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Abstract. Recently, [KLR24,BBL+24] proposed two algebraic attacks
on the Anemoi permutation [BBC+23]. In this note, we construct a
Gröbner basis for the ideal generated by the naive modeling of the
CICO problem associated to Anemoi, in odd and in even characteris-
tics, for one and several branches. We also infer the degree of the ideal
from this Gröbner basis, while previous works relied on upper bounds
[BBC+23,KLR24,BBL+24].

1 Introduction

In this note, we focus on algebraic techniques to solve the following version of
the CICO problem [BDPV11].

Problem 1 (Constrained Input Constrained Output) Given a permuta-
tion P : Fℓ

q × Fℓ
q → Fℓ

q × Fℓ
q, the CICO problem consists in finding a pair

(yin, yout) ∈ Fℓ
q × Fℓ

q such that P (0ℓ, yin) = (0ℓ, yout).

1.1 Polynomial system solving

We refer to [CLO15] for notions related to Gröbner bases. We will mostly use
the following definitions and results.

Definition 1. Let ≺ be a monomial order on a polynomial ring R, let f, g ∈
R be two non-zero polynomials and let µ

def
= lcm(LM≺(f),LM≺(g)). The S-

polynomial of the polynomial pair {f, g} with respect to ≺ is defined as

S(f, g)
def
= LC≺(g)

µ

LM≺(f)
f − LC≺(f)

µ

LM≺(g)
g.

Theorem 1 (Buchberger’s first criterion, Theorem 6 p. 86, [CLO15]).
Let I = ⟨G⟩ be an ideal of R. The set G = {g1, . . . , gℓ} is a Gröbner basis of I if
and only if for all 1 ≤ i < j ≤ ℓ, the S-polynomial S(gi, gj) reduces to 0 modulo
G (regardless of the order of the elements).

Proposition 1 (Buchberger’s second criterion, Prop. 4 p. 106, [CLO15]).
Let G be a finite set of polynomials in R and let f, g ∈ G whose leading mono-
mials are coprime. Then, the S-polynomial S(f, g) reduces to 0 modulo G.

Proposition 1 is known to be instrumental in the context of algebraic cryptanal-
ysis of symmetric schemes [BPW06]. It was recently used in the cryptanalysis of
several “arithmetization-oriented” primitives [BBL+24,Ste24a,Ste24b].
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1.2 Algebraic modelings of Anemoi

We refer to [BBC+23] for a complete description of the Anemoi permutation. In
this section, we detail its building blocks when the input is in F2

q. We denote the
linear layer byM(x, y) = (2x+y, x+y) and the round constants by (ci, di) for i ∈
{0..n− 1}, where n is the number of rounds. The S-box components correspond
to univariate polynomials Qγ(X), Qδ(X) and Xα whose expression depends on
the characteristic of the field. Using these notations, the naive modeling of the
CICO problem adopted in [BBC+23] is

Modeling 1 We call FCICO the system {f0, g0, . . . , fn−1, gn−1, x0, xn} in the
polynomial ring Fq[x0, y0, . . . , xn, yn], with

fi
def
= (xi + yi + ci + di − yi+1)

α
+Qγ(xi + yi + ci + di)

− (2xi + yi + 2ci + di),

gi
def
= (xi + yi + ci + di − yi+1)

α
+Qδ(yi+1)− xi+1.

Another basis for the ⟨FCICO⟩ ideal is {f0, h0, . . . , fn−1, hn−1, x0, xn}, where

hi
def
= fi − gi = Qγ(xi + yi + ci + di)− (2xi + yi + 2ci + di)−Qδ(yi+1) + xi+1.

In odd characteristic, the degree of ⟨FCICO⟩ was conjectured to be (α + 2)n

[BBC+23, Conjecture 2 p. 34]. In even characteristic, this degree seems to corre-
spond to a Bézout bound, applied to the generating set {f0, h0, . . . , fn−1, hn−1}
in Fq[y0, x1, . . . , xn−1, yn−1, yn]. The initial analysis also considers another mod-
eling called PCICO. The PCICO equations were later exploited in [BBL+24] and
[KLR24] to obtain more efficient attacks. There, the complexity of solving PCICO

was estimated to be the one of the change of ordering to produce a lexicograph-
ical Gröbner basis. The cost of this step is polynomial in the degree of the ideal.

1.3 Related works

Previous cryptanalysis of Anemoi. We briefly detail the content of [KLR24] and
[BBL+24] which is relevant for our purposes. In particular, we do not describe
the contributions of [BBL+24] that affect other schemes than Anemoi.

The point of [KLR24] was to provide sharper bounds on the degree of the
ideal ⟨PCICO⟩. Their results follow from a clever use of the multihomogeneous
Bézout bound, already employed by Faugère and Perret in the cryptographic
context [BGL20]. The final estimate derived from such bounds assumes a change
of order algorithm relying on fast linear algebra techniques [FM11,FGHR14].

The approach of [BBL+24] was to build a polynomial system that is already
a Gröbner basis for a suitable monomial order, thanks to Proposition 1. Such
a Gröbner basis is referred to as FreeLunch and it has leading terms which
are simply univariate. This technique is applied to various ciphers, in particular
Anemoi. In this case, the authors cannot construct a FreeLunch Gröbner basis
for ⟨PCICO⟩ but they can derive one for a subideal which is enough for their
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purposes. In turn they can obtain its degree, which is just slightly bigger than
(α + 2)n. Finally, another key contribution of [BBL+24] is a change of order
algorithm taylored to FreeLunch Gröbner bases. In the same way as the recent
[BNSED22], this algorithm relies on linear algebra over polynomial matrices.
This algorithm works very well when the input FreeLunch Gröbner basis contains
one polynomial of very large degree. An efficient implementation is also provided.

Cryptanalysis of other schemes. Recently, Steiner showed that for well-chosen
weighted orders, Gröbner bases for Rescue-XLIX [SAD20] and Poseidon [GKR+21]
could be found simply by performing linear transformations [Ste24a,Ste24b].

1.4 Contribution

We show how to cheaply obtain Gröbner bases for polynomial modelings of the
CICO problem on the Anemoi permutation derived from ⟨FCICO⟩. We consider
cases that have not been studied in [KLR24,BBL+24], i.e., the even characteristic
case and a larger number of branches.

From our Gröbner bases we can deduce the degree of the ideal, which allows
us to improve the results of [KLR24] based on the multihomogeneous Bézout
bound (here, we obtain the exact value). Even though these Gröbner bases are
easier to produce than the FreeLunch ones of [BBL+24] and even if the ideal
degree is smaller (as we consider the entire ideal), it is unclear whether the
standard zero-dimensional solving method based on such Gröbner bases will
yield better results. In addition to the efficient custom algorithm of [BBL+24],
we note that FreeLunch Gröbner bases have a more lex-like shape.

2 Anemoi in odd characteristic when ℓ = 1

Let q be a prime and let g be a generator of the multiplicative subgroup of Fq. In
odd characteristic, the S-box components areQγ(X) = gX2+g−1,Qδ(X) = gX2

and a monomial Xα such that the map x 7→ xα is a permutation. We start by
rewriting the polynomials of Modeling 1:

fi = (xi + yi + ci + di − yi+1)
α
+Qγ(xi + yi + ci + di)− (2xi + yi + 2ci + di),

hi = fi − gi = Qγ(xi + yi + ci + di)− (2xi + yi + 2ci + di)−Qδ(yi+1) + xi+1.

Their shape suggests to adopt the change of variables{
Xi

def
= xi + yi + ci + di − yi+1 = −yi+1 + yi + xi + Ci

Yi
def
= xi + yi + ci + di + yi+1 = yi+1 + yi + xi + Ci

, (1)

where Ci
def
= ci + di for i ∈ {0..n − 1}. Recalling that the two last equations

in FCICO correspond to fixing x0 and xn to zero, we can undo this change of
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variables by y0 = X0+Y0

2 − C0, yi+1 = Yi−Xi

2 and for i ∈ {0..n− 2}:

xi+1 = Xi+1 + yi+2 − yi+1 − Ci+1

= Xi+1 +
Yi+1 −Xi+1

2
− Yi −Xi

2
− Ci+1

= −1

2
Xi+1 +

1

2
Yi+1 +

1

2
Xi −

1

2
Yi − Ci+1.

Modeling 2 We consider Modeling 1 with the change of variables given by
Equation (1), in the polynomial ring Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1].

We can write {
fi = Xα

i + g
(
Xi+Yi

2

)2
+ Li(Yi −Xi) + ai

hi = gXiYi +Mi(Yi −Xi) + bi,
(2)

where Li, Mi are constants in Fq that we will not need to specify and where
ai, bi are degree 1 affine polynomials not involving Xi nor Yi.

Gröbner basis of Modeling 2. For some appropriate monomial orders, the
point is that we can obtain a Gröbner basis of Modeling 2 at a very low cost.
We stress that this fact has already been observed on other schemes. As in
[BBL+24,Ste24a,Ste24b], we will consider a weighted ordering. However, its def-
inition is not as contrived. Indeed, we do not necessarily look for a Gröbner basis
with univariate, coprime leading terms as in [BBL+24] and we also do not limit
ourselves to applying linear transformations as in [Ste24a,Ste24b] (note that our
change of variables can already be seen as a first linear transformation).

Ordering 1 We denote by ≺ the weighted grevlex ordering on the polynomial
ring Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1] with weight 4 on Xi for i ∈ {0..n − 1} and
weight 2α + 1 on Yi for i ∈ {0..n − 1}. On variables, we have Xn−1 ≺ Xn−2 ≺
· · · ≺ X0 ≺ Yn−1 ≺ Yn−2 ≺ · · · ≺ Y0.

We can make a prior reduction of fi modulo gi in Equation (2) and start instead
from the following two polynomials:{

fi = g
4Y

2
i +Xα

i + g
4X

2
i + L′

i(Yi −Xi) + a′i
hi = gXiYi +M ′

i(Yi −Xi) + b′i.
(3)

For i ∈ {0..n−1}, we consider the S-polynomial si
def
= S(fi, hi) = gXifi− g

4Yihi.

Its leading monomial with respect to ≺ is equal to Xα+1
i .

Proposition 2. The set

G def
= {f0, h0, . . . , fn−1, hn−1} ∪ {s0, . . . , sn−1}

is a ≺-Gröbner basis for Modeling 2.
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Proof. We simply have to prove that {fi, hi, si} is a Gröbner basis for any in-
dex i ∈ {0..n − 1} because we can then conclude by Proposition 1. To show
that {fi, hi, si} is a Gröbner basis, we can restrict ourselves to studying the S-
polynomial S(hi, si) as both S(fi, hi) and S(fi, si) trivially reduce to zero. The
fact that S(hi, si) reduces to zero can already be seen by computation but we
will prove it more formally in Appendix A. ⊓⊔

Obtaining this Gröbner basis is very cheap as we only need to compute n S-
polynomials in degree α + 1. In fact, each computation depends only on one
round so we can do all of them in parallel.

Degree of the ideal. We can deduce the degree of the ideal generated by
Modeling 2 by examining the leading terms in G (also, note that this degree is
trivially equal to the one of Modeling 1). Recall that for i ∈ {0..n− 1}, we have
LM≺(fi) = Y 2

i , LM≺(hi) = XiYi and LM≺(si) = Xα+1
i .

Corollary 1 The degree of the ideal generated by Modeling 2 is (α+ 2)n.

Proof. We use the Gröbner basis given by Proposition 2 and we count monomials
“under the staircase”. Given a monomial

µ
def
=

∏
i∈{0..n−1}

Y ai
i

∏
j∈{0..n−1}

X
bj
j ,

we will write I
def
= {i ∈ {0..n − 1}, ai ̸= 0} and J

def
= {j ∈ {0..n − 1}, bj ̸= 0}

for the supports on the variable sets Y and X respectively. From the leading
terms in G, a basis of the quotient space is

B def
=

µ, µ =
∏
i∈I

Yi

∏
j∈J, bj∈{1..α}

X
bj
j , I ∩ J = ∅

 .

Finally, its cardinality can be estimated by

#B =

n∑
i=0

(
n

i

)
︸︷︷︸

choice of I

2n−i︸︷︷︸
choice of J in Ic

αi︸︷︷︸
exponents bj

= (α+ 2)n.

⊓⊔

3 Anemoi in odd characteristic with several branches

We now show that similar results hold for several branches. For the sake of
clarity, we give details when ℓ = 2 and we will sketch the general case at the
end of the section. We start by recalling the definition of one round in this case.
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For an element g that generates the multiplicative group of Fq, we consider the
matrices

Mx
def
=

(
1 g
g g2 + 1

)
and My

def
= Mx

(
0 1
1 0

)
=

(
g 1

g2 + 1 g

)
.

The linear layer corresponds to applying the following steps
x
(i)
0

x
(i)
1

y
(i)
0

y
(i)
1

 7→Mx, My


Mx

(
x
(i)
0

x
(i)
1

)

My

(
y
(i)
0

y
(i)
1

)
 7→


x′′
0

x′′
1

y′′0
y′′1

 =


2Mx

(
x
(i)
0

x
(i)
1

)
+My

(
y
(i)
0

y
(i)
1

)

Mx

(
x
(i)
0

x
(i)
1

)
+My

(
y
(i)
0

y
(i)
1

)
 ,

(4)

where the second step refers to the Pseudo-Hadamard transform. In this descrip-
tion, round constants have been omitted. In practice, we may sum-up the whole
map as 

x
′′(i)
0

x
′′(i)
1

y
′′(i)
0

y
′′(i)
1

 def
= M


x
(i)
0

x
(i)
1

y
(i)
0

y
(i)
1

+Mvi,

where the matrix M ∈ F4×4
q corresponds to the path of Equation (4) and where

the vector vi ∈ F4
q contains the round constants of the i-th round. Finally, we

have H(x
′′(i)
0 , y

′′(i)
0 ) = (x

(i+1)
0 , y

(i+1)
0 ) and H(x

′′(i)
1 , y

′′(i)
1 ) = (x

(i+1)
1 , y

(i+1)
1 ), where

H(.) is the Anemoi S-box containing the polynomials Xα, Qγ and Qδ described
in Section 2. To solve Problem 1 with ℓ = 2, the polynomials corresponding to
the i-th round in the analogue of Modeling 1 are given by

f
(i)
0 =

(
y
′′(i)
0 − y

(i+1)
0

)α
+Qγ(y

′′(i)
0 )− x

′′(i)
0 ,

h
(i)
0 = Qγ(y

′′(i)
0 )− x

′′(i)
0 −Qδ(y

(i+1)
0 ) + x

(i+1)
0 ,

f
(i)
1 =

(
y
′′(i)
1 − y

(i+1)
1

)α
+Qγ(y

′′(i)
1 )− x

′′(i)
1 ,

h
(i)
1 = Qγ(y

′′(i)
1 )− x

′′(i)
1 −Qδ(y

(i+1)
1 ) + x

(i+1)
1 ,

and the CICO constraints are x
(0)
0 = x

(0)
1 = 0 and x

(n)
0 = x

(n)
1 = 0 (note here that

there may be a linear layer at the end but this should not affect the conclusion).

Change of variables. Following what has been done in Section 2, we consider
the new variables 

X
(i)
0 = y

′′(i)
0 − y

(i+1)
0

Y
(i)
0 = y

′′(i)
0 + y

(i+1)
0

X
(i)
1 = y

′′(i)
1 − y

(i+1)
1

Y
(i)
1 = y

′′(i)
1 + y

(i+1)
1 .

(5)

To undo this change of variables, we perform the following steps, in order.
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1. For j ≥ 1, we express y
(j)
0 and y

(j)
1 by

y
(j)
0 =

Y
(j−1)
0 −X

(j−1)
0

2
and y

(j)
1 =

Y
(j−1)
1 −X

(j−1)
1

2
.

2. For j ≥ 0, we express y
′′(j)
0 and y

′′(j)
1 by

y
′′(j)
0 =

Y
(j)
0 +X

(j)
0

2
and y

′′(j)
1 =

Y
(j)
1 +X

(j)
1

2
.

3. Then, we write y
(0)
0 and y

(0)
1 linearly in terms of y

′′(0)
0 and y

′′(0)
1 from the

CICO constraints x
(0)
0 = 0 and x

(0)
1 = 0, using coordinates 3 and 4 in


0
0

y
(0)
0

y
(0)
1

 7→


x
′′(0)
0

x
′′(0)
1

y
′′(0)
0

y
′′(0)
1

 .

Finally, we use the expressions of y
′′(0)
0 and y

′′(0)
1 that we have found in 2.

4. Similarly, we write x
′′(0)
0 and x

′′(0)
1 linearly in terms of y

(0)
0 and y

(0)
1 and we

then use the values of y
(0)
0 and y

(0)
1 found in 3.

5. Finally, for any i ≥ 1, we may view the transformation
x
(i)
0

x
(i)
1

y
(i)
0

y
(i)
1

 7→


x
′′(i)
0

x
′′(i)
1

y
′′(i)
0

y
′′(i)
1


as a system of 4 linear equations in the unknowns x

(i)
0 , x

(i)
1 , x

′′(i)
0 and x

′′(i)
1 .

Solving it allows to recover these values in terms of y
(i)
0 , y

(i)
1 , y

′′(i)
0 and y

′′(i)
1 .

Modeling 3 We consider the adaptation of Modeling 1 when ℓ = 2 in which
we apply the change of variables given by Equation (5), in the polynomial ring

Fq[(X
(i)
0 , X

(i)
1 )i∈{0..n−1}, (Y

(i)
0 , Y

(i)
1 )i∈{0..n−1}].

We will compute Gröbner bases with respect to the adaptation of Ordering 1

with weight 4 on all variables X
(i)
0 and X

(i)
1 and weight 2α + 1 on all variables

Y
(i)
0 and Y

(i)
1 , still denoted by ≺. Observe that we can write Modeling 3 as

n−1⋃
i=0

{
f
(i)
0 , h

(i)
0 , f

(i)
1 , h

(i)
1

}
,
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where

f
(i)
0 =

g

4
(Y

(i)
0 )2 + (X

(i)
0 )α +

g

2
X

(i)
0 Y

(i)
0 +

g

4
(X

(i)
0 )2 + a

(i)
0 ,

h
(i)
0 = gX

(i)
0 Y

(i)
0 + b

(i)
0 ,

f
(i)
1 =

g

4
(Y

(i)
1 )2 + (X

(i)
1 )α +

g

2
X

(i)
1 Y

(i)
1 +

g

4
(X

(i)
1 )2 + a

(i)
1 ,

h
(i)
1 = gX

(i)
1 Y

(i)
1 + b

(i)
1 ,

and where a
(i)
0 , a

(i)
1 , b

(i)
0 and b

(i)
1 are degree 1 polynomials which mix variables

from both branches. For j ∈ {0, 1} and i ∈ {0..n − 1}, we denote by s
(i)
j the

S-polynomial S(f
(i)
j , h

(i)
j ).

Proposition 3. The set

G def
=

n−1⋃
i=0

{
f
(i)
0 , h

(i)
0 , f

(i)
1 , h

(i)
1

}
∪
{
s
(i)
0 , s

(i)
1

}
is a ≺-Gröbner basis of the ideal generated by Modeling 3.

Proof. For i ∈ {0..n− 1}, we show that both {f (i)
0 , h

(i)
0 , s

(i)
0 } and {f (i)

1 , h
(i)
1 , s

(i)
1 }

are Gröbner bases by using the same argument as for ℓ = 1, see Section 2 and
Appendix A where we give more details. We conclude by Proposition 1. ⊓⊔

Corollary 2 The degree of the ideal generated by Modeling 3 is (α+ 2)2n.

We can use the same technique as in the ℓ = 1 case due to the part in Fq[X
(i)
0 , Y

(i)
0 ]

of the polynomials a
(i)
0 and b

(i)
0 (resp. the part in Fq[X

(i)
1 , Y

(i)
1 ] of the polynomials

a
(i)
1 and b

(i)
1 ). Lemma 1 studies these degree 1 parts.

Lemma 1 For j ∈ {0..1} and for any i ∈ {0..n− 1}, we have

x
′′(i)
j = Li,j(X

(i)
j + Y

(i)
j ) + ai,j ,

x
(i+1)
j = Mi,j(X

(i)
j + Y

(i)
j ) + bi,j ,

where Li,j , Mi,j ∈ Fq and where ai,j , bi,j are degree 1 affine polynomials not

involving X
(i)
j nor Y

(i)
j .

Proof. For i = 0, let us recall that x
′′(0)
0 and x

′′(0)
1 are expressed linearly in terms

of y
(0)
0 and y

(0)
1 . Therefore, it is enough to show the statement for both y

(0)
0 and

y
(0)
1 . Similarly, both y

(0)
0 and y

(0)
1 are obtained linearly from y

′′(0)
0 and y

′′(0)
1 ,

whose expressions are given by

y
′′(0)
0 =

Y
(0)
0 +X

(0)
0

2
, y

′′(0)
1 =

Y
(0)
1 +X

(0)
1

2
.
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We can conclude from these expressions. For i ≥ 1, item 5. in the text of

above Modeling 3 shows that x
′′(i)
0 and x

′′(i)
1 are obtained linearly in terms of

y
(i)
0 , y

(i)
1 , y

′′(i)
0 and y

′′(i)
1 . As both y

(i)
0 and y

(i)
1 only involve variables X

(i−1)
j or

Y
(i−1)
j , we can once again conclude from the expressions of y

′′(i)
0 and y

′′(i)
1 . The

reasoning is similar for x
(i+1)
j . ⊓⊔

Since a
(i)
j = −x

′′(i)
j and b

(i)
j = −x

′′(i)
j + x

(i+1)
j , Lemma 1 shows that the part in

Fq[X
(i)
j , Y

(i)
j ] in both equations is a degree 1 term in X

(i)
j + Y

(i)
j .

Generalization to arbitrary ℓ. This reasoning is not specific to ℓ = 2. If we
adopt a similar change of variables as in Equation (5) for general ℓ (still to solve
the CICO problem given in the introduction), we can tackle in the same way the

ℓ polynomials pairs {f (i)
j , h

(i)
j } for j ∈ {0..ℓ − 1} whose top degree parts only

involve the two variablesX
(i)
j and Y

(i)
j . Note also that the proof of Lemma 1 does

not depend on the precise definition of the linear layer when ℓ = 2. Finally, in
the same way as above, we can deduce that the ideal degree is equal to (α+2)ℓn.

4 Anemoi in even characteristic

In even characteristic, the linear layer becomes (x, y) 7→ (y, x+ y) and the non-
linear polynomials are Qγ(X) = βX3+γ, Qδ(X) = βX3+δ for γ ̸= δ and β ̸= 0
(we will only consider the exponent α = 3). We adopt the same notation as in
odd characteristic, namely Ci = ci + di for i ∈ {0..n − 1}. Using this notation,
the two polynomials at round i are{

fi = (xi + yi + yi+1 + Ci)
3 + β(xi + yi + Ci)

3 + γ + (yi + di),

hi = β(xi + yi + Ci)
3 + γ + βy3i+1 + δ + (yi + di) + xi+1.

We still call Modeling 1 the system {f0, h0, . . . , fn−1, hn−1, x0, xn} in even char-
acteristic. According to [BBC+23, Lemma 1 p. 32], a grevlex Gröbner basis can
be obtained in degree 5 for any value of n when ℓ = 1. Thus, finding a first
Gröbner basis is already known to be a non-issue in this case.

In this section, our goal is to apply the same change of variables as in Sections
2 and 3. More precisely, we will set{

Xi
def
= yi+1 + xi + yi + Ci,

Yi
def
= xi + yi + Ci.

(6)

To invert this change of variables, simply note that y0 = Y0+C0, yi+1 = Xi+Yi

and xi+1 = Yi+1 + Yi +Xi + Ci+1 for i ∈ {0..n− 1}.

Modeling 4 We consider Modeling 1 with the change of variables given by
Equation (6), in the polynomial ring Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1].
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We obtain 
fi = βY 3

i +X3
i + γ + (yi + di)

def
= βY 3

i +X3
i + ai,

hi = βY 3
i + β(Xi + Yi)

3 + γ + (yi + di) + δ + xi+1
def
= βXiY

2
i + βYiX

2
i + βX3

i + Yi +Xi + bi,

(7)

where ai, bi are affine of degree 1 not involving Xi nor Yi. We will compute
Gröbner bases with respect to the same ordering as in odd characteristic.

Ordering 2 We denote by ≺2 the weighted grevlex order on the polynomial ring
Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1] with weight 4 on Xi for i ∈ {0..n−1} and weight
2α+ 1 = 7 on Yi for i ∈ {0..n− 1}.

With respect to ≺2, the monomials in fi are ordered as Y 3
i > X3

i > · · · > 1 and
the monomials in hi are ordered as XiY

2
i > X2

i Yi > X3
i > · · · > 1, where . . .

hide single variables. For i ∈ {0..n− 1}, we introduce the S-polynomial

si
def
= S(fi, hi) = βXifi + βYihi,

whose leading monomial is equal to X2
i Y

2
i . Contrary to the odd characteristic

case, the set {fi, hi, si} is not a Gröbner basis. Thus, we naturally perform a

reduction step and we define ρi
def
= si + βXihi. We have that LM≺2(ρi) = X4

i

and that ρi does not contain cubic monomials (without considering weights).

Proposition 4. The set

G def
= {f0, h0, . . . , fn−1, hn−1} ∪ {ρ0, . . . , ρn−1}

is a ≺2-Gröbner basis for Modeling 4.

Proof. Since LM≺2
(fi) = Y 3

i and LM≺2
(ρi) = X4

i for i ∈ {0..n − 1}, the set
{f0, ρ0, . . . , fn−1, ρn−1} is already a ≺2-Gröbner basis for the subideal it gen-
erates (by Proposition 1). We can then append {h0, . . . , hn−1} to this Gröbner
basis to obtain a Gröbner basis for the full ideal because the S-polynomials
S(hi, ρi) reduce to zero for any i ∈ {0..n− 1}. This follows from a computation
similar to the one in Propositions 2 and 3 or from the same argument as above
(by studying the system {fi+ai, hi+bi} in Fq[Xi, Yi] first, see Appendix B). ⊓⊔

Finally, we can deduce from G the degree of the ideal generated by Modeling
4. For i ∈ {0..n − 1}, recall that LM≺2(fi) = Y 3

i , LM≺2(hi) = XiY
2
i and

LM≺2(ρi) = X4
i .

Corollary 3 The degree of the ideal generated by Modeling 4 is 32n.

Proof. As in the proof of Corollary 1, we compute the number of monomials
“under the staircase”. We may write monomials µ as µ =

∏n−1
i=0 µi, where µi

is a monomial in Fq[Xi, Yi] for i ∈ {0..n − 1}. We call “overlaps” the indexes i
for which µi involves both Xi and Yi. Any monomial µ under the staircase can

https://orcid.org/0000-0002-0191-3181
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be constructed by fixing the set of overlaps first (denoted by A) and then by
choosing the corresponding µi’s, whose representatives are among XiYi, X

2
i Yi

or X3
i Yi. It remains to choose the other µi monomials, univariate in Xi or Yi.

Let B be the subset of {0..n− 1} \A such that the µi monomials are univariate
in Yi and different from the constant monomial. The only possibility for these
monomials is Yi or Y 2

i . Finally, for i ∈ {0..n − 1} \ (A ∪ B), we can choose µi

univariate in Xi, possibly constant (i.e., 1, Xi, X
2
i or X3

i ). The basis B that we
obtain in this way has cardinality

#B =
∑n

a=0

(
n
a

)
3a
(∑n−a

b=0

(
n−a
b

)
2b4n−a−b

)
=
∑n

a=0

(
n
a

)
3a6n−a = 9n = 32n.

⊓⊔

Remark 1 Using the same argument, the value of the degree could actually be
inferred from [BBC+23, Lemma 1 p. 32].

5 Open questions

We obtained the value of the ideal degree for encodings of the CICO problem
associated to Anemoi. The next step for more crucial progress would be to devise
change of order algorithms taylored to the Gröbner bases we found. Another
route would be to first study the relationship with potential FreeLunch Gröbner
bases in order to apply the custom techniques of [BBL+24].

Acknowledgements. We would like to warmly thank Katharina Koschatko as
well as the other authors of [KLR24] for sharing their preprint. We would also like
to thank Morten Øygarden for the numerous discussions and for proof-reading
an earlier version of this note.
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Ciphers Sensitive to Gröbner Basis Attacks. In David Pointcheval, editor,
Topics in Cryptology – CT-RSA 2006, pages 313–331, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

CLO15. David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Al-
gorithms. Springer International Publishing, 2015.

FGHR14. Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault.
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Exploring the Six Worlds of Gröbner Basis Cryptanalysis: Application to
Anemoi. Cryptology ePrint Archive, Paper 2024/250, 2024. https://

eprint.iacr.org/2024/250.
SAD20. Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-prime: a

standard specification (sok). Cryptology ePrint Archive, Paper 2020/1143,
2020. https://eprint.iacr.org/2020/1143.

Ste24a. Matthias Johann Steiner. A Zero-Dimensional Gröbner Basis for Poseidon.
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and where ℓi, µi are degree 1 polynomials not involving Xi nor Yi. Equation (3)
above the statement of the proposition clearly appears as a particular case of
Equation (8).

Lemma 2 Let (U, V,W ) ∈ F3
q and let {f, h} ⊂ Fq[x, y] the system defined by{

f = y2 + Uxα + x2 + V (y − x)

h = xy +W (y − x).

Let ≺ be the grevlex weighted ordering with weight 4 on x and weight 2α+ 1 on
y and let s = (x+W )f − yh. Then, the S-polynomial t = S(s, h) = ys− Uxαh
is such that

t = ((V +W )x+ VW )f − V s+ (x2 − V x)h. (9)

From this identity we deduce that the set {f, h, s} is a ≺-Gröbner basis of the
ideal ⟨f, h⟩. Also, the set {f, h,A−1s} is the reduced Gröbner basis.

Proof. The restriction to the S-polynomial t = S(s, h) = ys−Uxαh in our proof
is due to the fact that the polynomials S(f, h) and S(f, s) trivially reduce to zero
(for S(f, s), we apply Proposition 1). Finally, using Equation (9) and the fact
that LM≺(f) = y2, LM≺(h) = xy and LM≺(s) = xα+1, we see that t reduces
to zero modulo [f, s, h]. ⊓⊔
We now study the Gröbner basis computation on the system given by Equation
(8), rewritten as {

fi = f + ℓi

hi = h+ µi,

where both f and h are in Fq[Xi, Yi]. We will apply Lemma 2 to {f, h} and keep
some notation from this lemma. We have

si = s+ (Xiℓi − Yiµi) +Wℓi

ti = t− UXα
i µi + YiWℓi +

(
XiYiℓi − Y 2

i µi

)︸ ︷︷ ︸
def
= λi

= t+ λi.

As above, the fact that {fi, hi, si} is a Gröbner basis can be proven by checking
that ti reduces to zero. For that purpose, we will reduce both summands t and
λi. For λi, we have to kill the terms XiYiℓi and −Y 2

i µi. We obtain

λi ≡ λi − hiℓi + fiµi

= −UXα
i µi +WYiℓi + (−W (Yi −Xi)ℓi − ℓiµi) +

(
UXα

i µi +X2
i µi + V (Yi −Xi)µi + ℓiµi

)
= WXiℓi +X2

i µi + V (Yi −Xi)µi.

For t, we rely on the identity given by Equation (9).

t ≡ −ℓi((V +W )Xi + VW )− µi(X
2
i − V Xi) + V (Xiℓi − Yiµi) + VWℓi

= −ℓiXiW − µi(X
2
i − V Xi)− V Yiµi

= −WXiℓi −X2
i µi + V Xiµi − V Yiµi.

Therefore, the polynomial ti reduces to zero and we can conclude from there.



14 Pierre Briaud

Several branches. We can use a similar argument to prove Proposition 3.

Indeed, Lemma 1 shows Equation (8) encompasses the case of {f (i)
j , h

(i)
j } in

Modeling 3 for j ∈ {0..1} (there, the variables −X
(i)
j and Y

(i)
j play the role of

Xi and Yi respectively).

B More arguments in even characteristic

As in odd characteristic, the system given by Equation (7) can be written in the
form {

fi = βY 3
i +X3

i + ai,

hi = βXiY
2
i + βYiX

2
i + βX3

i + Yi +Xi + bi,

where what matters is that both ai and bi are degree 1 affine polynomials not
involving Xi nor Yi. In Lemma 3, we study the Gröbner basis computation on
the system {fi + ai, hi + bi}.

Lemma 3 Let Fq be a finite extension of F2, let U ∈ Fq and let {f, h} ⊂ Fq[x, y]
be the system defined by{

f = Uy3 + x3

h = Uxy2 + Ux2y + Ux3 + y + x.

Let ≺ be the grevlex weighted order with weight 4 on x and weight 7 on y and let

ρ = Uxf + U(x+ y)h = (U2 + U)x4 + Uy2 + Ux2,

which can be seen as the S-polynomial S(f, h) reduced modulo h. Then, the set
{f, h, ρ} is a ≺-Gröbner basis of the ideal ⟨f, h⟩.

Proof. As above, we conclude by focusing on the S-polynomial t = S(ρ, h),
whose expression is given by Uy2ρ+ (U2 + U)x3h. First, we have that

t = (Ux2 + Uxy + 1)ρ+ (Ux+ Uy)h+ Uyf.

Using this second expression, the reduction of t modulo ρ will kill the first term
and it will add U(U + 1)−1ρ due to the Uxh term. Then, the reduction modulo
h will kill (Ux + Uy)h but leave the rest unchanged. At this stage we are left
with U(U + 1)−1ρ+ Uyf , which reduces to zero modulo [f, ρ]. ⊓⊔

Finally, we can conclude for the genuine set of polynomials {fi, hi} by an argu-
ment similar to the one below Lemma 2.
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