that
Mξ(·) is totally defined. The set E(ξ) of vertices g ∈ G
having the smallest value of Mξ i.e.

E(ξ) = {g ∈ G : Mξ(g) ≤Mξ(u),∀u ∈ G}

is called mean-set of ξ. with:
• The weight function is the function Mξ : G → R

defined by

Mξ(g) =
∑
s∈G

d2(g, s)µ(s)

where d(g, s) is the distance between g and s in the
Cayley graph CG(X) of G.

• The domain (M) of the weight function M is defined
by:

domain(M) =
{

g ∈ G |
∑
s∈G

d2(g, s)µ(s) <∞

}

The weight function Mξ is totally defined if for all
vertices g ∈ G, Mξ(g) <∞ i.e. domain(M) = G.

Considering:
• The relative frequency

µn(g) = µn(g, ω) = |{i | ξi(ω) = g, 1 ≤ i ≤ n}|
n

• The sample mean-set of ξ1, . . . , ξn is the set Sn defined
by:

Sn = S (ξ1, . . . , ξn) = {g ∈ G : Mn(g) ≤Mn(u),∀u ∈ G}

The SLLN generalized on graphs and groups [15] shows
the convergence of the sample mean-set Sn to the mean-set
E(ξ) when n→∞ :

lim
n→∞

S (ξ1, . . . , ξn) = E (ξ1)

with probability 1.
In [12] The following algorithm is described to compute

the mean-set of a subset of G1.

Algorithm 1 : Computation of the sample mean-set
Require: the group G by its set X of generators and a

sample G1 = {g1, . . . , gn} ⊂ G.
Ensure: An element g ∈ G having the smallest weight

function
0: Choose a random element g ∈ G according to some

probability measure µ on G.
0: if for every x ∈ X±1, Mn(g) ≤Mn(gx) then
0: return g;
0: else
0: g ← gx {where x ∈ X±1 is an element minimizing

the value of Mn(gx)}
0: go to step (2);
0: end if

=0

Mn(.) is the weight function.

Mn(g) =
∑

s∈G1

length(red(gs−1))2µ(s)

with red(.) the handle reduction function. (Shift Prop-
erty). For all G random variable ξ, we have

E(ξc) = E(ξ)c

where c is a constant element. (conjecture) Let Bn be
the n-string braid group and let g ∈ Bn and t̂ = (t1 =
slr, . . . , tl = slr) be a sample of random Bn-variables. We
have

lim
k→∞

Sk

(
t̂
)

= lim
k→∞

Sk (s1, . . . sl) r = r

This proposition present in [13], means that
limk→∞ Sk (s1, . . . sl) = e, where e is the trivial braid in
Bn.

III. Signature schemes
In this section, we present the Wang-Hu signature scheme

[7] and its post-quantum version [1]. Both are based on
the root extraction problem.

Alice astutely assumes the role of the signer, while Bob
diligently takes charge as the recipient, responsible for
verifying the authenticity of the signature message.

A. The Wang-Hu Scheme
Wang and Hu proposed the following signature scheme

in [7].
The public information consists of a braid group Bn of

an index n, an integer e ≥ 2, and a collision-free one-way
hash function Θ that hashes an arbitrary message m of
arbitrary length into a fixed k-bit binary string with k a
positive integer, that is

Θ : {0, 1}∗ → {0, 1}k

Key generation:



Alice randomly chooses k non-trivial braids b1, b2, · · · , bk

in the commutative subgroup ⟨σj1, . . . , σjn⟩ ⊂ Bn (For
arbitrary ju and jv with ju ̸= jv, |ju − jv| ≥ 2) and
r ∈ Bn. Then she computes

ai = rbe
i r−1, i = 1, 2, · · · , k

The public key is {a1, a2, · · · , ak} and the secret key is
{b1, b2, · · · , bk, r}.

Signing a message:
Assuming that the message m ∈ {0, 1}∗ is to be signed.

Firstly, Alice randomly chooses a braid s in Bn. Then she
calculates Θ(m) = h1h2 · · ·hk (hi ∈ {0, 1}), t = sr−1 and

v = s

(
k∏

i=1
bhi

i

)
s−1

The signature for the message m is (v, t).
Verification:
Bob computes

w =
k∏

i=1
ahi

i

and verifies the equation

ve = twt−1

If the equation holds, he unquestionably accepts the
signature (v, t) as a valid signature of Alice’s for the mes-
sage m. On the contrary, Bob absolutely and unequivocally
discards the signature.

The authors argue that to forge a signature, an attacker
must be able to extract the eth root for a particular braid
in the braid group. They also show that in a scenario
where the attacker can actively choose messages to create
signature pairs, they would need to solve a difficult group
factorization problem to generate a new signature.

B. The Post-Quantum Scheme version
In [1], Lin and al. proposed the following signature

scheme.
The public information:
• An integer e ≥ 2;
• A collision-free one-way hash function Θ that hashes

an arbitrary message m of arbitrary length into a fixed
k-bit binary string with k a positive integer, that is

Θ : {0, 1}∗ → {0, 1}k

• A braid group Bn of index n with n ≥ 6k;
• The Mihailova subgroups Ai = MG6(i−1)+1(H), i =

1, 2, · · · k, as defined in the previous section.
One can see that since Ai = MGi

(H) is a subgroup of
Gi where Gi is generated by σ2

i , σ2
i+1, σ2

i+3, σ2
i+4, for each

pair of i and j, if i ̸= j then for any braid bi ∈ Ai and any
bj ∈ Aj , bibj = bjbi.

Key generation:
Alice randomly chooses k non-trivial braids bi ∈ Ai, i =

1, 2, · · · , k, and an element r ∈ Bn. Then she computes

ai = rbe
i r−1, i = 1, 2, · · · , k

The public key is {a1, a2, · · · , ak} and the secret key is
{b1, b2, · · · , bk, r}.

Signing a message: m ∈ {0, 1}∗

Alice randomly chooses a braid s in Bn.
Then she calculates Θ(m) = h1h2 · · ·hk (hi ∈ {0, 1}),

t = sr−1

and

vi = sbhi
i s−1, i = 1, 2, · · · , k

The signature for the message m is (v1, v2, · · · , vk, t).
Verification:
Bob computes wi = ahi

i , i = 1, 2, · · · , k, and verifies the
equations

ve
i = twit

−1, i = 1, 2, · · · , k

As the above security analysis showed, the reformed
signature scheme is unforgettable and resistant to key-
recovery attacks. Hence, no one else could create any valid
evidence that the signature originated from Alice, which
guarantees the non-repudiation of the signer’s signature.
The claim is that the signature scheme is resistant to
both quantum computational attacks and all other known
attacks.

IV. Cryptanalysis

A. Key Recovery Attack

The attacker, Eve can send a set of messages m1, . . . , ml

to the user and obtain the corresponding signatures
(v1, t1), . . . , (vl, tl). We have a shift property E(ξr−1) =
E(ξ)r−1 and the generalization of the SLLN for groups
in the sense that Sl

(
ξ1r−1, . . . , ξlr

−1) converges to
Sl (ξ1, . . . , ξl) r−1 when n → ∞, with probability 1. The
sample mean-set t̂ = (t1 = s1r−1, . . . , tl = slr

−1) is
efficiently computable. On the set t̂ = (t1 = s1r−1, . . . , tl =
slr

−1), we use the mean-set algorithm 1 to get some r′.
So the braids b1, . . . , bk in the subgroup ⟨σj1, . . . , σjn⟩ ⊂

Bn (For arbitrary ju and jv, ju ≠ jv, |ju− jv| ≥ 2 ) are
commutative. In this particular subgroup, the extraction
of the eth root is relatively simple.

In the wang-Hu Scheme, an attacker was able to recover
the secret key using a following algorithm:



Algorithm 2 Attack against Wang-Hu Scheme
Require: v1, m1, Sequence â = (a1, . . . , ak) and sequence

t̂ = (t1 = s1r−1, . . . , tl = slr
−1).

Ensure: (b1, b2, · · · , bk, r)
0: Apply Algorithm 1 to t̂ and get r′.
0: Compute s′

1 = t1r′−1.
0: Compute b̂

′e = (b′e
1 = r′a1r′−1, . . . , b

′e
k = r′akr′−1) .

0: Compute b̂
′ = (b′

1, . . . , b
′

k) an eth root from b̂
′e =

(b′e, . . . , b
′e
k )

0: if v1 == s′
1

(∏k
i=1 b

′

i
Θ(m1)

)
s′

1
−1 then

0: return (b̂′
, r′);

0: else
0: return 0
0: end if

=0

To achieve a moderate security level, Wang, B. C. and
Hu, Y. P. suggested these parameters: braid index n = 90,
e = 2, the binary length k of the output of the hash function
H be 80. The length of random words r and s equal 8. In
less than 166s on average, we obtain the secret r.

Algorithm 3 : Attack against Post-Quantum Scheme
version
Require: m̂ = (m1 · · ·ml), set â = (a1, . . . , ak) , v̂ =(

v̂1 = (v11, . . . , v1k) · · · v̂l = (vl1, . . . , vlk)) and set t̂ =
(t1 = s1r−1, . . . , tl = slr

−1).
Ensure: (b1, b2, · · · , bk, r)

0: Apply Algorithm 1 to t̂ and get r′.
0: Compute s′

1 = t1r′−1.
0: b̂

′ = ()
0: i = 1
0: while b̂

′ not contain all b
′

j do
0: Compute Θ(mi) = hi1 . . . hik

0: for j in (1, . . . , k) do
0: if hij == 1 then
0: Compute b

′

j = s′
1

−1vijs′

0: Compute b̂
′ = b̂

′ ∪ (b′

j)
0: end if
0: end for
0: i = i + 1
0: end while
0: if âi = (r′b′e

1 r′−1, . . . r′
kb′e

k r′−1) then
0: return (b̂′

, r′);
0: else
0: return 0
0: end if

=0

The technique used in the quantum version is similar
to the original version, but with a slight modification that
allows us to recover the secret key (r, (b1, · · · bk)).

The potential vulnerability of these signature schemes is
demonstrated by the ability of these algorithms to operate
efficiently.

B. On Forging a Signature
In the post-quantum version [1], the authors

assert that to forge a signature, an attacker
must extract the eth root for a specific braid
in the braid group. The attacker can easily forge(
v1 = sb1s−1, v2 = sb2s−1, · · · , vk = sbks−1, t = sr−1).
Let’s take a message m and signature (v1, v2, · · · , vk, t)

with vj = sb
hj

j s−1. For hj = 0 normally we get vj = e (e
trivial braid), but we can compute vj = sbjs−1 without
knowing s and bj . All we need to do is find a message m′

and its signature (v′
1, v′

2, · · · , v′
k, t′) where h′

j = 1.

vj = tt′−1v′
jt′t−1

vj = sr−1rs′−1v′
js′r−1rs−1

vj = ss′−1v′
js′s−1

vj = ss′−1s′bjs′−1s′s−1

vj = sbjs−1

Given a message m1 and Θ(m1) =
h1

1h1
2 · · ·h1

k

(
h1

i ∈ {0, 1}
)

, the attacker will forge a
signature (

v1
1 = v

h1
1

1 , v1
2 = v

h1
2

2 , · · · , v1
k = v

h1
k

k , t
)

passing the verification (v1
i )e = ta

h1
i

i t−1. Now we show that
the attacker can forge a signature passing the verification
without knowing secrets elements.

Conclusion
In conclusion, this article presents algorithms that effec-

tively attack two digital signature schemes mentioned in [1],
[7]. The vulnerabilities exposed by these attacks emphasize
the need for robust and quantum-resistant digital signature
schemes to ensure the security and integrity of digital
transactions in the future. Further research is essential
to address these challenges and develop more secure
cryptography solutions.
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