
Secure Coded Distributed Computing and
Extensions to Multiple Access Setting

Shanuja Sasi, Member, IEEE and Onur Günlü, Senior Member, IEEE

Abstract—We consider two critical aspects of security in the
distributed computing (DC) model: secure data shuffling and
secure coded computing. It is imperative that any external entity
overhearing the communication does not gain any information
about the intermediate values (IVs) exchanged during the shuffling
phase of the DC model. Our approach ensures IV confidentiality
during data shuffling. Moreover, each node in the system must
be able to recover the IVs necessary for computing its output
functions but must also remain oblivious to the IVs associated
with output functions not assigned to it. We design secure DC
methods and establish achievable limits on the tradeoffs between
the communication and computation loads to contribute to the
advancement of secure data processing in distributed systems.
First, we establish that the computation and communication
loads stay the same as for non-secure data shuffling. However,
implementing secure data shuffling requires additional overhead
for storing secret keys at the nodes. Next, we show that for secure
coded computation, both the computation and communication
loads increase compared to the non-secure scenario, along with
the overhead for storing secret keys. Finally, we extend our
security results to a novel distributed computing model known as
multi-access distributed computing (MADC), which was recently
introduced. The MADC model features two distinct sets of
nodes, namely mapper and reducer nodes. Unlike the original
setting where mapper and reducer nodes were the same, in
this model, they are separate entities, and each reducer node
is connected to multiple mapper nodes. We show that, for
MADC models also, the computation and communication loads
remain the same with or without secure data shuffling. However,
secure coded computation results in increased computation and
communication loads compared to the non-secure case, and both
scenarios require overhead for storing secret keys at the reducer
nodes.

Index Terms—Coded distributed computing, multiple access
computing, information-theoretic security, secure computing.

I. INTRODUCTION

In the realm of mobile applications demanding low-latency
responses, edge computing has emerged as a scorching topic
due to its capability to provide high computation speeds
and low latency. Distributed computing (DC) models, mainly
focusing on Hadoop MapReduce, provide a framework for
edge computing designs in the literature. In the MapReduce
framework, the computing task undergoes three phases: Map,
Shuffle and Reduce phases. In the Map phase, input files
are distributed to edge nodes for local processing, outputting
intermediate values (IVs). During the Shuffle phase, IVs are
exchanged among edge nodes. Once an edge node accumulates

S. Sasi and O. Günlü are with the Information Theory and Security
Laboratory (ITSL), Linköping University, SE-581 83 Linköping, Sweden (e-
mail: {shanuja.sasi, onur.gunlu}@liu.se). A shorter version of this paper will
appear in IEEE International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC) 2024 [1].

enough IVs, it proceeds to compute the output function in
the Reduce phase. However, data shuffling in the Shuffle
phase significantly impacts the latency of the output function
computation. In [2], the authors used a methodology, called
coded distributed computing (CDC), to exploit coding in data
shuffling to reduce the communication load by a factor of the
computation load in the MapReduce framework. In [3], the
authors employed placement delivery array (PDA) designs to
create a coded computing scheme. Originally introduced as a
solution for the coded caching problem, the concept of PDA
has gained prominence in the literature, along with several
studies exploring CDC and rate-limited communications [4]–
[6].

In [7], a novel model, called multi-access distributed com-
puting (MADC), was introduced. This model involves two
distinct sets of nodes: mapper nodes and reducer nodes. Unlike
the original configuration presented in [2], where the mapper
and reducer nodes are the same, [7] differentiates between
these two entities, with each reducer node being connected
to multiple mapper nodes. During the Map phase, files are
distributed across the mapper nodes, which compute the IVs.
The reducer nodes then collect these IVs from the connected
mapper nodes, exchange IVs among themselves, and compute
the final output functions. In the setting analyzed in [7], the
reducer nodes are connected to the mapper nodes using a
combinatorial topology (CT). Specifically, each reducer node
is uniquely connected to a set of α mapper nodes, meaning
that there is exactly one reducer node for each combination
of α mapper nodes. In [8], the authors introduced a new 2-
layered bipartite graph and an array termed the map-reduce
graph (MRG) and map-reduce array (MRA), respectively, to
represent the MADC models. They linked MRAs to MRGs,
applied the MRA design to illustrate the Shuffle and Reduce
phases of the corresponding MADC models, and proposed a
new coding scheme using the MRA structure, which led to
the discovery of new topologies.

Beyond the need for reducing the communication load
during the data shuffling process, security emerges as a pivotal
challenge in the realm of edge computing. In the context
of linear network coding based content delivery, there are
primarily two levels of security for data confidentiality: weak
security (WS) and information-theoretic security (ITS). The
studies in [9], [10] focused on WS in the context of data
shuffling. Specifically, when an attacker cannot receive a
sufficient number of coded packets from the data shuffling
process, it is unable to decode and acquire any IVs. In
contrast, our investigation centers around ITS, ensuring that
no information related to the IVs of data shuffling is leaked

2

to potential attackers.
The main contributions of this paper can be summarized as

follows. We examine two security aspects within the MapRe-
duce framework: secure data shuffling and secure coded
computing, inspired by the secretive coded caching problem
discussed in [11]–[14]. For secure data shuffling, it is essential
that any external entity intercepting transmissions during the
shuffling phase cannot gain any information about the interme-
diate values (IVs). In secure coded computing, each node must
be able to retrieve the IVs necessary for computing its assigned
output functions without accessing information about the IVs
pertaining to other output functions. We determine the achiev-
able trade-offs between communication and computation for
these security challenges in DC models. We establish that the
computation and communication loads are equivalent whether
or not secure data shuffling is used. However, implementing
secure data shuffling requires additional overhead for storing
secret keys at the nodes. For secure coded computation, the
computation and communication loads are increased compared
to the non-secure scenario. Moreover, there is an overhead for
storing secret keys at the nodes.

We extend these findings to MADC models with CT, ob-
serving similar results. In MADC models, the computation and
communication loads remain the same with or without secure
data shuffling. However, secure coded computation leads to an
increase in computation and communication loads compared
to the non-secure case. Additionally, both scenarios require
overhead for storing secret keys at the reducer nodes.

Organization of this paper: We define the problem under
consideration in Section II. In Section III, we define secure
data shuffling and secure coded computing. We provide our
main results in the same section for DC models. Extension of
our results to MADC models is provided in Section IV.
Notation: The bit wise exclusive OR (XOR) operation is
denoted by ⊕. The notation [n] represents the set {1, 2, . . . , n},
and [a, b] represents the set {a, a+ 1, . . . , b}.

II. BACKGROUND AND PRELIMINARIES

A. MapReduce Framework

We consider the DC model with MapReduce framework [2].
In this model, there are K nodes indexed by [K]. The task is to
compute K output functions {ϕq : q ∈ [K]} from N distinct
input files W = {Wn : n ∈ [N]}, for some positive integer N .
Each function ϕq, for q ∈ [K], maps all N input files, where
each file has w bits, into a stream of b bits, i.e., we have
ϕq : FN

2w → F2b . Suppose, for every q ∈ [K], there is a linear
map function, i.e., we have gq : F2w → F2t . Assume that
gq(·) maps the input file Wn into an intermediate value (IV)
vq,n = gq(Wn) ∈ F2t of t bits for each n ∈ [N]. Similarly,
for every q ∈ [K], assume that there is a reduce function, i.e.,
we have hq : FN

2t → F2b , which maps all IVs into the output
function ϕq = hq(vq,1, . . . , vq,N) ∈ F2b of b bits. With that,
the output function ϕq , for each q ∈ [K], can be equivalently
described as

ϕq(W) = hq(vq,1, . . . , vq,N) = hq(gq(W1), . . . , gq(WN)).
(1)

The function computation is carried out in three phases:
1. Map Phase: Each node k ∈ [K] stores a subset of files

Mk⊆W and computes its IVs as

{vq,n : q∈ [K],Wn∈Mk, n∈ [N]}. (2)

2. Shuffle Phase: Each node k ∈ [K] is assigned to compute
an output function ϕk. The set of all IVs which each node k
does not have access to and needs to recover for computing
the assigned output function is given by

{vk,n : Wn ∈ W\Mk, n ∈ [N]}. (3)

Each node k creates a bit sequence Xk ∈ F2lk using the
IVs it has access to and sends it through a broadcast link
to all other nodes.

3. Reduce Phase: Receiving the sequence {Xj}j∈[K]\k, each
node k ∈ [K] decodes all the IVs required to compute its
output function, i.e., we have

H
(
{vk,n}n∈[N]|Mk, {Xj}j∈[K]\k

)
= 0. (4)

We next define the computation and communication loads for
the DC problem. In [2], the computation load is defined as
the total number of files mapped across K nodes normalized
by the total number of files. We generalize this definition as
follows.

Definition 1. (Computation Load): Computation load r is
defined as the total number of bits associated with the files
mapped across K nodes normalized by the total size of the
files.

Definition 2. (Communication Load [2]): Communication
load L is defined as the total number of bits transmitted by
K nodes over the broadcast channel during the Shuffle phase
normalized by the number of bits of all IVs.

In [2], the authors established the fundamental computation-
communication tradeoff. The optimal tradeoff curve is given
by the lower convex envelope of {(r, L∗(r)) : r ∈ [K]}, where

L∗(r) ≜
1

r

(
1− r

K

)
. (5)

B. Placement Delivery Array

Yan et al. [4] introduced the concept of PDA to rep-
resent coded caching schemes with the goal of reducing
sub-packetization levels. Since then, several coded caching
schemes based on the PDA concept have been reported.

Definition 3. (Placement Delivery Array [4]): For positive
integers K,F,Z, and S, an F × K array P = [pf,k] with
f ∈ [F], and k ∈ [K] composed of a specific symbol ∗ and
S positive integers [S], is called a (K,F,Z, S) placement
delivery array (PDA) if it satisfies the following conditions:

• A1: The symbol ∗ appears Z times in each column;
• A2: Each integer occurs at least once in the array;
• A3: For any two distinct entries pf1,k1

and pf2,k2
, s =

pf1,k1
= pf2,k2

is an integer only if
1) f1 ̸= f2 and k1 ̸= k2, i.e., they lie in distinct rows and

distinct columns; and

3

2) pf1,k2
= pf2,k1

= ∗, i.e., the corresponding 2× 2 sub-
array formed by rows f1, f2 and columns k1, k2 must

be either of the following forms
(
s ∗
∗ s

)
or
(
∗ s
s ∗

)
.

Example 1. Consider a 4 × 5 array P1 as given in (6). It
satisfies conditions A1, A2 and A3. There are 2 stars in each
column and a total of 4 integers in the array. Hence, P1 is a
(5, 4, 2, 4) PDA.

P1 =




∗ ∗ ∗ 1 2
∗ 1 2 ∗ ∗
1 ∗ 3 ∗ 4
2 3 ∗ 4 ∗

. (6)

We next define a class of PDAs called g−regular PDAs.

Definition 4. (g−regular PDA [4]): An array P is said to
be a g−regular (K,F,Z, S) PDA if it satisfies A1, A3, and
the following condition.

• A2′: Each integer appears g times in P , where g is a
constant.

Example 2. The 4×6 array P2 provided below is a 3−regular
(6, 4, 2, 4) PDA.

P2 =




∗ ∗ ∗ 1 2 3
∗ 1 2 ∗ ∗ 4
1 ∗ 3 ∗ 4 ∗
2 3 ∗ 4 ∗ ∗

. (7)

Suppose that we are given a (K,F,Z, S) PDA P = [pf,k]
for f ∈ [F], k ∈ [K], and for some integers K,F,Z and S,
such that each integer appears more than once in the PDA
P . In [5], a CDC scheme for a DC model consisting of K
nodes and ηF number of files, for some positive integer η, is
derived from this PDA. This scheme achieves a computation
load r = ZK

F and communication load Lpda of

Lpda =
S

KF
+

K∑
g=2

Sg

KF (g − 1)
(8)

where Sg is the number of integers in [S] which appear exactly
g times in the PDA P .
Notations used for PDAs: We define Sk as the set of all
integers present in the column indexed by k ∈ [K] of the
PDA P and gs as the number of occurrences of the integer
s ∈ [S] in the PDA.

C. MADC Model
In the MADC model as illustrated in Fig. 1, there are Λ

mapper nodes indexed by [Λ] and K reducer nodes indexed
by [K]. Each reducer node k ∈ [K] is tasked with computing
an output function that depends on N input files. Thus, the
problem is similar to that defined in Section II-A, involving the
computation of K output functions, denoted as {ϕq : q ∈ [K]},
from N input files, denoted as W , with the computation task
distributed across K reducer nodes. The output function is
described as in (1).

Λ321

K1 2 3
Reducer

Nodes

Mapper

Nodes

Broadcast Channel

Fig. 1: MADC Model.

Each reducer node k ∈ [K] is connected to a subset of the
mapper nodes. The computation process is carried out in three
phases:

1) Map Phase: Each mapper node λ ∈ [Λ] locally stores a
subset of files Mλ ⊆ W and computes the set

{vq,n = gq(Wn) : q ∈ [K],Wn ∈ Mλ} (9)

where each vq,n is a bit stream of length t and is referred
to as an IV.

2) Shuffle Phase: Each reducer node k ∈ [K] is connected
to some mapper nodes and can access all the files stored
by those mapper nodes, retrieving the IVs from those
mapper nodes. Each reducer node k creates a sequence
Xk ∈ F2lk and multicasts it to all other reducer nodes
via a broadcast link. It is assumed that each reducer node
receives all multicast transmissions without error.

3) Reduce Phase: The reducer node k ∈ [K] is assigned
the output function ϕk and requires to recover the IVs
{vk,n : n ∈ [N]} to compute ϕk. Upon receiving the
sequences {Xj}j∈[K]\k, each reducer node k decodes all
the IVs vq,n necessary for its output function using the
IVs it has access to and finally computes its assigned
output function.

As in CDC, the metrics which we consider for the evaluation
of MADC models are computation and communication loads.
In [7], the authors studied an MADC model with CT with Λ
mapper nodes and K =

(
Λ
α

)
reducer nodes, for α ∈ [Λ]. In

this model, there is exactly one reducer node for each subset
of α mapper nodes. The authors introduced a new scheme
that achieves a communication load of LBE(r) which is a
piecewise linear curve with corner points

(r, LBE(r)) =

(
r,

(
Λ−α
r

)(
Λ
r

) ((
r+α
r

)
− 1
)) ,∀r ∈ [Λ− α+ 1].

(10)

In [8], the authors used MRGs and MRAs to model MADC
frameworks.

Definition 5. (Map-Reduce Array [8]): For positive integers
K,F and S, an F × K array P = [pf,k] with f ∈ [F] and
k ∈ [K] composed of a specific symbol ∗ and S positive
integers [S] is called a (K,F, S) map-reduce array (MRA)
if it satisfies the following conditions:

• C1: Each integer occurs more than once in the array;
• C2: For any two distinct entries pf1,k1 and pf2,k2 , s =
pf1,k1

= pf2,k2
is an integer only if

4

1) f1 ̸= f2 and k1 ̸= k2, i.e., they lie in distinct rows and
distinct columns; and

2) pf1,k2 = pf2,k1 = ∗, i.e., the corresponding 2× 2 sub-
array formed by rows f1, f2 and columns k1, k2 must

be either of the following forms
(
s ∗
∗ s

)
or
(
∗ s
s ∗

)
.

We next define a specific class of MRAs called g−regular
MRAs.

Definition 6. (g−regular MRA [8]): An array P is said to be
a g−regular (K,F, S) MRA if it satisfies C2 and the following
condition

• C1′: Each integer appears g times in P , where g ≥ 2 is
a constant.

Example 3. Consider a 4× 5 array P3 as given below.

P3 =




∗ 1 ∗ ∗ ∗
1 ∗ 3 4 ∗
∗ ∗ 2 ∗ 1
2 4 ∗ ∗ 3

. (11)

The array P3 satisfies conditions C1 and C2. There are 4
integers in the array. Hence, the array P3 is a (5, 4, 4) MRA.

It can be observed that for a given (K,F,Z, S) PDA P,
for positive integers K,F,Z and S, if each integer appears
more than once in the PDA, then the PDA P qualifies as a
(K,F, S) MRA. However, the reverse is not necessarily true.
A (K,F, S) MRA is a (K,F,Z, S) PDA only if it satisfies
condition A1. Additionally, while all g−regular PDAs with
g ≥ 2 are g−regular MRAs, the reverse does not hold, i.e.,
not all g−regular MRAs are g−regular PDAs.

In [8], the authors considered the following set of g−regular
MRAs constructed using Algorithm 1 given below, for some
positive integers Λ and α such that α ∈ [Λ− 1]:{(

r + α

r

)
-regular

((
Λ

α

)
,

(
Λ

r

)
,

(
Λ

α+ r

))
MRA :

r ∈ [Λ− α]

}
. (12)

They proposed a scheme for MADC models with CT using
this set of MRAs which obtains the computation and commu-
nication points as given in (10).

III. MAIN RESULTS

We first define secure data shuffling and secure coded
computing in Definitions 7 and 8, respectively. Given a PDA,
we derive a DC model and provide a secure data shuffling
scheme in Theorem 1, for which we are interested in the secure
delivery requirement as defined in Definition 7. In Theorem 2,
given a PDA, we derive a DC model and obtain a secure
coded computing scheme, where we require that each node
must be able to decode only the IVs corresponding to its
assigned output functions while not being able to obtain any
information about the remaining IVs. Next, we consider the

Algorithm 1 [8]
(
r+α
r

)
-regular

((
Λ
α

)
,
(
Λ
r

)
,
(

Λ
α+r

))
MRA

DΛ,r,α construction, for some positive integers Λ, r, and α
where α ∈ [Λ− 1] and r ∈ [Λ− α].

1: procedure 1: Arrange all subsets of size α+r from [Λ] in
lexicographical order, and for any subset T ′ of size α+r,
define yα+r(T

′) to be its order.
2: end procedure 1
3: procedure 2: Obtain an array DΛ,r,α of size

(
Λ
r

)
×
(
Λ
α

)
.

Denote the rows by the sets in {T ⊂ [Λ], |T | = r} and
columns by the sets in {U ⊂ [Λ] : |U | = α}. Define each
entry dT,U corresponding to the row T and the column U
as

dT,U =

{
∗, if |T ∩ U | ≠ 0

yα+r(T ∪ U), if |T ∩ U | = 0

}
. (13)

4: end procedure 2

set of g−regular PDAs specified in Algorithm 2, which are
used in the coded caching literature. We obtain computation-
communication load points achievable using this set of PDAs
for secure data shuffling and secure coded computing in
Theorems 3 and 4, respectively. The proofs of Theorems 1,
2, 3, and 4 are provided in Sections V, VI, VII, and VIII,
respectively.

Definition 7. (Secure Data Shuffling) Any eavesdropper that
overhears the transmitted symbols during the shuffling phase
must not obtain any information about the contents of the IVs,
i.e., we have

I
(
{vq,n}q∈[K],n∈[N]; {Xj}j∈[K]

)
= 0. (14)

Definition 8. (Secure Coded Computing) For each k ∈ [K],
we require

I
(
{vq,n}q∈[K]\k,n∈[N];Mk, {Xj}j∈[K]\k

)
= 0. (15)

Next, we provide Theorems 1 and 2. For both the theorems
we assume that K,F,Z, S, η ∈ Z.

Theorem 1. Suppose that we are given a (K,F,Z, S) PDA
P = [pf,k] for f ∈ [F], k ∈ [K] such that each integer
appears more than once in the PDA P . There exists a secure
data shuffling scheme for a DC model which consists of K
nodes, and ηF files. For the corresponding DC model, the
computation load is r = ZK

F and the communication load
achievable is given by

Lsds =
S

KF
+

K∑
g=2

Sg

KF (g − 1)
(16)

where Sg is the number of integers in [S] which appear exactly
g times in the PDA P .

Proof Sketch of Theorem 1: The input database is split into
F disjoint batches, each containing η files. Each node stores
some of these batches. The rows of the PDA correspond to the
batches and the columns to the nodes. There is a ∗ in row f and
column k if and only if the node represented by k has access

5

to the batch corresponding to f . The Shuffle phase consists
of S transmission instances. During instance s ∈ [S], nodes
(represented by columns) that include s are considered. The
security of message delivery is ensured by one-time padding
with a secret key. Eavesdroppers remain unaware of the IVs
because they do not have access to the secret keys, ensuring
perfect secrecy. This is the main idea behind the proof of
Theorem 1, with a detailed proof provided in Section V.

Remark 1. Without employing secure data shuffling, the
computation and communication loads achievable for a given
PDA are the same as in Theorem 1. However, implementing
secure data shuffling incurs an additional overhead in terms
of storing secret keys at the nodes (as discussed in Section V).

Theorem 2. Suppose that we have a (K,F,Z, S) PDA
P = [pf,k] for f ∈ [F], k ∈ [K] such that each integer
appears more than once in the PDA P . A secure coded
computing scheme for a DC model which consists of K nodes
and η(F − Z) files can be derived from this PDA. For the
corresponding DC model, the computation load is given by
r = ZK

F−Z . Furthermore, the communication load achievable
is given by

Lscc =
S

K(F − Z)
+

K∑
g=2

Sg

K(F − Z)(g − 1)
(17)

where Sg is the number of integers in [S] which appear exactly
g times in the PDA P .

Proof Sketch of Theorem 2: The main idea behind the proof
of Theorem 2 is as follows. The input database is split
into η disjoint batches, each containing (F − Z) files. We
employ (Z,F) non-perfect secret sharing schemes to encode
the file batches into F shares, with each node storing Z
shares. Consequently, accessing Z shares does not reveal any
information about the file batch, while F shares are sufficient
to reconstruct the original file batch. Map function values are
computed on the shares rather than on the files, leading to the
generation and shuffling of coded IVs instead of IVs. During
the Shuffle phase, each coded IV is one-time padded with a
secret key. A detailed proof is provided in Section VI.

Remark 2. When considering a given PDA for secure coded
computation, the computation and communication loads in-
crease by a factor of F

F−Z as compared to the non-secure
scenario. Moreover, similar to secure data shuffling, an over-
head arises from storing secret keys at the nodes (as discussed
in Section VI).

Now, we illustrate Theorem 1 with the help of an example.

Example 4. Consider the (5, 4, 2, 4) PDA P1 of Example 1.
Consider a DC model where there are N = 4 input files
{W 1

1 ,W
1
2 ,W

1
3 ,W

1
4 }, each of size 3 bits, and Q = 5 output

functions {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5} to be computed. The files are
divided into 4 batches {B1, B2, B3, B4} such that each batch
Bf , for f ∈ [4], has 1 file, i.e., Bf = {W 1

f }.
The row index f ∈ [4] in the PDA P1 represents the batch

Bf and the column index k ∈ [5] represents the node k. There
exists a ∗ in a row indexed by f and column indexed by k if

and only if the node k has access to the batch Bf , for each
f ∈ [4] and k ∈ [5].

We assign the output function ϕk to the node k ∈ [5]. Recall
that Sk denote the set of all integers present in column k, for
k ∈ [5]. For each k ∈ [5] and s ∈ Sk, a secret key T 1

k,s of size
t

gs−1 bits is generated uniformly and independently from the
finite field F

2
t

gs−1
, where gs is the number of occurrences of

the integer s in the PDA P1. The files and secret keys assigned
to the nodes are:

M1 = {B1, B2, T
1
1,1, T

1
2,1, T

1
4,1, T

1
1,2, T

1
3,2, T

1
5,2},

M2 = {B1, B3, T
1
1,1, T

1
2,1, T

1
4,1, T

1
2,3, T

1
3,3},

M3 = {B1, B4, T
1
1,2, T

1
3,2, T

1
5,2, T

1
2,3, T

1
3,3},

M4 = {B2, B3, T
1
1,1, T

1
2,1, T

1
4,1, T

1
4,4, T

1
5,4},

M5 = {B2, B4, T
1
1,2, T

1
3,2, T

1
5,2, T

1
4,4, T

1
5,4}. (18)

Each node k computes the IVs in the set {v1q,f : q ∈ [5],W 1
f ∈

Mk}. Consider the first column, i.e. column with index 1 of
P1. The set of all integers present in this column is S1 =
{1, 2}. Consider the entry s = 1 in S1. The other entries
which are 1 are in the columns indexed by 2 and 4. Hence,
we partition the symbols in v11,3 into 2 packets, each of equal
size, i.e., we have

v11,3 = {v1,21,3 , v
1,4
1,3}. (19)

Next, for the entry s = 2 in S1, we partition v11,4 into 2 packets,
since the other entries which are 2 correspond to the columns
indexed by 3 and 5, i.e., we have

v11,4 = {v1,31,4 , v
1,5
1,4}. (20)

Similarly, for each column indexed by k ∈ [5], for entries
corresponding to 1 and 2 we partition the corresponding
symbols into 2 packets of equal sizes, while for entries 3 and
4, we partition the symbols into 1 packet (which is the symbol
itself), as shown below.

v12,2 = {v1,12,2 , v
1,4
2,2}, v12,4 = {v1,32,4}, v13,2 = {v1,13,2 , v

1,5
3,2},

v13,3 = {v1,23,3}, v14,1 = {v1,14,1 , v
1,2
4,1}, v14,4 = {v1,54,4},

v15,1 = {v1,15,1 , v
1,3
5,1}, v15,3 = {v1,45,3}. (21)

Since |Sk| = 2,∀k ∈ [5], each node k transmits two coded
symbols X1

k,s, s ∈ Sk. The following are the coded symbols
transmitted by the nodes:

X1
1,1 = v1,12,2 ⊕ v1,14,1 ⊕ T 1

1,1, X1
1,2 = v1,13,2 ⊕ v1,15,1 ⊕ T 1

1,2,

X1
2,1 = v1,21,3 ⊕ v1,24,1 ⊕ T 1

2,1, X1
2,3 = v1,23,3 ⊕ T 1

2,3,

X1
3,3 = v1,32,4 ⊕ T 1

3,3, X1
3,2 = v1,31,4 ⊕ v1,35,1 ⊕ T 1

3,2,

X1
4,1 = v1,41,3 ⊕ v1,42,2 ⊕ T 1

4,1, X1
4,4 = v1,45,3 ⊕ T 1

4,4,

X1
5,1 = v1,51,4 ⊕ v1,53,2 ⊕ T 1

5,1, X1
5,3 = v1,44,4 ⊕ T 1

5,3. (22)

The node 1 can retrieve v1,21,3 from the coded symbol X1
2,1

transmitted by node 2, since it can compute v1,24,1 from the files
in M1 and cancel out T 1

2,1. Similarly, it can retrieve v1,41,3 , v
1,3
1,4 ,

and v1,51,4 as well. Hence, it can compute the output function
ϕk.

Each node k stores 2 files {W 1
f : pf,k = ∗, f ∈ [4]}.

6

Thus, the computation load is 2∗w∗5
4∗w = 2.5. In total 10

coded symbols are transmitted across the nodes. The symbols
corresponding to the entries 1 and 2 in the PDA P1 are of
size t

2 bits, whereas symbols corresponding to the entries 3
and 4 are of size t bits. Thus, the communication load is
Lsds =

(t
2∗6+t∗4)
5∗4∗t = 0.35.

Next, we consider the same PDA and obtain a secure coded
computing scheme to illustrate Theorem 2.

Example 5. Consider the (5, 4, 2, 4) PDA P1 of Example 1.
Consider a DC model where there are N = 4 input files
{W 1

1 ,W
2
1 ,W

1
2 ,W

2
2 }, each of size 3 bits, and Q = 5 output

functions {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5} to be computed. The files are
divided into 2 batches {B1, B2} such that each batch Bm,
for m ∈ [2], has two files, Bm = {Wm

1 ,Wm
2 }. They form

the message vector [Wm
1 ,Wm

2]T . Also, select two random
variables V m

1 and V m
2 for each m ∈ [2], uniformly and

independently from the finite field F23 . We form a key vector
[V m

1 , V m
2]T for each m ∈ [2]. Consider the following Cauchy

matrix:

D =


1 6 2 4
6 1 4 2
2 4 1 6
4 2 6 1

. (23)

We multiply this with the concatenation of the message and
key vectors to generate the shares corresponding to the batch
Bm, for m ∈ [2], i.e., we have [Am

1 , Am
2 , Am

3 , Am
4]T =

D.[Wm
1 ,Wm

2 , V m
1 , V m

2]T . The row index f ∈ [4] in the PDA
P1 represents the share Am

f ,∀m ∈ [2], and the column index
k ∈ [5] represents the node k. There exists a ∗ in a row indexed
by f and column indexed by k if and only if the node k has
access to the shares {Am

f : m ∈ [2]}, for each f ∈ [4] and
k ∈ [5].

Assign the output function ϕk to node k ∈ [5]. For each
k ∈ [5], s ∈ Sk, and m ∈ [2], a secret key Tm

k,s of size t
gs−1

bits is generated uniformly and independently from the finite
field F

2
t

gs−1
, where gs is the number of occurrences of the

integer s in the PDA P1. The shares and secret keys assigned
to the nodes are:

M1 = {Am
1 , Am

2 , Tm
1,1, T

m
2,1, T

m
4,1, T

m
1,2, T

m
3,2, T

m
5,2 : m ∈ [2]},

M2 = {Am
1 , Am

3 , Tm
1,1, T

m
2,1, T

m
4,1, T

m
2,3, T

m
3,3 : m ∈ [2]},

M3 = {Am
1 , Am

4 , Tm
1,2, T

m
3,2, T

m
5,2, T

m
2,3, T

m
3,3 : m ∈ [2]},

M4 = {Am
2 , Am

3 , Tm
1,1, T

m
2,1, T

m
4,1, T

m
4,4, T

m
5,4 : m ∈ [2]},

M5 = {Am
2 , Am

4 , Tm
1,2, T

m
3,2, T

m
5,2, T

m
4,4, T

m
5,4 : m ∈ [2]}. (24)

Each node k computes the linear map functions, referred as
coded IVs, in the set {cmq,f = gq(A

m
f) : q ∈ [5], Am

f ∈
Mk, f ∈ [4],m ∈ [2]}. Consider the first column, i.e. column
with index 1 of P1. The set of all integers present in this
column is S1 = {1, 2}. Consider the entry s = 1 in S1. The
other entries which are 1 are in the columns indexed by 2 and
4. Hence, we partition the symbols in cm1,3 into 2 packets, each
of equal size, i.e., we have

cm1,3 = {cm,2
1,3 , cm,4

1,3 }, ∀m ∈ [2]. (25)

Next, for the entry s = 2 in S1, we partition cm1,4, for m ∈ [2],
into 2 packets, since the other entries which are 2 correspond

to the columns 3, and 5 i.e., we have

cm1,4 = {cm,3
1,4 , cm,5

1,4 }. (26)

Similarly, for each column indexed by k ∈ [5], for entries
corresponding to 1 and 2 we partition the corresponding
symbols into 2 packets of equal sizes, while for entries 3
and 4, we partition the symbols into 1 packet (which is the
symbol itself). Since |Sk| = 2,∀k ∈ [5], each node k transmits
two coded symbols Xm

k,s, s ∈ Sk, for each m ∈ [2]. The
following are the coded symbols transmitted by the nodes for
each m ∈ [2].

Xm
1,1 = cm,1

2,2 ⊕ cm,1
4,1 ⊕ Tm

1,1, Xm
1,2 = cm,1

3,2 ⊕ cm,1
5,1 ⊕ Tm

1,2,

Xm
2,1 = cm,2

1,3 ⊕ cm,2
4,1 ⊕ Tm

2,1, Xm
2,3 = cm,2

3,3 ⊕ Tm
2,3,

Xm
3,3 = cm,3

2,4 ⊕ Tm
3,3, Xm

3,2 = cm,3
1,4 ⊕ cm,3

5,1 ⊕ Tm
3,2,

Xm
4,1 = cm,4

1,3 ⊕ cm,4
2,2 ⊕ Tm

4,1, Xm
4,4 = cm,4

5,3 ⊕ Tm
4,4,

Xm
5,1 = cm,5

1,4 ⊕ cm,5
3,2 ⊕ Tm

5,1, Xm
5,3 = cm,4

4,4 ⊕ Tm
5,3. (27)

The node 1 can retrieve cm,2
1,3 from the coded symbol Xm

2,1

transmitted by node 2, since it can compute cm,2
4,1 from the

shares in M1 and cancel out Tm
2,1. Similarly, it can retrieve

cm,4
1,3 , cm,3

1,4 , and cm,5
1,4 as well. Hence, node 1 can compute

D−1[cm1,1, c
m
1,2, c

m
1,3, c

m
1,4]

T for each m ∈ [2] and retrieve the
IVs required for computing the output function ϕk. Also, it
does not obtain any additional coded IVs not related to output
function ϕk. Given the access structure of the (2, 4) non-
perfect secret-sharing scheme used (Cauchy matrix), having
2 shares related to other output functions (hence, two coded
IVs related to other output functions) maintains the secrecy.

Each node k stores 4 shares {Am
f : m ∈ [2], pf,k =

∗, f ∈ [4]}. Thus, the computation load is 4∗w∗5
4∗w = 5. In

total 10 coded symbols are transmitted across the nodes. The
symbols corresponding to the entries 1 and 2 in the PDA
P1 are of size t

2 bits, whereas symbols corresponding to the
entries 3 and 4 are of size t bits. Thus, the communication
load is Lscc =

(t
2∗6+t∗4)∗2

5∗4∗t = 0.7. For non-secure coded
computing, the computation and communication loads are 2.5
and 0.35, respectively [5]. Hence, the corresponding values
are 2 times higher as compared to the non-secure coded
computing scenario.

Now, we consider the g−regular PDAs obtained using
Algorithm 2. They are the PDAs which represent the coded
caching scheme proposed in [18]. We characterize the achiev-
able computation-communications load points for secure data
shuffling and secure coded computing DC models using these
PDAs.

Theorem 3. Consider a set of g−regular PDAs{
(r + 1)-regular

(
K,

(
K

r

)
,

(
K − 1

r − 1

)
,

(
K

r + 1

))
PDA :

r ∈ [K − 1]

}
(28)

constructed using Algorithm 2, for some positive integers

7

K and r. This set of PDAs corresponds to secure data
shuffling DC models having K nodes achieving computation
and communication loads which are given by a piecewise
linear curve with corner points

(r, Ldc
sds(r)) =

(
r,
1

r

(
1− r

K

))
, ∀r ∈ [K − 1]. (29)

Algorithm 2 r + 1-regular
(
K,
(
K
r

)
,
(
K−1
r−1

)
,
(

K
r+1

))
PDA

construction for some positive integers K and r such that
r ∈ [K − 1].

1: procedure 1: Arrange all subsets of size r+1 from [K]
in lexicographic order and for any subset T ′ of size r+1,
define yr+1(T

′) to be its order.
2: end procedure 1
3: procedure 2: OBTAIN AN ARRAY DK,r OF SIZE

(
K
r

)
×K .

Denote the rows by the sets in {T ⊂ [K], |T | = r} and
columns by the indices in {k : k ∈ [K]}. Define each
entry dT,k corresponding to the row T and the column k
as

dT,k =

{
∗, if |T ∩ k| ≠ 0

yr+1(T ∪ k), if |T ∩ k| = 0

}
. (30)

4: end procedure 2

Remark 3. It can be observed that the computation-
communication trade-off achievable with secure data shuffling,
as demonstrated by Theorem 3, aligns with the bound estab-
lished in the context of the non-secure communication scheme
as in (5).

Theorem 4. Consider a set of g−regular PDAs{
(r′ + 1)-regular

(
K,

(
K

r′

)
,

(
K − 1

r′ − 1

)
,

(
K

r′ + 1

))
PDA :

r′ ∈ [K − 1]

}
(31)

constructed using Algorithm 2, for some positive integers
K and r′. This set of PDAs corresponds to secure coded
computing DC models having K nodes achieving computation
and communication loads which are given by a piecewise
linear curve with corner points

(r, Ldc
scc(r)) =

(
Kr′

K − r′
,
1

r′

)
, ∀r′ ∈ [K − 1]. (32)

Remark 4. The computation-communication trade-off achiev-
able with secure coded computing, as indicated by Theorem
4, scales by a factor of K

K−r′ compared to the non-secure
communication scheme as in (5). As the value of r′ increases,
the computation load increases significantly. Consequently,
this scheme demonstrates its effectiveness in scenarios where
r′ is relatively low.

IV. EXTENSION TO MADC MODELS

In this section, we extend our results for secure data
shuffling and secure coded computing to MADC models.
The set of g−regular MRAs obtained using Algorithm 1 to
illustrate coding scheme for MADC models with CT is indeed
g−regular PDAs with Z =

(
Λ
r

)
−
(
Λ−α
r

)
[8]. We consider

that set of g−regular PDAs and obtain the computation-
communication points achievable for secure data shuffling and
secure coded computing in Theorem 5 and 6 respectively. The
proofs of Theorems 5 and 6 are provided in Sections IX and
X, respectively.

Theorem 5. Consider a set of g−regular PDAs{
g-regular

((
Λ

α

)
,

(
Λ

r

)
,

(
Λ

r

)
−
(
Λ− α

r

)
,

(
Λ

α+ r

))

PDA : r ∈ [Λ− α], g =

(
r + α

r

)}
(33)

constructed using Algorithm 1, for some positive integers Λ
and α such that α ∈ [Λ − 1] . This set of PDAs corresponds
to secure data shuffling MADC models with CT having Λ
mapper nodes and K =

(
Λ
α

)
reducer nodes such that each

reducer node is connected to distinct α mapper nodes. The
computation and communication loads achievable are given
by a piecewise linear curve with corner points

(r, Lmadc
sds (r)) =

(
r,

(
Λ−α
r

)(
Λ
r

) ((
r+α
r

)
− 1
)) ,∀r ∈ [Λ− α].

(34)

Theorem 6. Consider a set of g−regular PDAs{
g-regular

((
Λ

α

)
,

(
Λ

r′

)
,

(
Λ

r′

)
−
(
Λ− α

r′

)
,

(
Λ

α+ r′

))

PDA : r′ ∈ [Λ− α], g =

(
r′ + α

r′

)}
(35)

constructed using Algorithm 1, for some positive integers Λ
and α such that α ∈ [Λ − 1] . This set of PDAs corresponds
to secure coded computing MADC models with CT having Λ
mapper nodes and K =

(
Λ
α

)
reducer nodes such that each

reducer node is connected to distinct α mapper nodes. The
computation and communication loads achievable are given
by a piecewise linear curve with corner points

(r, Lmadc
scc (r)) =

(
r′
(
Λ
r′

)(
Λ−α
r′

) , 1(
r′+α
r′

)
− 1

)
,∀r′ ∈ [Λ− α].

(36)

Remark 5. Theorem 5 demonstrates that secure data shuf-
fling achieves a computation-communication trade-off. This
trade-off aligns with the bounds established for non-secure
communication schemes (as described in (10)). Theorem 6
reveals that secure coded computing achieves a different trade-

off. Specifically, it scales by a factor of (Λ
r′)

(Λ−α
r′)

compared to

8

321

12
Reducer

Nodes

Mapper

Nodes
4

342413 14 23

Broadcast Channel

Fig. 2: MADC model corresponding to Example 6.

the non-secure communication scheme (as in (10)). Notably,
as the value of r′ increases, the computation load increases
significantly. In summary, this scheme proves effective in
scenarios where r′ is relatively low. This observation mirrors
our previous results with DC models.

Remark 6. When α = 1, the PDA that we obtain using Algo-
rithm 1 is equivalent to the PDA obtained using Algorithm 2
which corresponding to the PDA for the coded caching scheme
in [18].

Now, we demonstrate our scheme for MADC models with the
help of an example.

Example 6. Consider the following 6−regular (6, 6, 5, 1) PDA
P4.

P4 =

{12} {13} {14} {23} {24} {34}


Am

{12} ∗ ∗ ∗ ∗ ∗ 1
Am

{13} ∗ ∗ ∗ ∗ 1 ∗
Am

{14} ∗ ∗ ∗ 1 ∗ ∗
Am

{23} ∗ ∗ 1 ∗ ∗ ∗
Am

{24} ∗ 1 ∗ ∗ ∗ ∗
Am

{34} 1 ∗ ∗ ∗ ∗ ∗

(37)
Consider a MADC model with CT having Λ = 4 mapper nodes
denoted by [4], and K =

(
Λ
α

)
= 6 reducer nodes, denoted by

{12, 13, 14, 23, 24, 34}, where α = 2, as shown in Fig. 2.
Assume that we have N = 6 input files

{W 1
1 ,W

2
1 ,W

3
1 ,W

4
1 ,W

5
1 ,W

6
1 }, each of size w bits, and

Q = 6 output functions {ϕ12, ϕ13, ϕ14, ϕ23, ϕ24, ϕ34} to
be computed across the reducer nodes. The reducer node
U ∈ {12, 13, 14, 23, 24, 34} computes the output function
ϕU . We partition N = 6 files into N/(F − Z) = 6 disjoint
batches Bm, for m ∈ [6], i.e., we have

B1 = {W 1
1 }, B2 = {W 2

1 }, B3 = {W 3
1 }, B4 = {W 4

1 },
B5 = {W 5

1 }, B6 = {W 6
1 }. (38)

For each batch Bm,m ∈ [6], we use (5, 6) non-perfect
secret sharing scheme to generate six shares {Am

T : T ∈
{12, 13, 14, 23, 24, 34}}. For each λ ∈ [4], mapper node λ
is assigned the set of shares in Am

T ,∀m ∈ [6] if λ ∈ T , i.e.,
we have

M1 = {Am
{12}, A

m
{13}, A

m
{14} : m ∈ [6]},

M2 = {Am
{12}, A

m
{23}, A

m
{24} : m ∈ [6]},

M3 = {Am
{13}, A

m
{23}, A

m
{34} : m ∈ [6]},

M4 = {Am
{14}, A

m
{24}, A

m
{34} : m ∈ [6]}. (39)

Each mapper node λ computes the linear map functions,

referred as coded IVs, for each assigned input share, i.e., it
computes the coded IVs in the set {cm

Û,T
= gÛ (A

m
T) : Û ∈

{12, 13, 14, 23, 24, 34}, Am
T ∈ Mλ}. The rows in the PDA P4

represent the shares {Am
T : T ⊂ [4], |T | = 2} and the columns

represent the reducer nodes {U : U ⊂ [4], |U | = 2}.
Recall that SU denotes the set of all integers present in

column U , for U ∈ {12, 13, 14, 23, 24, 34}. For each U, s ∈
SU , and m ∈ [6], a secret key Tm

U,s of size t
5 bits is generated

uniformly and independently from the finite field F
2

t
5

. Each
reducer node has accessible to the shares and secret keys as
follows:

R{12} = {Am
{12}, A

m
{13}, A

m
{14}, A

m
{23}, A

m
{24}, T

m
{12},1, T

m
{13},1,

Tm
{14},1, T

m
{23},1, T

m
{24},1, T

m
{34},1 : m ∈ [6]}

R{13} = {Am
{12}, A

m
{13}, A

m
{14}, A

m
{23}, A

m
{34}, T

m
{12},1, T

m
{13},1,

Tm
{14},1, T

m
{23},1, T

m
{24},1, T

m
{34},1 : m ∈ [6]}

R{14} = {Am
{12}, A

m
{13}, A

m
{14}, A

m
{24}, A

m
{34}, T

m
{12},1, T

m
{13},1,

Tm
{14},1, T

m
{23},1, T

m
{24},1, T

m
{34},1 : m ∈ [6]}

R{23} = {Am
{12}, A

m
{13}, A

m
{23}, A

m
{24}, A

m
{34}, T

m
{12},1, T

m
{13},1,

Tm
{14},1, T

m
{23},1, T

m
{24},1, T

m
{34},1 : m ∈ [6]}

R{24} = {Am
{12}, A

m
{14}, A

m
{23}, A

m
{24}, A

m
{34}, T

m
{12},1, T

m
{13},1,

Tm
{14},1, T

m
{23},1, T

m
{24},1, T

m
{34},1 : m ∈ [6]}

R{34} = {Am
{13}, A

m
{14}, A

m
{23}, A

m
{24}, A

m
{34}, T

m
{12},1, T

m
{13},1,

Tm
{14},1, T

m
{23},1, T

m
{24},1, T

m
{34},1 : m ∈ [6]}. (40)

Each reducer node U can retrieve all coded IVs in the set

VU = {cm
Û,T

: Û ∈ {12, 13, 14, 23, 24, 34}, Am
T ∈ RU}.

(41)

Consider the first column, i.e., column with index U = {12}
of P4. The set of all integers present in this column is
S{12} = {1}. The coded IVs for the output function ϕ12 which
needs to be computed by the reducer node {12} and can be
computed from the share Am

{34}, for m ∈ [6] is cm{12},{34} =
g{12}(A

m
{34}). For the entry s = 1 ∈ S{12}, the other entries

which are 1 are in the columns {13}, {14}, {23}, {24}, and
{34}. Hence, we partition the symbols in cm{12},{34} into
(g − 1) = 5 packets, each with equal size such that

cm{12},{34}=

{
c
m,{13}
{12},{34}, c

m,{14}
{12},{34}, c

m,{23}
{12},{34}, c

m,{24}
{12},{34}, c

m,{34}
{12},{34}

}
.

(42)

Similarly, for each column U , we consider the coded IVs for
the output function ϕU which needs to be computed by the
reducer node U and can be computed from the shares not
accessible to it, and partition them into 5 packets of equal
sizes as follows.

cm{13},{24}=

{
c
m,{12}
{13},{24}, c

m,{14}
{13},{24}, c

m,{23}
{13},{24}, c

m,{24}
{13},{24}, c

m,{34}
{13},{24}

}
cm{14},{23}=

{
c
m,{12}
{14},{23}, c

m,{13}
{14},{23}, c

m,{23}
{14},{23}, c

m,{24}
{14},{23}, c

m,{34}
{14},{23}

}
cm{23},{14}=

{
c
m,{12}
{23},{14}, c

m,{13}
{23},{14}, c

m,{14}
{23},{14}, c

m,{24}
{23},{14}, c

m,{34}
{23},{14}

}
cm{24},{13}=

{
c
m,{12}
{24},{13}, c

m,{13}
{24},{13}, c

m,{14}
{24},{13}, c

m,{23}
{24},{13}, c

m,{34}
{24},{13}

}
cm{34},{12}=

{
c
m,{12}
{34},{12}, c

m,{13}
{34},{12}, c

m,{14}
{34},{12}, c

m,{23}
{34},{12}, c

m,{24}
{34},{12}

}
.

(43)

9

Each reducer node U transmits one coded symbol Xm
U,1, for

each m ∈ [6]. The coded symbols transmitted by the reducer
nodes for each m ∈ [6] are as follows.

Xm
{12},1 =c

m,{12}
{34},{12} ⊕ c

m,{12}
{24},{13} ⊕ c

m,{12}
{23},{14} ⊕ c

m,{12}
{14},{23}

⊕ c
m,{12}
{13},{24} ⊕ Tm

{12},1,

Xm
{13},1 =c

m,{13}
{34},{12} ⊕ c

m,{13}
{24},{13} ⊕ c

m,{13}
{23},{14} ⊕ c

m,{13}
{14},{23}

⊕ c
m,{13}
{12},{34} ⊕ Tm

{13},1,

Xm
{14},1 =c

m,{14}
{34},{12} ⊕ c

m,{14}
{24},{13} ⊕ c

m,{14}
{23},{14} ⊕ c

m,{14}
{13},{24}

⊕ c
m,{14}
{12},{34} ⊕ Tm

{14},1,

Xm
{23},1 =c

m,{23}
{34},{12} ⊕ c

m,{23}
{24},{13} ⊕ c

m,{23}
{14},{23} ⊕ c

m,{23}
{13},{24}

⊕ c
m,{23}
{12},{34} ⊕ Tm

{23},1,

Xm
{24},1 =c

m,{24}
{34},{12} ⊕ c

m,{24}
{23},{14} ⊕ c

m,{24}
{14},{23} ⊕ c

m,{24}
{13},{24}

⊕ c
m,{24}
{12},{34} ⊕ Tm

{24},1,

Xm
{34},1 =c

m,{34}
{24},{13} ⊕ c

m,{34}
{23},{14} ⊕ c

m,{34}
{14},{23} ⊕ c

m,{34}
{13},{24}

⊕ c
m,{34}
{12},{34} ⊕ Tm

{34},1. (44)

The reducer node {12} can retrieve c
m,{13}
{12},{34} from the

coded symbol Xm
{13},1 transmitted by the reducer node {13},

since it has access to rest of the coded IVs and the se-
cret key in Rm

{12}. Similarly, reducer node {12} can re-

trieve c
m,{14}
{12},{34}, c

m,{23}
{12},{34}, c

m,{24}
{12},{34}, and c

m,{34}
{12},{34} from

Xm
{14},1, X

m
{23},1, X

m
{24},1, and Xm

{34},1 respectively. Hence, it
can compute the function ϕ12. It can be verified that all other
reducer nodes can retrieve all required symbols needed to
compute the respective functions.

Each mapper node λ stores 3 ∗ 6 = 18 shares. Thus, the
computation load is 18∗w∗4

6∗w = 12. A total of 6 ∗ 6 coded
symbols are transmitted, each with length t

5 bits. Hence, the
communication load is Lmadc

scc = t∗6∗6
5∗6∗6∗t =

1
5 . For non-secure

coded computing, the computation and communication loads
are 2 and 1/30, respectively [5]. Hence, the corresponding
values are 6 times higher as compared to the non-secure coded
computing scenario.

V. PROOF OF THEOREM 1

We present the proof of Theorem 1 in this section. First,
we assume that there are ηF files, {Wm

f : f ∈ [F],m ∈
[η]}, for some positive integer η. The ηF files are divided by
grouping the files into F disjoint batches {B1, B2, . . . , BF }
each containing η files such that Bf = {Wm

f : m ∈ [η]}, for
f ∈ [F].

A. Map Phase of Theorem 1

Recall that Sk denotes the set of all integers present in the
column indexed by k ∈ [K] and gs denotes the number of
occurrences of the integer s ∈ [S] in the PDA. The nodes are
filled as follows:

• Node k ∈ [K] stores all the files from batch Bf if the
entry corresponding to the row indexed by f and the
column indexed by k in the PDA P is the symbol “ ∗ ”,
i.e., if pf,k = ∗, for f ∈ [F].

• For each k ∈ [K], s ∈ Sk, and m ∈ [η], a random
variable Tm

k,s of size t
gs−1 bits, referred to as a secret key,

is generated uniformly from F
2

t
gs−1

such that the keys
are independent of each other and the map functions.

• If s appears in the column indexed by k of P , i.e., if
pf,k = s for some f ∈ [F], then,
– the secret key Tm

k̂,s
,∀m ∈ [η], is stored at node k, if

pf̂ ,k̂ = s for some f̂ ∈ [F], k̂ ∈ [K].
The subscript s indicates the transmission instance during
which the corresponding key is utilized to encrypt messages
during the shuffling phase. The content stored at node k ∈ [K]
is as follows:

Mk =

{ ⋃
f∈[F]:

pf,k=∗,m∈[η]

Wm
f

}⋃{ ⋃
k̂∈[K],f̂∈[F]:

s∈Sk,pf̂,k̂=s,m∈[η]

Tm
k̂,s

}
.

(45)

Each node k computes all the map functions for the files in
the set Mk, i.e., it computes vmq,f = gq(W

m
f), for q ∈ [K],

and Wm
f ∈ Mk, where f ∈ [F] and m ∈ [η].

B. Shuffle Phase of Theorem 1

Each node k ∈ [K] is responsible for computing an output
function ϕk. The set of all IVs related to the output function
ϕk it can compute using the accessible files is {vmk,f : pf,k =
∗, f ∈ [F],m ∈ [η]}. To complete the computation, node k
needs the remaining IVs, represented by the set {vmk,f : pf,k ̸=
∗, f ∈ [F],m ∈ [η]}. These IVs are necessary for computing
ϕk.

Consider each pair (f, k) where f ∈ [F] and k ∈ [K].
Suppose pf,k = s, for s ∈ [S]. Assume that the remaining
gs − 1 occurrences of s are distributed across {(fi, ki) : i ∈
[gs − 1]} such that pf1,k1

= pf2,k2
= . . . = pfgs−1,kgs−1

= s.
Importantly, for each ki ∈ {k1, k2, . . . , kgs−1} we know that
pf,ki

= ∗ (since f ̸= fi), as indicated by condition A3-2. We
partition the symbols in vmk,f into gs−1 packets each of equal
size, for each m ∈ [η], i.e., we have

vmk,f = {vm,k1

k,f , vm,k2

k,f , . . . , v
m,kgs−1

k,f },∀m ∈ [η]. (46)

The shuffling phase consists of S transmission instances,
where each transmission instance is denoted by s ∈ [S].
During the transmission instance s ∈ S, we consider a set
of nodes Us = {k : pf,k = s, k ∈ [K], f ∈ [F]}. For each
k ∈ Us, node k multicasts the following messages of length

t
gs−1 bits each:

Xm
k,s =

(⊕
(u,e)∈[F]×([K]/k):

pu,e=s

vm,k
e,u

)⊕
Tm
k,s,∀m ∈ [η]. (47)

Thus, the messages transmitted by node k can be expressed
as

Xk = ∪s∈[S]:pf,k=s,f∈[F],m∈[η]X
m
k,s. (48)

The security of message delivery is ensured by XOR-ing each
message with a secret key. Thus, eavesdroppers attempting
to wiretap the shared link are thwarted. These eavesdroppers

10

remain uninformed about the IVs since they lack access to the
uniformly distributed keys. The node k can create the message
Xm

k,s from the IVs accessible to it. In fact, for each (u, e) in
the sum (47), there exists a corresponding f ∈ [F] such that
pu,e = pf,k = s. Since e ̸= k, we deduce that u ̸= f and
pu,k = ∗ according to condition A3-2. Consequently, the node
k can compute the IVs within the set {vme,u : m ∈ [η]}.

C. Reduce Phase of Theorem 1

During the reduce phase, the node k computes the output
function ϕk. Upon receiving the messages {Xj}j∈[K]\k, each
node k decodes the IVs {vmk,f : f ∈ [F],m ∈ [η]} with
the help of the secret keys and the IVs it can compute.
Specifically, it needs to determine the set of IVs {vmk,f : Wm

f ∈
W\Mk, f ∈ [F],m ∈ [η]}. Without loss of generality, assume
that pf,k = s ∈ Sk. For each ki ∈ {k1, k2, . . . , kgs−1}, as
defined in (46), node k retrieves the symbol vm,ki

k,f from the
message Xm

ki,s
transmitted by the node ki for each m ∈ [η]

i.e., we have

Xm
ki,s =

(⊕
(u,e)∈[F]×([K]/ki):

pu,e=s

vm,ki
e,u

)⊕
Tm
ki,s. (49)

The node k stores secret keys denoted as Tm
ki,s

, where m ∈ [η].
Hence, it can cancel out Tm

ki,s
from (49). In (49), for e ̸= k,

pu,e = pf,k = s implies that pu,k = ∗ by A3-2. Hence, node
k can compute vm,ki

e,u . For e = k, pu,e = pf,k = s implies
u = f by A3-1. Therefore, the node k can retrieve the symbol
vm,ki

k,f from the message in (49) by canceling out the rest of
the symbols. By collecting all the symbols vm,ki

k,f in (46), node
k can compute ϕk.

Now, we evaluate the computation and communication loads
for this scheme. Each node stores ηZw bits corresponding to
the files {Wm

f : pf,k = ∗, f ∈ [F],m ∈ [η]} in (45). Hence,
the computation load is r = ηZw∗K

ηFw =ZK
F . For each s ∈ [S]

occurring gs times, there are ηgs associated messages sent,
each of size t

(gs−1) bits by (47). Let Sg denote the number
of integers which appear exactly g times in the array. The
communication load is given by

Lsds =
1

KηFt

S∑
s=1

gsηt

(gs − 1)
=

1

KF

K∑
g=2

gSg

(g − 1)

=

∑K
g=2 Sg

KF
+

K∑
g=2

Sg

KF (g − 1)

=
S

KF
+

K∑
g=2

Sg

KF (g − 1)
. (50)

VI. PROOF OF THEOREM 2
We present the proof of Theorem 2 in this section. Based

on a (K,F,Z, S) PDA P = [pf,k] with f ∈ [F] and k ∈ [K],
a secure coded computing scheme for a DC model having K
nodes can be obtained as follows.

Assume that there are η(F − Z) files, {Wm
n : n ∈

[F −Z],m ∈ [η]}, for some positive integer η. The η(F −Z)
files are divided by grouping the files into η disjoint batches

{B1, B2, . . . , Bη} each containing (F − Z) files such that
Bm = {Wm

n : n ∈ [F − Z]}.
We employ non-perfect secret sharing schemes [15] to

encode the files in each batch. These schemes are designed
such that accessing a subset of shares does not provide any
information about the secret, which in this case is the files in a
batch. Only if all shares are combined can the original files be
reconstructed. This property ensures robustness against partial
information leakage and enhances the security of the encoded
files. The non-perfect secret sharing scheme is next defined.

Definition 9. For each batch Bm,m ∈ [η], with size w(F−Z)
bits, a (Z,F) non-perfect secret sharing scheme generates F
shares Am

1 , Am
2 , . . . , Am

F such that accessing any Z shares
does not reveal any information about the batch Bm, i.e., we
have

I(Bm;A) = 0,∀A ⊆ {Am
1 , Am

2 , . . . , Am
F }, |A| ≤ Z. (51)

Furthermore, the knowledge of F shares is sufficient to recon-
struct the secret (batch), i.e., we have

H(Bm|Am
1 , Am

2 , . . . , Am
F) = 0. (52)

In our scenario, a (Z,F) non-perfect secret sharing scheme
has been identified, where shares are of size 1

F−Z times the
size of the secret (w bits) [15]. In contrast to perfect secret
sharing schemes [16], which allocate shares of size equal to
the secret size (w(F −Z) bits), non-perfect schemes are more
efficient in terms of computation and communication loads.
An example of non-perfect secret sharing schemes mentioned
in the literature are ramp threshold secret sharing schemes, as
described in [15].

For each batch Bm,m ∈ [η], the (F − Z) files corre-
sponding to Bm arranged in a column forms the message
vector, which is a (F − Z) × 1 column vector Wm :=
[Wm

1 ,Wm
2 , . . . ,Wm

(F−Z)]
T , each element of which belongs

to F2w . We also select Z random variables uniformly and
independently from the finite field F2w to form the key vector
Vm := [V m

1 , V m
2 , . . . , V m

Z]T of dimension Z × 1. Let the
share vector, corresponding to Bm be a F × 1 column vector
Am = [Am

1 , Am
2 , . . . , Am

F]T , where Am
f ∈ F2w ,∀f ∈ [F].

Define the linear mapping Π as the transformation that maps
the message vector Wm to the share vector Am corresponding
to batch Bm. This mapping is represented as

Π : FF−Z
2w × FZ

2w → FF
2w (53)

such that Am = Π(Wm,Vm) satisfies the following condi-
tions:

• (i) H(Wm|Am) = 0 (correctness) and;
• (ii) H(Wm|A) = H(Wm), A ⊂ {Am

1 , . . . , Am
F };

|A| ≤ Z (secrecy).
To implement the linear mapping as described above, an F×F
Cauchy matrix D [19] is utilized, operating in the finite field
F2z , where z ≥ 1 + log2 F . See [17] for a similar scheme.

Using a Cauchy matrix facilitates the generation of the
share vectors Am from the message vectors Wm in a manner
consistent with the conditions of the non-perfect secret sharing
scheme. Condition (i) stipulates that F shares are adequate for
the recovery of the message vector Wm, while (ii) ensures

11

that any subset of Z or fewer shares does not disclose any
information about the batch. For each batch Bm, the key
vector Vm is concatenated below Wm to form the vector
Ym = [Wm;Vm] of dimension F × 1. Then, the Cauchy
matrix D is multiplied with Ym over F2z to obtain the share
vector Am, expressed as

Am
F×1 = DF×F .Y

m
F×1. (54)

Therefore, for each f ∈ [F], a share Am
f is computed as

Am
f =

∑
j∈[F]

df,jY
m
j =

F−Z∑
j=1

df,jW
m
j +

F∑
j=F−Z+1

df,jV
m
j−(F−Z).

(55)

Here, each share Am
f is a linear combination of the message

vector and key vector, with coefficients derived from the
Cauchy matrix. Let vmq,j = gq(W

m
j) be the IV obtained by

mapping the input file Wm
j using the linear map function gq(·),

for q ∈ [K], j ∈ [F−Z], and m ∈ [η]. Also, let cmq,f = gq(A
m
f)

be linear map function values, referred as coded IV, for each
q ∈ [K] and Am

f , where f ∈ [F], and m ∈ [η]. Then, we
have

cmq,f = gq(A
m
f)=

F−Z∑
j=1

df,jv
m
q,j+

F∑
j=F−Z+1

df,jgq(V
m
j−(F−Z)).

(56)

In other words, each coded IV cmq,f is computed based on
the corresponding share Am

f , utilizing the mapping function
gq(·). For each q ∈ [K] and m ∈ [η], F coded IVs
corresponding to {cmq,f : f ∈ [F]} arranged in a column
forms the coded IV vector, which is a F × 1 column vector,
Cm

q := [cmq,1, c
m
q,2, . . . , c

m
q,F]

T , where each element of which
belongs to F2t . Similarly, the map function values {vmq,f : f ∈
[F −Z]}∪{gq(V m

f) : f ∈ [Z]} forms a F ×1 column vector,
gm
q := [vmq,1, . . . , v

m
q,F−Z , gq(V

m
1), . . . , gq(V

m
Z)]T , where each

element of which belongs to F2t . Hence, we have

Cm
q =


cmq,1
cmq,2

...
cmq,F

 =


d1,1 d1,2 . . . d1,F
d2,1 d2,2 . . . d2,F

...
...

. . .
...

dF,1 dF,2 . . . dF,F





vmq,1
vmq,2

...
vmq,F−Z
gq(V m

1)
gq(V m

2)
...

gq(V m
Z)


= D.gm

q .

(57)

Once the coded IV vector is available, node k can compute
D−1Cm

k for each m ∈ [η]. Notably, D is known to all nodes,
and since a Cauchy matrix is full rank, D−1 always exists.
Consequently, node k can retrieve {vmk,f : f ∈ [F−Z]}, where
the first F − Z elements correspond to these IVs. With these
IVs, node k can then proceed to compute the output function.

A. Map, Shuffle, and Reduce Phases of Theorem 2

The map phase is similar to that in Section V-A except
that each node k stores a subset of shares instead of files as
follows:

Mk =

{ ⋃
f∈[F]:

pf,k=∗,m∈[η]

Am
f

}⋃{ ⋃
k̂∈[K],f̂∈[F]:

s∈Sk,pf̂,k̂
=s,m∈[η]

Tm
k̂,s

}
. (58)

Each node k computes the map functions of the shares stored
in Mk. Specifically, it calculates the coded IV cmq,f = gq(A

m
f)

for each q ∈ [K], and Am
f ∈ Mk, where f ∈ [F] and m ∈ [η].

The shuffling phase is also similar to that in Section
V-B except that instead of exchanging IVs, coded IVs are
exchanged. As each message is XOR’ed with a secret key, the
delivery is secure against external eavesdroppers wiretapping
on the shared link. Thus, eavesdroppers do not obtain any
information about the coded IVs as they do not have access
to the secret keys.

In the reduce phase, each node k first retrieves all the coded
IVs {cmk,f : f ∈ [F],m ∈ [η]} using the secret keys and the
coded IVs it can compute. From these coded IVs, it decodes
the set of IVs {vmk,f : f ∈ [F − Z],m ∈ [η]} using the
Cauchy matrix D, and finally computes the output function
assigned to it. Each node stores ηZw bits corresponding to the
shares {Am

f : pf,k = ∗, f ∈ [F],m ∈ [η]} in (58). Hence, the
computation load is r = ηZw∗K

η(F−Z)w = ZK
F−Z . The communication

load is calculated similar to (50) and is given by

Lscc=
1

Kη(F − Z)t

S−1∑
s=0

gsηt

(gs − 1)
=

1

K(F − Z)

S+

K∑
g=2

Sg

(g − 1)


(59)

where Sg denotes the number of integers which appear exactly
g times in the array.

B. Proof of Secrecy of Theorem 2

To demonstrate that nodes gain no information about the
content of any IVs corresponding to the output functions not
assigned to them, we first establish that node k, for k ∈ [K],
cannot obtain any information about {vmq,f : q ∈ [K]\k, f ∈
[F −Z],m ∈ [η]} from the coded IVs it can compute. Denote
an arbitrary Z-sized subset of Cm

q as cmq,i1 , c
m
q,i2

, . . . , cmq,iZ .
Therefore, with the encoding, we have


Cm

q,i1
Cm

q,i2
...

Cm
q,iZ

 =


di1,1 di1,2 . . . di1,F
di2,1 di2,2 . . . di2,F

...
...

. . .
...

diZ ,1 diZ ,2 . . . diZ ,F





vmq,1
vmq,2

...
vmq,F−Z
gq(V m

1)
gq(V m

2)
...

gq(V m
Z)



= D1


vmq,1

...
vmq,F−Z

+D2

gq(V
m
1)

...
gq(V m

Z)


= D1v

m
q +D2ĝ

m
q (60)

where D1 and D2 are submatrices of D of dimensions Z ×
(F − Z) and Z × Z, respectively.

For the subset of shares to leak information, the key vector
ĝm
q must be decoupled from the corresponding IV vector vm

q ,
i.e., D1v

m
q ̸= 0 and D2ĝ

m
q = 0. As all submatrices of a

Cauchy matrix are full rank, the columns of D2 are linearly
independent. Hence, such ĝm

q does not exist. This implies that

12

a linear combination involving only vm
q cannot be obtained,

resulting in zero information leakage from the mapping. More-
over, to demonstrate that an arbitrary node k cannot obtain any
information about {vmq,f : q ∈ [K]\k, f ∈ [F − Z],m ∈ [η]}
from the transmitted messages, observe that each message is
encrypted with a key available only to the nodes for which
the message is useful. For a transmission Xm

k̂,s
made by some

node k̂ ∈ [K], another node k cannot decode any information
if s does not appear in the column indexed by k of the PDA.
This follows since node k does not have any knowledge of
Tm
k̂,s

. Thus, node k cannot obtain any information about the
linear combination encrypted by this key.

VII. PROOF OF THEOREM 3
In this section, we prove Theorem 3, i.e., we obtain a secure

data shuffling scheme for DC models with K nodes using the
g−regular PDAs DK,r, for r ∈ [K − 1], constructed using
Algorithm 2.

The input database is split into F =
(
K
r

)
disjoint batches

BT with T ⊂ [K] and |T | = r, for r ∈ [K − 1]. The node
k ∈ [K] is assigned all batches BT if λ ∈ T . Hence, the

computation load is (K−1
r−1)K
(Kr)

= r.
It can be observed that the array DK,r corresponds to a

DC model, with the rows corresponding to the batches and
the columns corresponding to the nodes. There is a ∗ in
an entry corresponding to the row T and column k if and
only if the node represented by k has access to the batch
BT , i.e., if and only if |T ∩ k| ̸= 0. The Map, Shuffle and
Reduce phases follow from the proof of Theorem 1. Hence, the
communication load is given by S

KF +
∑K

g=2
Sg

KF (g−1) , where
Sg is the number of integers in [S] which appears exactly g
times in the PDA DK,r. In this case all integers appear exactly
r + 1 times. Hence, we have

Ldc
sds(r) =

S

KF

(
1 +

1

(r + 1− 1)

)
=

(K
r+1

)
K
(K
r

) (1 +
1

r

)
=

1

r

(
1−

r

K

)
.

(61)

VIII. PROOF OF THEOREM 4
In this section, we prove Theorem 4, i.e., we prove that

the g−regular PDAs DK,r′ , for r′ ∈ [K − 1], obtained using
Algorithm 2 represents secure coded computing DC models
with K nodes.

The input database is split into η = N
F−Z disjoint batches

Bm,m ∈ [η] each containing F − Z =
(
K
r′

)
−
(
K−1
r′−1

)
=(

K−1
r′−1

)
K−r′

r′ files, for r′ ∈ [K − 1]. We follow the same
procedure as in Section VI to generate F =

(
K
r′

)
shares

{Am
T : T ⊆ [K], |T | = r′} for each batch Bm,m ∈ [η].

Hence, the computation load is r =
(K−1
r′−1)K

(K−1
r′−1)

K−r′
r′

= r′K
K−r′ .

In the PDA DK,r′ , the rows correspond to the shares and
the columns correspond to the nodes. There is a ∗ in an entry
corresponding to the row T and column k if and only if the
node represented by k stores the share Am

T ,∀m ∈ [η], i.e., if
and only if |T ∩ k| ≠ 0. The Map, Shuffle and Reduce phases
follow from the proof of Theorem 2. Hence, the communica-
tion load is given by S

K(F−Z)+
∑K

g=2
Sg

K(F−Z)(g−1) , where Sg

is the number of integers in [S] which appears exactly g times
in the PDA DK,r′ . In this case, all integers appear exactly
r′ + 1 times. Hence, we have

Ldc
scc(r) =

S

K(F − Z)

(
1 +

1

(r′ + 1− 1)

)
=

(K
r′+1

)
K
((K−1

r′−1

)
K−r′

r′

) (1 +
1

r′

)
=

1

r′
. (62)

IX. PROOF OF THEOREM 5
In this section, we prove Theorem 5, i.e., we prove that the

g−regular PDAs DΛ,r,α obtained using Algorithm 1, for r ∈
[Λ−α] and α ∈ [Λ−1], represent secure data shuffling MADC
models with CT having Λ mapper nodes and K reducer nodes
such that each reducer node is connected to distinct α mapper
nodes.

The input database is split into F =
(
Λ
r

)
disjoint batches

BT with T ⊂ [Λ] and |T | = r. The mapper node λ ∈ [Λ]
is assigned all batches BT if λ ∈ T . Hence, the computation

load is (Λ−1
r−1)Λ
(Λr)

= r.

We have K =
(
Λ
α

)
reducer nodes, denoted by U = {U :

U ⊂ [Λ], |U | = α}, where there is a unique reducer node
connected to each subset of α mapper nodes and each reducer
node is labeled by a subset of size α in the set [Λ]. It can
be observed that the array DΛ,r,α corresponds to an MADC
model with CT, with the rows corresponding to the batches
and the column corresponding to the reducer nodes. There is
a ∗ in an entry corresponding to the row T and column U if
and only if the reducer node represented by the column U has
access to the batch BT , i.e., if and only if |T ∩ U | ̸= 0. This
matches our model.

Recall that SU denotes the set of all integers present in
the column indexed by U . For each U ∈ U , s ∈ SU , and
m ∈ [η], a random variable Tm

U,s of size t
g−1 bits, referred to

as a secret key, is generated uniformly from F
2

t
g−1

such that
the keys are independent of each other and the map functions,
where g =

(
r+α
r

)
. If s appears in the column indexed by U ,

i.e., if dT,U = s for some T , then we place the secret key
Tm
Û,s

,∀m ∈ [η], if dT̂ ,Û = s for some row indexed by T̂ and

column indexed by Û , at the reducer node U .
The Shuffle and Reduce phases follow from the proof of

Theorem 1. Hence, the communication load is given by S
KF +∑K

g=2
Sg

KF (g−1) , where Sg is the number of integers in [S]
which appears exactly g times in the PDA DΛ,r,α. In this
case, all integers appear exactly

(
r+α
r

)
times. Hence, we have

Lmadc
sds (r) =

S

KF
+

S

KF
((r+α

r

)
− 1
)

=

(Λ
α+r

)(Λ
α

)(Λ
r

) (1 +
1(r+α

r

)
− 1

)

=

(Λ
α+r

)(r+α
r

)
(Λ
α

)(Λ
r

) ((r+α
r

)
− 1
)

=
Λ!

(α+ r)!(Λ− α− r)!
×

(Λ− α)!α!

Λ!

×
(α+ r)!

α!r!
×

1(Λ
r

) ((r+α
r

)
− 1
)

13

=
(Λ− α)!

(Λ− α− r)!r!
×

1(Λ
r

) ((r+α
r

)
− 1
)

=

(Λ−α
r

)(Λ
r

) ((r+α
r

)
− 1
) . (63)

X. PROOF OF THEOREM 6

In this section, we prove Theorem 6, i.e., we prove that
the g−regular PDAs DΛ,r′,α obtained using Algorithm 1,
for r′ ∈ [Λ − α] and α ∈ [Λ − 1], represent secure coded
computing MADC models with CT having Λ mapper nodes
and K reducer nodes such that each reducer node connected
to distinct α mapper nodes.

The input database is split into η = N
F−Z disjoint batches

Bm,m ∈ [η] each containing F −Z =
(
Λ−α
r′

)
files. We follow

the same procedure as in Section VI to generate F =
(
Λ
r′

)
shares {Am

T : T ⊆ [K], |T | = r′} for each batch Bm,m ∈
[η] using (Z,F) =

((
Λ
r′

)
−
(
Λ−α
r′

)
,
(
Λ
r′

))
non-perfect secret

sharing scheme. The mapper node λ ∈ [Λ] is assigned all
shares Am

T , for m ∈ [η], if λ ∈ T . Hence, the computation

load is r =
(Λ−1
r′−1)Λ
(Λ−α

r′)
=

(Λ
r′)r

′

(Λ−α
r′)

.

We have K =
(
Λ
α

)
reducer nodes, denoted by U = {U :

U ⊂ [Λ], |U | = α}, where there is a unique reducer node
connected to each subset of α mapper nodes and each reducer
node is labeled by a subset of size α in the set [Λ]. Like
in Section IX, it can be observed that the array DΛ,r′,α

corresponds to an MADC model with CT, with the rows
corresponding to the shares and the columns corresponding
to the reducer nodes. There is a ∗ in an entry corresponding
to the row T and column U if and only if the reducer
node represented by the column U has access to the shares
Am

T ,m ∈ [η], i.e., if and only if |T ∩ U | ̸= 0. This matches
our model.

Recall that SU denotes the set of all integers present in the
column indexed by U . Similar to Section IX, for each U ∈
U , s ∈ SU , and m ∈ [η], a random variable Tm

U,s of size t
g−1

bits, referred to as a secret key, is generated uniformly from
F
2

t
g−1

such that the keys are independent of each other and the

map functions, where g =
(
r′+α
r′

)
. If s appears in the column

indexed by U , then we place the secret key Tm
Û,s

,∀m ∈ [η],

if dT̂ ,Û = s for some row indexed by T̂ and column indexed
by Û , at the reducer node U .

The Shuffle and Reduce phases follow from the proof
of Theorem 2. Hence, the communication load is given by

S
K(F−Z) +

∑K
g=2

Sg

K(F−Z)(g−1) , where Sg is the number of
integers in [S] which appears exactly g times in the PDA
DΛ,r′,α. In this case all the integers appear exactly

(
r′+α
r′

)
times. Hence, we have

Lmadc
scc (r) =

S

K(F − Z)
+

S

K(F − Z)
((r′+α

r′
)
− 1
)

=

(Λ
α+r′

)(Λ
α

)(Λ−α
r′
) (1 +

1(r′+α
r′
)
− 1

)

=

(Λ
α+r′

)(r′+α
r′
)

(Λ
α

)(Λ−α
r′
) ((r′+α

r′
)
− 1
)

=
Λ!

(α+ r′)!(Λ− α− r′)!
×

(Λ− α)!α!

Λ!

×
(α+ r′)!

α!r′!
×

1(Λ−α
r′
) ((r′+α

r′
)
− 1
)

=
(Λ− α)!

(Λ− α− r′)!r′!
×

1(Λ−α
r′
) ((r′+α

r′
)
− 1
)

=
1(r′+α

r′
)
− 1

. (64)

ACKNOWLEDGEMENT

This research is supported by the ZENITH Research and
Leadership Career Development Fund and the ELLIIT funding
endowed by the Swedish government.

REFERENCES

[1] S. Sasi and O. Günlü, “Secure Coded Distributed Computing,” IEEE Int.
Workshop on Sig. Proc. Advances in Wireless Commun. (SPAWC), Lucca,
Italy, Sep. 2024.

[2] S. Li, M. A. Maddah-Ali, Q. Yu and A. S. Avestimehr, “A Fundamental
Tradeoff Between Computation and Communication in Distributed Com-
puting,” in IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109-128, Jan.
2018.

[3] Q. Yan, S. Yang and M. Wigger, “Storage computation and communi-
cation: A fundamental tradeoff in distributed computing,” in Proc. IEEE
Inf. Theory Workshop, pp. 1-5, Guangzhou, China, Sept. 2018.

[4] Q. Yan, M. Cheng, X. Tang and Q. Chen, “On the Placement Delivery
Array Design in Centralized Coded Caching Scheme,” in IEEE Trans.
Inf. Theory, vol. 63, no. 9, pp. 5821-5833, Sep. 2017.

[5] Q. Yan, X. Tang and Q. Chen, “Placement delivery array and its
applications,” in Proc. IEEE Inf. Theory Workshop, pp. 1-5, Guangzhou,
China, Nov. 2018.

[6] S. Sasi and O. Günlü. “Rate-limited Shuffling for Distributed Computing,”
IEEE Int. Symp. Inf. Theory (ISIT), Athens, Greece, July 2024.

[7] B. Federico and P. Elia, “Multi-Access Distributed Computing,” in IEEE
Trans. Inf. Theory, vol. 70, no. 5, pp. 3385-3398, May 2024.

[8] S. Sasi, O. Günlü, and B. S. Rajan, “Multi-access Distributed Computing
Models from Map-Reduce Arrays,” IEEE Int. Symp. Inf. Theory (ISIT),
Athens, Greece, July 2024.

[9] R. Zhao, J. Wang, K. Lu, J. Wang, X. Wang, J. Zhou, and C. Cao,
“Weakly secure coded distributed computing,” Proc. of International
Conf. Ubiquitous Intelligence Comput., pp. 603- 610, 2018.

[10] J. Chen and C. W. Sung, “Weakly Secure Coded Distributed Computing
with Group-based Function Assignment,” IEEE Inf. Theory Workshop,
Mumbai, India, 2022, pp. 31-36.

[11] V. Ravindrakumar, P. Panda, N. Karamchandani, and V. Prabhakaran,
“Private Coded Caching,” in IEEE Trans. Inf. Forensics Security, vol.
13, no. 3, pp. 685-694, March 2018.

[12] A. Sengupta, R. Tandon and T. C. Clancy, “Fundamental limits of
caching with secure delivery,” in IEEE Trans. Inf. Forensics Security,
vol. 10, no. 2, pp. 355-370, 2015.

[13] A. A. Zewail and A. Yener, “Device-to-device secure coded caching,”
IEEE Trans. Inf. Forensics Security, vol. 15, pp. 1513-1524, 2020.

[14] S. S. Meel and B. S. Rajan, “Secretive Coded Caching from PDAs,”
IEEE 32nd Annual Int. Symp. on Personal, Indoor Mobile Radio Com-
mun., Helsinki, Finland, 2021, pp. 373-379.

[15] H. Yamamoto, “Secret sharing system using (k, L, n) threshold scheme,”
Electron. Commun. Jpn. (Part I: Commun.), vol. 69, no. 9, pp. 46-54,
1986.

[16] A. Shamir, “How to share a secret,” ACM Commun., vol. 22, no. 11,
pp. 612-613, Nov. 1979.

[17] K. Ma, S. Shao and J. Shao, “Secure Coded Caching with Colluding
Users,” Comput. Commun. IoT Applications, China, 2021, pp. 329-334.

[18] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” in
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[19] J. S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon Codes for
Fault-Tolerant Network Storage Applications,” in IEEE Int. Symp. Net.
Comput. Applications, pp. 173-180, 2006.

