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Abstract. This paper focuses on algebraic attacks on the Anemoi family of
arithmetization-oriented permutations [BBC+23]. We consider a slight variation
of the naive modeling of the CICO problem associated to the primitive, for which we
can very easily obtain a Gröbner basis and prove the degree of the associated ideal.
For inputs in F2

q when q is an odd prime, we recover the same degree as conjectured
for alternative polynomial systems used in other recent works [BBL+24, KLR24].
Furthermore, our approach can be adapted to cases which have not been studied
there, i.e., even characteristic fields and inputs in F2ℓ

q for ℓ > 1.

1 Introduction
A new type of symmetric cryptography motivated by applications in fully homomorphic
encryption (FHE), multi-party computation (MPC) and zero-knowledge (ZK) proofs has
emerged in very recent years. As part of this trend, the family of arithmetization-oriented
(AO) permutations Anemoi [BBC+23] is taylored to ZK proof systems. The reason why
classical block ciphers are not suited in this context is because the efficiency requirement
is different. For instance, Anemoi as well as previous candidates such as Jarvis [AD18] and
Rescue [AAB+20] aim at minimizing the number of multiplications over Fq, where Fq is a
large finite field. To achieve this, Anemoi relies on the notion of CCZ equivalence [CCZ98].

Algebraic cryptanalysis of symmetric schemes. The use of algebraic cryptanalysis
in symmetric cryptography largely predates the advances in AO constructions. It dates
back at least to [CP02], where it was employed on the AES [DR02]. Before moving on to
these more recent ciphers, let us mention earlier findings arising from the study of classical
ones. A first observation that highly differs from the public-key setting is that the cost of
computing an arbitrary Gröbner basis should not always be taken as an indicator of the
overall complexity. For instance, [BPW06] showed that the AES modeling of [MR02] is
already a Gröbner basis for a “degree-then-lex” monomial order. The main analysis tool
was the so-called Buchberger’s second criterion (Proposition 1 in Section 2 below). Still,
algebraic methods were not a threat because the cost of the FGLM algorithm [FGLM93]
to obtain a lexicographic Gröbner basis (and therefore a univariate polynomial) was above
the security level. The same idea was used to devise Flurry and Curry. The goal here was
to give ciphers immune to linear and differential attacks but for which the polynomial
modeling by introducing intermediate variables at each round was already a Gröbner basis.

A greater concern for AO ciphers. Algebraic techniques have gained a renewed
interest with the recent arithmetization-oriented primitives. This is explained both by
the low multiplicative complexity of these designs and the fact that classical symmetric
cryptanalysis does not seem to perform extremely well. Concretely, these attacks are used
to set the appropriate number of rounds in almost all these ciphers - and Anemoi is no
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exception. For permutations used in sponge constructions, the focus is typically on the
hardness of the CICO problem [BDPV11] with respect to these methods.

Related works on Anemoi. A preliminary analysis of algebraic attacks on the CICO prob-
lem was provided by the designers. They considered the naive modeling by introducing
variables at each round (denoted by FCICO) and another one inspired by the analysis of
Griffin [GHR+23] (denoted by PCICO). On the Anemoi version with inputs in F2

q where
q is an odd prime, subsequent works have significantly improved upon their results1

[KLR24, BBL+24].
The experiments conducted in [KLR24] suggest that the complexity of FGLM is the

limiting cost to solve the PCICO system. The main contribution was to provide sharper
bounds on the degree of the associated ideal, which is the main parameter to estimate the
complexity of FGLM. These bounds follow from a clever use of the multihomogeneous
Bézout bound, already employed by Faugère and Perret in the cryptographic context
[BGL20]. The final estimate of [KLR24] assumes a generic change of order algorithm.

The approach of [BBL+24] was to consider polynomial systems that are already Gröbner
bases for suitable weighted monomial orders, using once again Buchberger’s second criterion.
Referred to as “FreeLunch”, such bases have leading monomials which are simply univariate.
This technique is applied to various ciphers, including Anemoi. In this case, the authors
cannot construct a FreeLunch Gröbner basis for the ideal generated by PCICO but they
can derive one for a subideal which is enough for their purposes. In contrast to [KLR24],
another key contribution was a FGLM-type strategy taylored to FreeLunch Gröbner bases.
The authors take advantage of the peculiar shape of the so-called multiplication matrices
to produce a univariate polynomial in a faster way than with generic techniques. Their
strategy works well when the input FreeLunch Gröbner basis contains one polynomial of
very large degree, which was the case in the attacked ciphers.

Finally, let us mention that using well-chosen weighted orders was also instrumental in
the works of Steiner [Ste24a, Ste24b] on Rescue-XLIX [SAD20] and Poseidon [GKR+21].
For such orders, he showed that Gröbner bases could be obtained simply by performing
linear transformations.

Contribution. We introduce an Anemoi encoding obtained from the original one FCICO
by applying a linear change of variables. Its advantage is that we can easily find a Gröbner
basis for a monomial order that is less contrived than in [BBL+24]. The price to pay is
that the leading monomials are not all univariate. Our approach also applies to cases
not studied in [KLR24, BBL+24], i.e., the even characteristic case and a larger number of
branches. From our Gröbner bases we can naturally deduce the degree of the ideal. In
that respect, we would not need to rely on upper bounds as in [BBC+23, KLR24] in the
final FGLM estimate.

Even though our Gröbner basis in odd characteristic is easier to produce than the
FreeLunch one of [BBL+24] and even though our multiplication matrices are also cheaper
to generate in practice (we provide experimental data to support this claim), it is unclear
whether our approach will yield better results. We believe that further progress will require
to leverage the structure of these matrices. In characteristic 2 and for a larger number of
branches, the question is even more open. In particular, it would be interesting to adapt
[BBL+24] to these settings.

2 Preliminaries
We will focus on the following version of the CICO problem.

1We will not elaborate on the recent preprint [YZY+24] which appeared later than the first version of
this paper.
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Problem 1 (Constrained Input Constrained Output). Let ℓ be a positive integer and let Fq

be an arbitrary finite field. Given a permutation P : Fℓ
q × Fℓ

q → Fℓ
q × Fℓ

q, the CICO problem
consists in finding a pair of vectors (yin, yout) ∈ Fℓ

q × Fℓ
q such that P (0ℓ, yin) = (0ℓ, yout).

2.1 Algebraic background
We refer to [CLO15] for notions related to Gröbner bases. We will write ≺ for a monomial
order on a polynomial ring R and LM≺(f) (resp. LC≺(f)) for the leading monomial (resp.
coefficient) of a polynomial f ∈ R. We will use the following definitions and results, which
all implicitly depend on the chosen monomial order.

Definition 1 (S-polynomial). Let ≺ be a monomial order on a polynomial ring R, let
f, g ∈ R be two non-zero polynomials and let µ

def= lcm(LM≺(f), LM≺(g)), where lcm
refers to the least common multiple. The S-polynomial of the polynomial pair {f, g} with
respect to ≺ is defined by

S(f, g) def= LC≺(g) µ

LM≺(f)f − LC≺(f) µ

LM≺(g)g.

Theorem 1 (Buchberger’s first criterion, Theorem 6 p. 86, [CLO15]). Let G = {g1, . . . , gℓ}
be a finite set of polynomials and let I = ⟨G⟩ be the ideal generated by G. The set G is a
Gröbner basis of I if and only if for all 1 ≤ i < j ≤ ℓ, the S-polynomial S(gi, gj) reduces
to 0 modulo G (regardless of the order of the elements).

Proposition 1 (Buchberger’s second criterion, Prop. 4 p. 106, [CLO15]). Let G be a
finite set of polynomials and let f, g ∈ G whose leading monomials are coprime. Then, the
S-polynomial S(f, g) reduces to 0 modulo G.

Details on multiplication matrices and FGLM-type algorithms will be given in Section
6 where we also present the results of our experiments.

2.2 Naive Anemoi encoding in odd characteristic
We refer to [BBC+23] for a complete description of the Anemoi permutation. In this
subsection, we detail its building blocks for inputs in F2

q when q is an odd prime and we
introduce the FCICO polynomial system. Each of the n rounds Ri for i ∈ {0..n − 1} is
defined as a composition

Ri(x, y) = H ◦ M(x + ci, y + di),

where H is a non-linear map, where M(x, y) = (2x + y, x + y) is the linear layer and where
(ci, di) ∈ F2

q are the round constants. The S-box components correspond to univariate
polynomials Qγ(x) = gx2 + g−1 and Qδ(x) = gx2 where g generates the multiplicative
subgroup of Fq as well as the monomial xα for a rather small exponent α such that x 7→ xα

is a permutation. Finally, the linear layer M is applied once again after these n rounds.
The naive modeling of Problem 1 with ℓ = 1 adopted in [BBC+23] is the following set

of polynomials.

Modeling 1. The FCICO system is the set {f0, g0, . . . , fn−1, gn−1, x0, xn} in the polyno-
mial ring Fq[x0, y0, . . . , xn, yn], with

fi
def= (xi + yi + ci + di − yi+1)α + Qγ(xi + yi + ci + di)
− (2xi + yi + 2ci + di),

gi
def= (xi + yi + ci + di − yi+1)α + Qδ(yi+1) − xi+1.
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Another generating set for ⟨FCICO⟩ is given by {f0, h0, . . . , fn−1, hn−1, x0, xn}, where

hi
def= fi − gi = Qγ(xi + yi + ci + di) − (2xi + yi + 2ci + di) − Qδ(yi+1) + xi+1.

In [BBC+23, Conjecture 2 p. 34], the ideal degree was conjectured to be equal to (α + 2)n.

2.3 Naive Anemoi encoding in even characteristic
When q = 2m for some odd integer m, the linear layer becomes M(x, y) = (y, x + y). This
time, we have Qγ(x) = βx3 + γ and Qδ(x) = βx3 + δ for field elements γ ̸= δ and β ̸= 0.
In this paper, we will only consider the monomial permutation x3 but Anemoi can be
defined for any value α = 2i + 1 such that i is coprime to m.

Using the same approach as in odd characteristic, the two polynomials obtained at
round i for α = 3 are{

fi = (xi + yi + yi+1 + ci + di)3 + β(xi + yi + ci + di)3 + γ + (yi + di),
hi = β(xi + yi + ci + di)3 + γ + βy3

i+1 + δ + (yi + di) + xi+1.

We will still call FCICO or Modeling 1 the system {f0, h0, . . . , fn−1, hn−1, x0, xn} in even
characteristic. According to [BBC+23, Lemma 1 p. 32], a Gröbner basis for the grevlex
order can be obtained in degree 5 for any value of n when ℓ = 1. Thus, in this case, the
task of finding a first Gröbner basis is already known to be a non-issue.

3 Anemoi in odd characteristic when ℓ = 1
The polynomial expressions in Modeling 1 invite us to set{

Xi
def= xi + yi + ci + di − yi+1 = −yi+1 + yi + xi + Ci

Yi
def= xi + yi + ci + di + yi+1 = yi+1 + yi + xi + Ci

, (1)

where Ci
def= ci + di is a public constant for i ∈ {0..n − 1}. Recalling that the last two

equations in FCICO correspond to fixing x0 and xn to zero, we can undo this change of
variables by y0 = X0+Y0

2 − C0, yi+1 = Yi−Xi

2 and for i ∈ {0..n − 2}:

xi+1 = Xi+1 + yi+2 − yi+1 − Ci+1

= Xi+1 + Yi+1 − Xi+1

2 − Yi − Xi

2 − Ci+1

= −1
2Xi+1 + 1

2Yi+1 + 1
2Xi − 1

2Yi − Ci+1.

Modeling 2. We consider Modeling 1 with the change of variables given by Equation (1),
in the polynomial ring Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1].

For i ∈ {0..n − 1}, we can now write{
fi = Xα

i + g
(

Xi+Yi

2
)2 + Li(Yi − Xi) + ai

hi = gXiYi + Mi(Yi − Xi) + bi,
(2)

where Li and Mi are constants in Fq that we will not need to specify and where ai and bi

are degree 1 affine polynomials not involving Xi nor Yi.
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3.1 Easy Gröbner basis for Modeling 2
For some appropriate monomial orders, the point is that we can obtain a Gröbner basis of
Modeling 2 at a very low cost. We stress that this fact has already been observed on other
schemes. As in [BBL+24, Ste24a, Ste24b], we consider a weighted order. However, its
definition is not as contrived as in these previous works. Indeed, we do not necessarily look
for a Gröbner basis with univariate, coprime leading terms as in [BBL+24] and we also do
not limit ourselves to performing linear transformations as in [Ste24a, Ste24b] (note that
our change of variables can already be seen as a first linear transformation).

Ordering 1. We denote by ≺ the weighted grevlex order on Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1]
with weight 4 on Xi for i ∈ {0..n − 1} and weight 2α + 1 on Yi for i ∈ {0..n − 1}. On
variables, we have Xn−1 ≺ Xn−2 ≺ · · · ≺ X0 ≺ Yn−1 ≺ Yn−2 ≺ · · · ≺ Y0.

It is easy to see that the leading monomial of fi with respect to ≺ is equal to Y 2
i

while the one of hi is XiYi. In the following, we will also consider the S-polynomial
si

def= S(fi, hi) = gXifi − g
4 Yihi. By construction, its leading monomial is equal to Xα+1

i .

Proposition 2. The set

G def= {f0, h0, . . . , fn−1, hn−1} ∪ {s0, . . . , sn−1}

is a ≺-Gröbner basis for Modeling 2.

Proof. We simply have to prove that {fi, hi, si} is a Gröbner basis for any i ∈ {0..n − 1}
because we can then conclude by Proposition 1. To show that {fi, hi, si} is a Gröbner
basis, we use Theorem 1. We can restrict ourselves to studying the S-polynomial S(hi, si)
as both polynomials S(fi, hi) and S(fi, si) trivially reduce to zero. Finally, the fact that
the polynomial S(hi, si) reduces to zero can be seen by symbolic computation since the
expressions of fi, hi and si are known. We will also give arguments in Appendix A.

Obtaining the Gröbner basis G is very cheap as we only need to compute n S-polynomials
in degree α + 1. These n computations can in fact be performed in parallel.

3.2 Ideal degree
We can deduce the degree of the ideal generated by Modeling 2 from the leading monomials
in G. This degree is clearly equal to the one of the former ideal ⟨FCICO⟩ because we
have simply applied a linear change of variables. Recall that for i ∈ {0..n − 1}, we have
LM≺(fi) = Y 2

i , LM≺(hi) = XiYi and LM≺(si) = Xα+1
i .

Corollary 1. The degree of the ideal generated by Modeling 2 is (α + 2)n.

Proof. We use the Gröbner basis given by Proposition 2 and we count monomials “under
the staircase”. For any monomial

µ
def=

∏
i∈{0..n−1}

Y ai
i

∏
j∈{0..n−1}

X
bj

j ,

we will write I
def= {i ∈ {0..n − 1}, ai ≠ 0} and J

def= {j ∈ {0..n − 1}, bj ̸= 0} for the
supports on the variable sets Y and X respectively. From the leading monomials in G, a
basis of the quotient space Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1]/⟨G⟩ can be obtained as

B def=

µ, µ =
∏
i∈I

Yi

∏
j∈J, bj∈{1..α}

X
bj

j , I ∩ J = ∅

 .
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Finally, its cardinality can be estimated by

#B =
n∑

i=0

(
n

i

)
︸︷︷︸

choice of I

2n−i︸︷︷︸
choice of J in Ic

αi︸︷︷︸
exponents bj

= (α + 2)n.

4 Anemoi in odd characteristic when ℓ > 1
We now show that similar results hold for several branches. For the sake of clarity, we
give details when ℓ = 2 and we will sketch the general case at the end of the section. We
start by recalling the definition of one Anemoi round in this case. We still denote by g a
generator of the multiplicative group of Fq and we consider the matrices

Mx
def=
(

1 g
g g2 + 1

)
and My

def= Mx

(
0 1
1 0

)
=
(

g 1
g2 + 1 g

)
.

In this section, the state before applying the i-th round for i ∈ {0..n − 1} will be denoted

by
(

x
(i)
0 x

(i)
1 y

(i)
0 y

(i)
1

)T
. The linear layer corresponds to the following steps


x

(i)
0

x
(i)
1

y
(i)
0

y
(i)
1

 7→Mx, My


Mx

(
x

(i)
0

x
(i)
1

)

My

(
y

(i)
0

y
(i)
1

)
 7→


x′′

0
x′′

1
y′′

0
y′′

1

 =


2Mx

(
x

(i)
0

x
(i)
1

)
+ My

(
y

(i)
0

y
(i)
1

)

Mx

(
x

(i)
0

x
(i)
1

)
+ My

(
y

(i)
0

y
(i)
1

)
 , (3)

where the second step is the application of the Pseudo-Hadamard transform. In this
description, round constants have been omitted. In practice, the whole map looks like

x
′′(i)
0

x
′′(i)
1

y
′′(i)
0

y
′′(i)
1

 def= M


x

(i)
0

x
(i)
1

y
(i)
0

y
(i)
1

+ Mvi,

where the matrix M ∈ F4×4
q corresponds to the path of Equation (3) and where the vector

vi ∈ F4
q contains the round constants of the i-th round. Finally, we have H(x′′(i)

0 , y
′′(i)
0 ) =

(x(i+1)
0 , y

(i+1)
0 ) and H(x′′(i)

1 , y
′′(i)
1 ) = (x(i+1)

1 , y
(i+1)
1 ), where H is non-linear map described

in Section 3 that contains xα, Qγ and Qδ.
To solve Problem 1 with ℓ = 2, the i-th round polynomials in the analogue of Modeling

1 are given by

f
(i)
0 =

(
y

′′(i)
0 − y

(i+1)
0

)α

+ Qγ(y′′(i)
0 ) − x

′′(i)
0 ,

h
(i)
0 = Qγ(y′′(i)

0 ) − x
′′(i)
0 − Qδ(y(i+1)

0 ) + x
(i+1)
0 ,

f
(i)
1 =

(
y

′′(i)
1 − y

(i+1)
1

)α

+ Qγ(y′′(i)
1 ) − x

′′(i)
1 ,

h
(i)
1 = Qγ(y′′(i)

1 ) − x
′′(i)
1 − Qδ(y(i+1)

1 ) + x
(i+1)
1 ,

and the CICO constraints are x
(0)
0 = x

(0)
1 = 0 and x

(n)
0 = x

(n)
1 = 0 (the linear layer applied

at the very end should not affect our conclusions).
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4.1 Change of variables
Following what has been done in Section 3, we consider the new variables

X
(i)
0

def= y
′′(i)
0 − y

(i+1)
0

Y
(i)

0
def= y

′′(i)
0 + y

(i+1)
0

X
(i)
1

def= y
′′(i)
1 − y

(i+1)
1

Y
(i)

1
def= y

′′(i)
1 + y

(i+1)
1

. (4)

To undo this change of variables, we perform the following steps, in order.

1. For j ≥ 1, we express y
(j)
0 and y

(j)
1 in terms of the new variables as

y
(j)
0 = Y

(j−1)
0 − X

(j−1)
0

2 and y
(j)
1 = Y

(j−1)
1 − X

(j−1)
1

2 .

2. For j ≥ 0, we express y
′′(j)
0 and y

′′(j)
1 in terms of the new variables as

y
′′(j)
0 = Y

(j)
0 + X

(j)
0

2 and y
′′(j)
1 = Y

(j)
1 + X

(j)
1

2 .

3. Then, we write y
(0)
0 and y

(0)
1 linearly in terms of y

′′(0)
0 and y

′′(0)
1 from the CICO con-

straints x
(0)
0 = 0 and x

(0)
1 = 0, using coordinates 3 and 4 in


0
0

y
(0)
0

y
(0)
1

 7→


x

′′(0)
0

x
′′(0)
1

y
′′(0)
0

y
′′(0)
1

 .

Finally, we use the expressions of y
′′(0)
0 and y

′′(0)
1 that we have found in 2.

4. Similarly, we can write x
′′(0)
0 and x

′′(0)
1 linearly in terms of y

(0)
0 and y

(0)
1 and then

use the values of y
(0)
0 and y

(0)
1 that have been found in 3.

5. Finally, for any i ≥ 1, we may view the transformation
x

(i)
0

x
(i)
1

y
(i)
0

y
(i)
1

 7→


x

′′(i)
0

x
′′(i)
1

y
′′(i)
0

y
′′(i)
1


as a system of 4 linear equations in the unknowns x

(i)
0 , x

(i)
1 , x

′′(i)
0 and x

′′(i)
1 . Inverting

this system allows to recover these values in terms of y
(i)
0 , y

(i)
1 , y

′′(i)
0 and y

′′(i)
1 .

Modeling 3. We consider the adaptation of Modeling 1 when ℓ = 2 in which we apply the
change of variables given by Equation (4), in the polynomial ring

Fq[(X(i)
0 , X

(i)
1 )i∈{0..n−1}, (Y (i)

0 , Y
(i)

1 )i∈{0..n−1}].
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4.2 Easy Gröbner basis for Modeling 3
We will compute Gröbner bases with respect to the adaptation of Ordering 1 with weight
4 on all variables X

(i)
0 and X

(i)
1 and weight 2α + 1 on all variables Y

(i)
0 and Y

(i)
1 , still

denoted by ≺. Observe that we can write Modeling 3 as the union

n−1⋃
i=0

{
f

(i)
0 , h

(i)
0 , f

(i)
1 , h

(i)
1

}
,

where

f
(i)
0 = g

4(Y (i)
0 )2 + (X(i)

0 )α + g

2X
(i)
0 Y

(i)
0 + g

4(X(i)
0 )2 + a

(i)
0 ,

h
(i)
0 = gX

(i)
0 Y

(i)
0 + b

(i)
0 ,

f
(i)
1 = g

4(Y (i)
1 )2 + (X(i)

1 )α + g

2X
(i)
1 Y

(i)
1 + g

4(X(i)
1 )2 + a

(i)
1 ,

h
(i)
1 = gX

(i)
1 Y

(i)
1 + b

(i)
1 ,

and where a
(i)
0 , a

(i)
1 , b

(i)
0 and b

(i)
1 are degree 1 polynomials which mix variables from

both branches. For j ∈ {0, 1} and i ∈ {0..n − 1}, we denote by s
(i)
j the S-polynomial

S(f (i)
j , h

(i)
j ).

Proposition 3. The set

G def=
n−1⋃
i=0

{
f

(i)
0 , h

(i)
0 , f

(i)
1 , h

(i)
1

}
∪
{

s
(i)
0 , s

(i)
1

}
is a ≺-Gröbner basis of the ideal generated by Modeling 3.

Proof. For i ∈ {0..n − 1}, we show that both sets {f
(i)
0 , h

(i)
0 , s

(i)
0 } and {f

(i)
1 , h

(i)
1 , s

(i)
1 } are

Gröbner bases by using the same argument as in the ℓ = 1 case (see Section 3 and Appendix
A where we give more details). We can conclude by Proposition 1 as the leading monomials
between any two of these Gröbner bases involve different variable sets.

Corollary 2. The degree of the ideal generated by Modeling 3 is (α + 2)2n.

The proof of Proposition 3 is similar to the one of Proposition 2 in the ℓ = 1 case due
to the part in Fq[X(i)

0 , Y
(i)

0 ] of the polynomials a
(i)
0 and b

(i)
0 (resp. the part in Fq[X(i)

1 , Y
(i)

1 ]
of the polynomials a

(i)
1 and b

(i)
1 ). This is the topic of the next lemma.

Lemma 1. For j ∈ {0..1} and for i ∈ {0..n − 1}, we have

x
′′(i)
j = Li,j(X(i)

j + Y
(i)

j ) + ai,j ,

x
(i+1)
j = Mi,j(X(i)

j + Y
(i)

j ) + bi,j ,

where Li,j , Mi,j ∈ Fq and where ai,j , bi,j are degree 1 affine polynomials not involving
X

(i)
j nor Y

(i)
j .

Proof. For i = 0, let us recall that x
′′(0)
0 and x

′′(0)
1 are expressed linearly in terms of y

(0)
0

and y
(0)
1 . Thus, it is enough to show the statement for both y

(0)
0 and y

(0)
1 . Similarly, both

y
(0)
0 and y

(0)
1 are obtained linearly from y

′′(0)
0 and y

′′(0)
1 , whose expressions are given by

y
′′(0)
0 = Y

(0)
0 + X

(0)
0

2 , y
′′(0)
1 = Y

(0)
1 + X

(0)
1

2 .
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We can conclude from these expressions. For i ≥ 1, item 5. above the definition of Modeling
3 shows that x

′′(i)
0 and x

′′(i)
1 are obtained linearly in terms of y

(i)
0 , y

(i)
1 , y

′′(i)
0 and y

′′(i)
1 . As

both y
(i)
0 and y

(i)
1 only involve variables X

(i−1)
j or Y

(i−1)
j , we can once again conclude from

the expressions of y
′′(i)
0 and y

′′(i)
1 . Finally, the reasoning is similar for x

(i+1)
j .

Since a
(i)
j = −x

′′(i)
j and b

(i)
j = −x

′′(i)
j + x

(i+1)
j , Lemma 1 shows that the part in

Fq[X(i)
j , Y

(i)
j ] in both equations is a degree 1 term in X

(i)
j + Y

(i)
j .

4.3 Generalization to arbitrary ℓ

Our reasoning is not specific to the ℓ = 2 case. If we keep a similar change of variables as
the one given in Equation (4) for general ℓ, we can tackle in the same way the ℓ polynomials
pairs {f

(i)
j , h

(i)
j } for j ∈ {0..ℓ − 1} whose top degree parts only involve the two variables

X
(i)
j and Y

(i)
j . Note also that the proof of Lemma 1 does not depend on the precise

definition of the linear layer when ℓ = 2. In particular, this means that the ideal degree is
equal to (α + 2)ℓn in the general case.

5 Anemoi in even characteristic
In even characteristic, we apply a similar change of variables and we arrive at the same
conclusions. More precisely, we set{

Xi
def= yi+1 + xi + yi + Ci

Yi
def= xi + yi + Ci

, (5)

where we still write Ci
def= ci + di for i ∈ {0..n − 1}. To invert this change of variables, we

use y0 = Y0 + C0, yi+1 = Xi + Yi and xi+1 = Yi+1 + Yi + Xi + Ci+1 for i ∈ {0..n − 1}.

Modeling 4. We consider Modeling 1 with the change of variables given by Equation (5),
in the polynomial ring Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1].

We obtain 
fi = βY 3

i + X3
i + γ + (yi + di)

def= βY 3
i + X3

i + ai,

hi = βY 3
i + β(Xi + Yi)3 + γ + (yi + di) + δ + xi+1

def= βXiY
2

i + βYiX
2
i + βX3

i + Yi + Xi + bi,

(6)

where the polynomials ai and bi are affine of degree 1 and they do not involve Xi nor Yi. We
compute Gröbner bases with respect to the same monomial order as in odd characteristic.

Ordering 2. We denote by ≺2 the weighted grevlex order on Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1]
with weight 4 on Xi for i ∈ {0..n − 1} and weight 2α + 1 = 7 on Yi for i ∈ {0..n − 1}.

With respect to this order, the monomials in fi are sorted as 1 ≺2 · · · ≺2 X3
i ≺2 Y 3

i

and the monomials in hi are sorted as 1 ≺2 · · · ≺2 X3
i ≺2 X2

i Yi ≺2 XiY
2

i , where . . . hide
single variables. For i ∈ {0..n − 1}, we introduce the S-polynomial

si
def= S(fi, hi) = βXifi + βYihi,

whose leading monomial is equal to X2
i Y 2

i . Contrary to the odd characteristic case, the
set {fi, hi, si} is not a Gröbner basis. Thus, we naturally perform a reduction step and we
define ρi

def= si + βXihi. We have that LM≺2(ρi) = X4
i and that the polynomial ρi does

not contain cubic monomials (without considering weights).
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Proposition 4. The set

G def= {f0, h0, . . . , fn−1, hn−1} ∪ {ρ0, . . . , ρn−1}

is a ≺2-Gröbner basis for Modeling 4.

Proof. Since LM≺2(fi) = Y 3
i and LM≺2(ρi) = X4

i , the set {f0, ρ0, . . . , fn−1, ρn−1} is
already a ≺2-Gröbner basis for the subideal it generates (by Proposition 1). We can then
append {h0, . . . , hn−1} to this basis to obtain a Gröbner basis of the full ideal because the
S-polynomials S(hi, ρi) reduce to zero. This follows from a computation similar to the
one in Proposition 2 and we also give arguments in Appendix B.

Using Proposition 4, we can deduce the degree of the ideal generated by Modeling 4. For
i ∈ {0..n − 1}, let us recall that LM≺2(fi) = Y 3

i , LM≺2(hi) = XiY
2

i and LM≺2(ρi) = X4
i .

Corollary 3. The degree of the ideal generated by Modeling 4 is equal to 32n.

Proof. As in the proof of Corollary 1, we count the monomials “under the staircase”.
It will be convenient to write monomials as µ =

∏n−1
i=0 µi, where µi is a monomial in

Fq[Xi, Yi] for i ∈ {0..n − 1}. We will call “overlaps” the indexes i for which µi involves
both variables Xi and Yi. Any monomial µ under the staircase can be constructed by
fixing the set of overlaps first (denoted by A) and then by choosing the corresponding µi’s,
whose representatives are among XiYi, X2

i Yi or X3
i Yi. It remains to choose the other µi

monomials that are univariate in Xi or Yi. Let B be the subset of {0..n − 1} \ A such that
the µi monomials are univariate in Yi and different from the constant monomial. The only
possibility for these monomials is Yi or Y 2

i . Finally, for i ∈ {0..n − 1} \ (A ∪ B), we can
choose µi univariate in Xi, possibly constant (i.e., 1, Xi, X2

i or X3
i ). The basis B of the

quotient space Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1]/⟨G⟩ that we obtain in this way is of size

#B =
∑n

a=0
(

n
a

)
3a
(∑n−a

b=0
(

n−a
b

)
2b4n−a−b

)
=
∑n

a=0
(

n
a

)
3a6n−a = 9n = 32n.

Remark 1. Using the same combinatorial argument, the value of the ideal degree could
actually be inferred from the Gröbner basis of [BBC+23, Lemma 1 p. 32].

6 Multiplication matrices
We have just seen that obtaining a first Gröbner basis is always cheap in the case of
Anemoi. Therefore, we focus our attention on the end of the solving process which is the
most costly part. This step typically corresponds to an application of FGLM or more
efficient variants [FGHR14, FM17, BNSED22]. After constructing them, these algorithms
proceed by linear algebra on the so-called multiplication matrices.

Definition 2 (Multiplication matrix). Let I be a zero-dimensional ideal in a polynomial
ring R, let ≺ be a monomial ordering and let B = {ϵ1, . . . , ϵD} be the canonical basis of the
quotient ring R/I ordered with respect to ≺, where D is the ideal degree. The multiplication
matrix of the variable x is the square matrix of size D whose columns are the normal forms
of the xϵi’s with respect to a ≺-Gröbner basis of I.

Instead of using these more efficient variants to obtain a lexicographic Gröbner basis,
[BBL+24] directly produces a univariate equation by computing the characteristic polyno-
mial of one of the multiplication matrices. If the input Gröbner basis is FreeLunch, these
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matrices have a nice block structure [BBL+24, Lemma 1]. If furthermore the basis contains
one polynomial with univariate leading monomial of high degree α0, this is even more
interesting. Indeed, the computation of the characteristic polynomial of the corresponding
multiplication matrix reduces to the one of a determinant of size only D/α0 instead of D
[BBL+24, Lemma 2].

Even if our multiplication matrices do not exhibit such a block structure, we have tried
to find a univariate polynomial by computing the characteristic polynomial of one of them
or by applying the first steps of Sparse-FGLM [FM17, Algorithm 2] (our ideals seem to be
in shape position). We present the results of our experiments in Section 6.1 while Section
6.2 contains further comments.

6.1 Experiments
Even if the difference was small (this is expected due to the shape of the Gröbner basis),
considering the multiplication matrix of one Xi seemed a bit more efficient than taking
that of one Yi. The results in this section correspond to the multiplication matrix of X0.

We keep the same notation as in [BBL+24] to facilitate comparison. In the following
tables, matGen is the computation of the multiplication matrix and polyDet is the one
of its characteristic polynomial. Finally, we consider a sparseFGLM approach whose goal
is similar to that of polyDet. Once the multiplication matrix has been computed, it
corresponds to applying steps 2 to 8 from the probabilistic version of FGLM in the shape
position case [FM17, Algorithm 2]. If the univariate polynomial produced at step 8 is of
degree D, then the ideal is indeed in shape position. This is what we observed in all our
experiments (this might not always be the case, especially for much smaller field sizes than
the ones used in Anemoi).

Our tests were performed in Magma [BCP97]. For the polyDet step, we used a build-in
command2. For the sparseFGLM step, we stored the multiplication matrix as a sparse
matrix3 before computing the matrix-vector products. We give the time spent on these
products as it corresponds to the dominant cost. In comparison, the final Berlekamp-Massey
algorithm [Ber68, Mas69] of step 8 was negligible.

In Table 1, we see that we never improve upon the overall time complexity of [BBL+24].
However, the situation is reversed between the two steps. As expected, polyDet is much
slower because we perform linear algebra on a matrix of size D and not smaller as in
[BBL+24]. We also do not exploit any particular structure in the multiplication matrix.
On the contrary, the time of matGen is reduced by a significant amount.

Table 1: Anemoi with (q, ℓ, α) = (28407454060060787, 1, 3). All timings are in seconds.

n matGen polyDet sparseFGLM matGen [BBL+24] polyDet [BBL+24]
3 <0.01 0.02 0.04 <0.01 0.02
4 0.03 2.50 1.51 0.34 0.24
5 0.54 197.8 94.0 23.3 7.6
6 11.3 19,528 5,722 2,127 292
7 541 aborted aborted 156,348 10,725

Finally, Table 2 contains timings in even characteristic for future reference. When
α = 3, the ideal degree is 9n while it was equal to (3 + 2)n = 5n in odd characteristic. Due
to the large memory demand, numbers of rounds n ≥ 6 seemed completely out of reach.

2Several routines are available, see https://magma.maths.usyd.edu.au/magma/handbook/text/279.
The default modular algorithm was by far the most efficient.

3See https://magma.maths.usyd.edu.au/magma/handbook/sparse_matrices.

https://magma.maths.usyd.edu.au/magma/handbook/text/279
https://magma.maths.usyd.edu.au/magma/handbook/sparse_matrices
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Table 2: Anemoi with (q, ℓ, α) = (217, 1, 3). All timings are in seconds.

n matGen polyDet sparseFGLM
3 0.01 0.15 0.25
4 0.49 91.1 24.0
5 210.4 aborted 2,741

6.2 Matrix sparsity

From our experiments, sparseFGLM seems to give better results than computing the
characteristic polynomial without relying on sparse linear algebra techniques. The cost of
this method can be expressed as O(N1D + D log (D)), where N1 is the number of non-zero
entries in the multiplication matrix (see [FM17, §3.1.2]).

The trivial columns in the multiplication matrix of x (i.e., the ones that contain only
one non-zero entry) are associated to the elements ϵi ∈ B such that xϵi ∈ B. In our case,
the number of such columns is known since we have the expression of B. However, a precise
estimate for N1 requires further study. In general, the column weight depends on (i) the
number of polynomial reductions to compute the normal form of xϵi (ii) the shape of the
reductors, i.e., the elements of G. In our Gröbner bases, the polynomials contain very few
terms and this lets us think that the multiplication matrices are sparser than the average.

We give experimental results in Tables 3 and 4 but a finer-grained analysis of the
matrix sparsity is left for future work. We can already notice that the matrix becomes
sparser as the number of rounds increases and also for larger values of α. This second
observation might be due to the fact that the elements of G have the same number of
monomials regardless of the value of α (and thus they can be seen as sparser when α
increases). It is also in line with what was shown for generic systems: for fixed number
of equations of degree d, the multiplication matrix is sparser when d increases [FM17,
Corollary 6.10]. However, the dependency with respect to the number of rounds is not
encompassed by [FM17, Corollary 6.10].

Table 3: Sparsity of the multiplication matrix of the variable X0 when (q, ℓ) =
(28407454060060787, 1) and α ∈ {3, 5, 7}.

n Sparsity α = 3 Sparsity α = 5 Sparsity α = 7
3 0.099 0.045 0.026
4 0.038 0.017 0.010
5 0.013 0.006 0.003
6 0.004 0.002 aborted

Table 4: Sparsity of the multiplication matrix of the variable X0 when (q, ℓ, α) = (217, 1, 3).

n Sparsity
3 0.007
4 9 × 10−4

5 1 × 10−4



Pierre Briaud 13

References
[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. Design of Symmetric-Key Primitives for Advanced Cryptographic
Protocols. IACR Trans. Symmetric Cryptol., 2020:1–45, 2020.

[AD18] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-Friendly Family
of Cryptographic Primitives. Cryptology ePrint Archive, Paper 2018/1098,
2018. URL: https://eprint.iacr.org/2018/1098.

[BBC+23] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen,
Vesselin Velichkov, and Danny Willems. New Design Techniques For Efficient
Arithmetization-Oriented Hash Functions: Anemoi Permutations And Jive
Compression Mode. In CRYPTO 2023, volume 14085 of LNCS, page 507–539.
Springer, 2023.

[BBL+24] Augustin Bariant, Aurélien Boeuf, Axel Lemoine, Irati Manterola Ayala,
Morten Øygarden, Léo Perrin, and Håvard Raddum. The Algebraic Freelunch
Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives.
Cryptology ePrint Archive, Paper 2024/347, 2024. URL: https://eprint.i
acr.org/2024/347.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.
Computational algebra and number theory (London, 1993).

[BDPV11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryp-
tographic sponge functions. https://keccak.team/files/CSF-0.1.pdf,
2011.

[Ber68] Elwyn Berlekamp. Nonbinary BCH decoding (Abstr.). IEEE Transactions
on Information Theory, 14(2):242–242, 1968.

[BGL20] Eli Ben-Sasson, Lior Goldberg, and David Levit. STARK Friendly Hash –
Survey and Recommendation. Cryptology ePrint Archive, Paper 2020/948,
2020. URL: https://eprint.iacr.org/2020/948.

[BNSED22] Jérémy Berthomieu, Vincent Neiger, and Mohab Safey El Din. Faster change
of order algorithm for Gröbner bases under shape and stability assumptions.
In 2022 International Symposium on Symbolic and Algebraic Computation,
Lille, France, July 2022.

[BPW06] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. A Zero-
Dimensional Gröbner Basis for AES-128. In Matthew Robshaw, editor, Fast
Software Encryption, pages 78–88, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

[CCZ98] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, Bent Functions
and Permutations Suitable For DES-like Cryptosystems. Designs, Codes and
Cryptography, 15:125–156, 1998.

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algo-
rithms. Springer International Publishing, 2015.

[CP02] Nicolas T. Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations. In Yuliang Zheng, editor, Advances in
Cryptology — ASIACRYPT 2002, pages 267–287, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

https://eprint.iacr.org/2018/1098
https://eprint.iacr.org/2024/347
https://eprint.iacr.org/2024/347
https://keccak.team/files/CSF-0.1.pdf
https://eprint.iacr.org/2020/948


14 A Note on Anemoi Gröbner Bases

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard (Information Security and Cryptography).
Springer, 1 edition, 2002.

[FGHR14] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault.
Sub-cubic change of ordering for Gröbner basis: a probabilistic approach.
In Proceedings of the 39th International Symposium on Symbolic and Alge-
braic Computation, ISSAC ’14, page 170–177, New York, NY, USA, 2014.
Association for Computing Machinery.

[FGLM93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora.
Efficient Computation of Zero-Dimensional Gröbner Bases by Change of
Ordering. 16(4):329–344, 1993.

[FM17] Jean-Charles Faugère and Chenqi Mou. Sparse FGLM algorithms. Journal
of Symbolic Computation, 80:538–569, 2017.

[GHR+23] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger,
Roman Walch, and Qingju Wang. Horst Meets Fluid-SPN: Griffin for Zero-
Knowledge Applications. In Advances in Cryptology – CRYPTO 2023: 43rd
Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,
CA, USA, August 20–24, 2023, Proceedings, Part III, page 573–606, Berlin,
Heidelberg, 2023. Springer-Verlag.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for Zero-Knowledge
proof systems. In 30th USENIX Security Symposium (USENIX Security 21),
pages 519–535. USENIX Association, August 2021.

[KLR24] Katharina Koschatko, Reinhard Lüftenegger, and Christian Rechberger.
Exploring the Six Worlds of Gröbner Basis Cryptanalysis: Application
to Anemoi. Cryptology ePrint Archive, Paper 2024/250, 2024. URL:
https://eprint.iacr.org/2024/250.

[Mas69] James Massey. Shift-register synthesis and BCH decoding. IEEE Transactions
on Information Theory, 15(1):122–127, 1969.

[MR02] Sean Murphy and Matthew J. B. Robshaw. Essential Algebraic Structure
within the AES. In Advances in Cryptology - CRYPTO 2002, 22nd Annual
International Cryptology Conference, Santa Barbara, California, USA, August
18-22, 2002, Proceedings, volume 2442 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2002.

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-Prime: a
Standard Specification (SoK). Cryptology ePrint Archive, Paper 2020/1143,
2020. URL: https://eprint.iacr.org/2020/1143.

[Ste24a] Matthias Johann Steiner. A Zero-Dimensional Gröbner Basis for Poseidon.
Cryptology ePrint Archive, Paper 2024/310, 2024. URL: https://eprint.i
acr.org/2024/310.

[Ste24b] Matthias Johann Steiner. Zero-Dimensional Gröbner Bases for Rescue-XLIX.
Cryptology ePrint Archive, Paper 2024/468, 2024. URL: https://eprint.i
acr.org/2024/468.

https://eprint.iacr.org/2024/250
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2024/310
https://eprint.iacr.org/2024/310
https://eprint.iacr.org/2024/468
https://eprint.iacr.org/2024/468


Pierre Briaud 15

[YZY+24] Hong-Sen Yang, Qun-Xiong Zheng, Jing Yang, Quan feng Liu, and Deng
Tang. A New Security Evaluation Method Based on Resultant for Arithmetic-
Oriented Algorithms. Cryptology ePrint Archive, Paper 2024/886, 2024. URL:
https://eprint.iacr.org/2024/886.

A Arguments for Proposition 2
We will prove Proposition 2 thanks to Lemma 2 below. Our reasoning actually applies to
any polynomial system {f̃i, h̃i} of the form{

f̃i = Y 2
i + UiX

α
i + X2

i + Vi(Yi − Xi) + ℓi

h̃i = XiYi + Wi(Yi − Xi) + µi,
(7)

where Ui, Vi and Wi are constants in Fq and where ℓi and µi are degree 1 polynomials
not involving Xi nor Yi. Note that the system {f̃i, h̃i} where h̃i = hi and where f̃i is the
reduction of fi by hi in Equation (2) is clearly a particular case of Equation (7).

Lemma 2. Let (U, V, W ) ∈ F3
q and let {f, h} ⊂ Fq[x, y] be the system defined by{

f = y2 + Uxα + x2 + V (y − x)
h = xy + W (y − x)

.

Let ≺ be the grevlex weighted order with weight 4 on x and weight 2α + 1 on y and let
s = (x + W )f − yh. Then, the S-polynomial t = S(s, h) = ys − Uxαh is such that

t = ((V + W )x + V W )f − V s + (x2 − V x)h. (8)

From this identity we deduce that the set {f, h, s} is a ≺-Gröbner basis of the ideal ⟨f, h⟩.
Furthermore, the set {f, h, A−1s} is the reduced Gröbner basis.

Proof. The restriction to the S-polynomial t = S(s, h) = ys − Uxαh in our proof is
due to the fact that the polynomials S(f, h) and S(f, s) trivially reduce to zero (for the
S-polynomial S(f, s), we apply Proposition 1). Finally, by Equation (8) and using the
fact that LM≺(f) = y2, LM≺(h) = xy and LM≺(s) = xα+1, we see that the polynomial t
reduces to zero after reduction by f, s and then h.

We now study the Gröbner basis computation on the system given by Equation (7),
rewritten as {

fi = f + ℓi

hi = h + µi,

where both polynomials f and h are in Fq[Xi, Yi]. We apply Lemma 2 to {f, h} and we
keep notation from the proof of this lemma, namely the polynomials s and t. We have

si = s + (Xiℓi − Yiµi) + Wℓi,

ti = t − UXα
i µi + YiWℓi +

(
XiYiℓi − Y 2

i µi

)︸ ︷︷ ︸
def
= λi

= t + λi.

As above, the fact that the set {fi, hi, si} is a Gröbner basis is proven by checking that
the polynomial ti reduces to zero. For that purpose, we reduce both summands t and λi.
In the λi summand, we have to kill the terms XiYiℓi and −Y 2

i µi. We obtain

λi ≡ λi − hiℓi + fiµi

= −UXα
i µi + WYiℓi + (−W (Yi − Xi)ℓi − ℓiµi) +

(
UXα

i µi + X2
i µi + V (Yi − Xi)µi + ℓiµi

)
= WXiℓi + X2

i µi + V (Yi − Xi)µi.

https://eprint.iacr.org/2024/886
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For the t summand, we rely on the identity given by Equation (8). We get

t ≡ −ℓi((V + W )Xi + V W ) − µi(X2
i − V Xi) + V (Xiℓi − Yiµi) + V Wℓi

= −ℓiXiW − µi(X2
i − V Xi) − V Yiµi

= −WXiℓi − X2
i µi + V Xiµi − V Yiµi,

which is the opposite of what has just been obtained for λi. Therefore, the polynomial ti

reduces to zero and we can conclude from there.

Several branches (ℓ > 1). We can use a similar argument to prove Proposition 3.
Indeed, Lemma 1 shows that Equation (7) encompasses the case of {f

(i)
j , h

(i)
j } in Modeling 3

for j ∈ {0..1} (there, the variables −X
(i)
j and Y

(i)
j play the role of Xi and Yi respectively).

B Arguments for Proposition 4
As in odd characteristic, the system given by Equation (6) can be written in the form{

fi = βY 3
i + X3

i + ai,

hi = βXiY
2

i + βYiX
2
i + βX3

i + Yi + Xi + bi,

where what matters is that both polynomials ai and bi are affine of degree 1 not involving Xi

nor Yi. In Lemma 3, we study the Gröbner basis computation on the system {fi+ai, hi+bi}.

Lemma 3. Let Fq be a finite extension of F2, let U ∈ Fq and let {f, h} ⊂ Fq[x, y] be the
system defined by {

f = Uy3 + x3

h = Uxy2 + Ux2y + Ux3 + y + x
.

Let ≺ be the grevlex weighted order with weight 4 on x and weight 7 on y and let

ρ = Uxf + U(x + y)h = (U2 + U)x4 + Uy2 + Ux2.

This polynomial can be seen as the S-polynomial S(f, h) reduced modulo h. Then, the set
{f, h, ρ} is a ≺-Gröbner basis of the ideal ⟨f, h⟩.

Proof. As above, we can conclude by focusing on the S-polynomial t = S(ρ, h), whose
expression is given by Uy2ρ + (U2 + U)x3h. First, we have that

t = (Ux2 + Uxy + 1)ρ + (Ux + Uy)h + Uyf.

Using this second expression, the reduction of t by the polynomial ρ will naturally kill
the first term which is divisible by ρ and it will add U(U + 1)−1ρ due to the Uxh term.
Similarly, the reduction of the result by h will kill the term (Ux + Uy)h but it will leave
the rest unchanged. At this stage we are left with U(U + 1)−1ρ + Uyf , which reduces to
zero by the quotients f and eventually ρ.

Finally, we can conclude for the genuine set of polynomials {fi, hi} by an argument
similar to the one below Lemma 2.

Remark 2. The proofs of Lemma 2 and Lemma 3 are just given for the sake of complete-
ness. These statements can also be checked by using a computer algebra system (we simply
have 2 equations in 2 variables). In order not to create a dependency with respect to the
coefficients, we have to introduce symbolic ones instead of sampling fixed Fq values.
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