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Abstract. This paper focuses on algebraic attacks on the Anemoi family
of arithmetization-oriented permutations [BBC+23]. We consider a slight
variation of the naive modeling of the constrained-input constrained-
output (CICO) problem associated to the primitive, for which we can
very easily obtain a Gröbner basis and prove the degree of the associated
ideal. For inputs in F2

q when q is an odd prime, we recover the same
degree as conjectured for alternative polynomial systems used in other
recent works [BBL+24,KLR24]. Our approach can also be adapted to
other settings which have not been studied there, i.e., even characteristic
fields and inputs in F2ℓ

q for ℓ > 1. Finally, we analyze the construction
of the multiplication matrices associated to our Gröbner basis, showing
that it can be achieved in a more efficient way than in the generic case.

1 Introduction

A new type of symmetric cryptography motivated by applications in fully homo-
morphic encryption (FHE), multi-party computation (MPC) and zero-knowledge
(ZK) proofs has emerged in very recent years. As part of this trend, the family
of arithmetization-oriented (AO) permutations Anemoi [BBC+23] is taylored to
ZK proof systems. The reason why classical block ciphers are not suited in this
context is because the efficiency requirement is different. For instance, Anemoi as
well as previous candidates such as Jarvis [AD18] and Rescue [AAB+20] aim at
minimizing the number of multiplications over Fq, where Fq is a large finite field.
To achieve this, Anemoi relies on the notion of CCZ equivalence [CCZ98].

Algebraic cryptanalysis of symmetric schemes. The use of algebraic cryptanalysis
in symmetric cryptography largely predates the advances in AO constructions. It
dates back at least to [CP02], where it was employed on the AES [DR02]. Before
moving on to these more recent ciphers, let us mention earlier findings arising
from the study of classical ones. A first observation that highly differs from
the public-key setting is that the cost of computing an arbitrary Gröbner basis
should not always be taken as an indicator of the overall complexity. For instance,
[BPW06] showed that the AES modeling of [MR02] is already a Gröbner basis
for a “degree-then-lex” monomial order. The main analysis tool was the so-called
Buchberger’s second criterion (Proposition 1 in Section 2 below). Still, algebraic
methods were not a threat because the cost of the FGLM algorithm [FGLM93]
to obtain a lexicographic Gröbner basis (and therefore a univariate polynomial)
was above the security level. The same idea was used to devise Flurry and Curry.



The goal here was to give ciphers immune to linear and differential attacks but
for which the polynomial modeling by introducing intermediate variables at each
round was already a Gröbner basis.

A greater concern for AO ciphers. Algebraic techniques have gained a renewed
interest with the recent arithmetization-oriented primitives. This is explained
both by the low multiplicative complexity of these designs and the fact that
classical symmetric cryptanalysis does not seem to perform extremely well. Con-
cretely, these attacks are used to set the appropriate number of rounds in almost
all these ciphers - and Anemoi is no exception. For permutations used in sponge
constructions, the focus is typically on the hardness of the constrained-input
constrained-output (CICO) problem [Tea11] with respect to these methods.

Related works on Anemoi. A preliminary analysis of algebraic attacks on the
CICO problem was provided by the designers. They considered the naive mod-
eling by introducing variables at each round (denoted by FCICO) and another
one inspired by the analysis of Griffin [GHR+23] (denoted by PCICO). On the
Anemoi version with inputs in F2

q where q is an odd prime, subsequent works

have significantly improved upon their results1 [KLR24,BBL+24].
The experiments conducted in [KLR24] suggest that the complexity of FGLM

is the limiting cost to solve the PCICO system. The main contribution was to
provide sharper bounds on the degree of the associated ideal, which is the main
parameter to estimate the complexity of FGLM. These bounds follow from a
clever use of the multihomogeneous Bézout bound, already employed by Faugère
and Perret in the cryptographic context [BGL20]. The final estimate of [KLR24]
assumes a generic change of order algorithm.

The approach of [BBL+24] was to consider polynomial systems that are al-
ready Gröbner bases for suitable weighted monomial orders, using once again
Buchberger’s second criterion. Referred to as “FreeLunch”, such bases have lead-
ing monomials which are simply univariate. This technique is applied to various
ciphers, including Anemoi. In this case, the authors cannot construct a FreeLunch
Gröbner basis for the ideal generated by PCICO but they can derive one for a
subideal which is enough for their purposes. In contrast to [KLR24], another key
contribution was a FGLM-type strategy taylored to FreeLunch Gröbner bases.
The authors take advantage of the peculiar shape of the so-called multiplication
matrices to produce a univariate polynomial in a faster way than with generic
techniques. Their strategy works well when the input FreeLunch Gröbner basis
contains one polynomial of very large degree, which was the case in the attacked
ciphers.

Contribution. We introduce an Anemoi encoding obtained from the original one
FCICO by applying a linear change of variables. Its advantage is that we can
easily find a Gröbner basis for a monomial order that is less contrived than in

1 We will not elaborate on the recent preprint [YZY+24] which appeared later than
the first version of this paper.
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[BBL+24]. The price to pay is that the leading monomials are not all univariate.
Our approach also applies to cases not studied in [KLR24,BBL+24], i.e., the even
characteristic case and a larger number of branches. From our Gröbner bases we
can naturally deduce the degree of the ideal. In that respect, we would not need
to rely on upper bounds as in [BBC+23,KLR24] to estimate the end steps of the
attack.

We also study the construction of the multiplication matrices, showing that
it can be achieved in quadratic time with respect to the ideal degree instead of
cubic as in the general case. This construction has not been precisely studied in
[BBL+24]. Still, we note that computing the characteristic polynomial is slower
than in [BBL+24] if we use standard methods. Thus, it is unclear whether our
approach will yield better results. In characteristic 2 and for a larger number of
branches, the question is even more open. There, it would be interesting to find
a Gröbner basis of the same type as in [BBL+24] and possibly more suitable
to efficiently compute the characteristic polynomial. Since our multiplication
matrices seem to be extremely sparse, another improvement would be to analyze
FGLM algorithms that take advantage of this feature [FM17,BNSED22].

2 Preliminaries

The constrained-input constrained-output (CICO) problem was introduced by
the Keccak team in [Tea11, §8.2.4] due to its relevance for the security of sponge
constructions. It is generally acknowledged that its difficulty gives enough con-
fidence in the underlying permutation. We will focus on the following version
given in Problem 1. In this problem, the integer ℓ is the number of branches
divided by two (the same notation was used in [BBC+23]) and half of the input
and half of the output are set to zero.

Problem 1 (Constrained Input Constrained Output) Let ℓ be a positive
integer and let Fq be an arbitrary finite field. Given a permutation P : Fℓ

q×Fℓ
q →

Fℓ
q × Fℓ

q, the CICO problem consists in finding a pair of vectors (yin,yout) ∈
Fℓ
q × Fℓ

q such that P (0ℓ,yin) = (0ℓ,yout).

2.1 Algebraic background

Let R be a multivariate polynomial ring and let ≺ be a monomial order on R.
We write LM≺(f) (resp. LC≺(f)) for the leading monomial (resp. coefficient) of
an element f ∈ R. We refer the reader to [CLO15, 2, §3] for a presentation of
the division algorithm applied to f ∈ R and a finite set F ⊂ R assuming that
the monomial order is fixed. In the general case, the remainder of this algorithm
depends on the order of the elements of F . We may say that f “reduces to” this
remainder modulo F . However, when the input family is a Gröbner basis, we
know that the remainder is independent of this order. In this case, we will call
it the normal form of f modulo F and write it NF(f,F).

The notion of S-polynomial together with the following results will help us
to characterize Gröbner bases.
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Definition 1 (S-polynomial) Let ≺ be a monomial order on a polynomial

ring R, let f, g ∈ R be two non-zero polynomials and let µ
def
= lcm(LM≺(f),LM≺(g)),

where lcm refers to the least common multiple. The S-polynomial of the polyno-
mial pair {f, g} with respect to ≺ is defined by

S(f, g)
def
= LC≺(g)

µ

LM≺(f)
f − LC≺(f)

µ

LM≺(g)
g.

Theorem 1 (Buchberger’s first criterion, Theorem 6 p. 86, [CLO15]).
Let G = {g1, . . . , gℓ} be a finite set of polynomials and let I = ⟨G⟩ be the

ideal generated by G. The set G is a Gröbner basis of I if and only if for all
1 ≤ i < j ≤ ℓ, the S-polynomial S(gi, gj) reduces to 0 modulo G (regardless of
the order of the elements).

Proposition 1 (Buchberger’s second criterion, Prop. 4 p. 106, [CLO15]).
Let G be a finite set of polynomials and let f, g ∈ G whose leading monomials
are coprime. Then, the S-polynomial S(f, g) reduces to 0 modulo G.

Let F ⊂ R be a polynomial system such that the quotient space R/⟨F⟩ is of finite
dimension over the base field. The ideal ⟨F⟩ is said to be zero-dimensional and
this dimension is called the ideal degree D. Once a first Gröbner basis has been
found in this case, the end of the solving process typically corresponds to an ap-
plication of FGLM [FGLM93] or more efficient variants [FGHR14,FM17,BNSED22].
All these algorithms as well as related methods based on the eigenvalue criterion
[AS88] use the notion of multiplication matrix. More details will be provided in
Section 6 where we study this step. Before that, Sections 3 to 5 focus on the
task of finding a first Gröbner basis.

2.2 Naive Anemoi encoding in odd characteristic

We refer to [BBC+23] for a complete description of the Anemoi permutation. In
this subsection, we detail its building blocks for inputs in F2

q when q is an odd
prime and we introduce the FCICO polynomial system. Each of the n rounds Ri

for i ∈ {0..n− 1} is defined as a composition

Ri(x, y) = H ◦M(x+ ci, y + di),

where H is a non-linear map, M(x, y) = (2x + y, x + y) is the linear layer
and (ci, di) ∈ F2

q are the round constants. The S-box components correspond

to univariate polynomials Qγ(x) = gx2 + g−1 and Qδ(x) = gx2 such that g
generates the multiplicative subgroup of Fq together with the monomial xα for a
rather small exponent α such that x 7→ xα is a permutation. They are connected
to the map H through CCZ equivalence (see [BBC+23, Proposition 1]). For the
sake of simplicity, we do not give the precise definition of this map as our analysis
will only rely on the specific shape of Qγ and Qδ. Finally, the linear layer M is
applied once again after the n rounds.

The naive modeling of Problem 1 with ℓ = 1 adopted in [BBC+23] is the
following set of polynomials.
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Modeling 1 The FCICO system is the set {f0, g0, . . . , fn−1, gn−1, x0, xn} in the
polynomial ring Fq[x0, y0, . . . , xn, yn], with

fi
def
= (xi + yi + ci + di − yi+1)

α
+Qγ(xi + yi + ci + di)

− (2xi + yi + 2ci + di),

gi
def
= (xi + yi + ci + di − yi+1)

α
+Qδ(yi+1)− xi+1.

Another generating set for the ideal ⟨FCICO⟩ is {f0, h0, . . . , fn−1, hn−1, x0, xn},
where

hi
def
= fi − gi = Qγ(xi + yi + ci + di)− (2xi + yi + 2ci + di)−Qδ(yi+1) + xi+1.

In [BBC+23, Conjecture 2 p. 34], the ideal degree was conjectured to be equal
to (α+ 2)n.

2.3 Naive Anemoi encoding in even characteristic

When q = 2m for some odd integer m, the linear layer becomes M(x, y) =
(y, x + y). This time, we have Qγ(x) = βx3 + γ and Qδ(x) = βx3 + δ for field
elements γ ̸= δ and β ̸= 0. In this paper, we will only consider the monomial
permutation x3 but Anemoi can be defined for any value α = 2i + 1 such that i
is coprime to m.

Using the same approach as in odd characteristic, the two polynomials ob-
tained at round i for α = 3 are{

fi = (xi + yi + yi+1 + ci + di)
3 + β(xi + yi + ci + di)

3 + γ + (yi + di),

hi = β(xi + yi + ci + di)
3 + γ + βy3i+1 + δ + (yi + di) + xi+1.

We will still call FCICO or Modeling 1 the system {f0, h0, . . . , fn−1, hn−1, x0, xn}
in even characteristic. According to [BBC+23, Lemma 1 p. 32], a Gröbner basis
for the grevlex order can be obtained in degree 5 for any value of n when ℓ = 1.
Thus, in this case, the task of finding a first Gröbner basis is already known to
be a non-issue.

3 Anemoi in odd characteristic when ℓ = 1

The polynomial expressions in Modeling 1 invite us to set{
Xi

def
= xi + yi + ci + di − yi+1 = −yi+1 + yi + xi + Ci

Yi
def
= xi + yi + ci + di + yi+1 = yi+1 + yi + xi + Ci

, (1)

where Ci
def
= ci+di is a public constant for i ∈ {0..n−1}. Recalling that the last

two equations in FCICO correspond to fixing x0 and xn to zero, we can undo this
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change of variables by y0 =
X0 + Y0

2
−C0, yi+1 =

Yi −Xi

2
and for i ∈ {0..n−2}:

xi+1 = Xi+1 + yi+2 − yi+1 − Ci+1

= Xi+1 +
Yi+1 −Xi+1

2
− Yi −Xi

2
− Ci+1

= −1

2
Xi+1 +

1

2
Yi+1 +

1

2
Xi −

1

2
Yi − Ci+1.

Modeling 2 We consider Modeling 1 with the change of variables given by
Equation (1), in the polynomial ring Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1].

For i ∈ {0..n− 1}, we can now writefi = Xα
i + g

(
Xi + Yi

2

)2

+ Li(Yi −Xi) + ai

hi = gXiYi +Mi(Yi −Xi) + bi,

(2)

where Li and Mi are constants in Fq that we will not need to specify and ai, bi
are degree 1 affine polynomials in Fq[Xi−1, Yi−1, Xi+1, Yi+1].

3.1 Easy Gröbner basis for Modeling 2

For some appropriate monomial orders, the point is that we can obtain a Gröbner
basis of Modeling 2 at a very low cost. We stress that this fact has already
been observed on other schemes. As in [BBL+24], we consider a weighted order.
However, its definition is not as contrived as in these previous works. Indeed,
we do not necessarily look for a Gröbner basis with univariate, coprime leading
terms as in [BBL+24].

Ordering 1 We denote by ≺ the weighted grevlex order on Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1]
with weight 4 on Xi for i ∈ {0..n−1} and weight 2α+1 on Yi for i ∈ {0..n−1}.
On variables, we have Xn−1 ≺ Xn−2 ≺ · · · ≺ X0 ≺ Yn−1 ≺ Yn−2 ≺ · · · ≺ Y0.

It is easy to see that the leading monomial of fi with respect to ≺ is equal
to Y 2

i while the one of hi is XiYi. In the following, we will also consider the

S-polynomial si
def
= S(fi, hi) = gXifi −

g

4
Yihi. By construction, its leading

monomial is equal to Xα+1
i .

Proposition 2. The set

G def
= {f0, h0, . . . , fn−1, hn−1} ∪ {s0, . . . , sn−1}

is a ≺-Gröbner basis for Modeling 2.

Proof. We simply have to prove that {fi, hi, si} is a Gröbner basis for any
i ∈ {0..n − 1} because we can then conclude by Proposition 1. To show that
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{fi, hi, si} is a Gröbner basis, we use Theorem 1. We can restrict ourselves to
studying the S-polynomial S(hi, si) as both polynomials S(fi, hi) and S(fi, si)
trivially reduce to zero. Finally, the fact that the polynomial S(hi, si) reduces
to zero can be seen by symbolic computation since the expressions of fi, hi and
si are known. We will also give arguments in Appendix A.

Obtaining the Gröbner basis G is very cheap as we only need to compute n S-
polynomials in degree α+ 1. These n computations can in fact be performed in
parallel.

3.2 Ideal degree

We can deduce the degree of the ideal generated by Modeling 2 from the leading
monomials in G. This degree is clearly equal to the one of the former ideal
⟨FCICO⟩ because we have simply applied an invertible linear change of variables.
Recall that for i ∈ {0..n − 1}, we have LM≺(fi) = Y 2

i , LM≺(hi) = XiYi and
LM≺(si) = Xα+1

i .

Corollary 1 The degree of the ideal generated by Modeling 2 is (α+ 2)n.

Proof. We use the Gröbner basis given by Proposition 2 and we count monomials
“under the staircase”. For any monomial

µ
def
=

∏
i∈{0..n−1}

Y ai
i

∏
j∈{0..n−1}

X
bj
j ,

we will write I
def
= {i ∈ {0..n − 1}, ai ̸= 0} and J

def
= {j ∈ {0..n − 1}, bj ̸= 0}

for the supports on the variable sets Y and X respectively. From the leading
monomials in G, a basis of the quotient space Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1]/⟨G⟩
can be obtained as

B def
=

µ, µ =
∏
i∈I

Yi

∏
j∈J, bj∈{1..α}

X
bj
j , I ∩ J = ∅

 .

Finally, its cardinality can be estimated by

#B =

n∑
i=0

(
n

i

)
αi︸ ︷︷ ︸

choice of subset J
and bj exponents for j∈J

2n−i︸︷︷︸
choice of I in Jc

= (α+ 2)n.

3.3 Reduced Gröbner basis

As we will use it in Section 6, we give the structure of the reduced Gröbner basis
G̃ associated to G (for the precise definition of a reduced Gröbner basis, see for
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example [CLO15, 2, §7]). For any i ∈ {0..n− 1}, we rewrite Equation (2) where
the terms have been ordered{

fi =
g

4
Y 2
i +

g

2
XiYi +Xα

i +
g

4
X2

i + Li(Yi −Xi) + ai

hi = gXiYi +Mi(Yi −Xi) + bi.

We start by replacing the two polynomials fi and hi by their monic reductions

f̃i
def
= (4/g)(fi−hi/2) and h̃i

def
= (1/g)hi. We can then compute the S-polynomial

S(f̃i, h̃i). Through examination of its monomials, we notice that its reduction

by f̃i and h̃i only involves scalar multiplications and polynomial subtractions. If
we denote the result by s̃i, we obtain the reduced Gröbner basis

G̃i
def
=
{
f̃i, h̃i, s̃i

}
.

Finally, we have G̃ = ∪n−1
i=0 G̃i because we have not created “problematic” mono-

mials for indexes j ̸= i when computing G̃i. Indeed, for i ∈ {1..n − 2}, the
monomials in S(f̃i, h̃i) which involve variables from {Xi−1, Yi−1, Xi+1, Yi+1}
have partial degree at most 1 in any such variable2. In G̃0 (resp. G̃n−1), the same
conclusion holds with respect to the variables {X1, Y1} (resp. {Xn−2, Yn−2}).

4 Anemoi in odd characteristic when ℓ > 1

We now show that similar results hold for more branches. For the sake of clarity,
we give details when ℓ = 2 and we will sketch the general case at the end of the
section. We start by recalling the definition of one Anemoi round in this case. We
still denote by g a generator of the multiplicative group of Fq and we consider
the matrices

Mx
def
=

(
1 g
g g2 + 1

)
and My

def
= Mx

(
0 1
1 0

)
=

(
g 1

g2 + 1 g

)
.

In this section, the state before applying the i-th round for i ∈ {0..n−1} will be

denoted by
(
x
(i)
0 x

(i)
1 y

(i)
0 y

(i)
1

)T
. The linear layer corresponds to the following

steps
x
(i)
0

x
(i)
1

y
(i)
0

y
(i)
1

 7→Mx, My


Mx

(
x
(i)
0

x
(i)
1

)

My

(
y
(i)
0

y
(i)
1

)
 7→


x′′
0

x′′
1

y′′0
y′′1

 =


2Mx

(
x
(i)
0

x
(i)
1

)
+My

(
y
(i)
0

y
(i)
1

)

Mx

(
x
(i)
0

x
(i)
1

)
+My

(
y
(i)
0

y
(i)
1

)
 ,

(3)

2 The monomial X3
i also appears in s̃i but this does not affect indexes j ̸= i.
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where the second step is the application of the Pseudo-Hadamard transform. In
this description, round constants have been omitted. In practice, the whole map
looks like 

x
′′(i)
0

x
′′(i)
1

y
′′(i)
0

y
′′(i)
1

 def
= M


x
(i)
0

x
(i)
1

y
(i)
0

y
(i)
1

+Mvi,

where the matrix M ∈ F4×4
q corresponds to the path of Equation (3) and where

the vector vi ∈ F4
q contains the round constants of the i-th round. Finally, we

have H(x
′′(i)
0 , y

′′(i)
0 ) = (x

(i+1)
0 , y

(i+1)
0 ) and H(x

′′(i)
1 , y

′′(i)
1 ) = (x

(i+1)
1 , y

(i+1)
1 ), where

H is non-linear map described in Section 3 that contains xα, Qγ and Qδ.
To solve Problem 1 with ℓ = 2, the i-th round polynomials in the analogue

of Modeling 1 are given by

f
(i)
0 =

(
y
′′(i)
0 − y

(i+1)
0

)α
+Qγ(y

′′(i)
0 )− x

′′(i)
0 ,

h
(i)
0 = f

(i)
0 − g

(i)
0 = Qγ(y

′′(i)
0 )− x

′′(i)
0 −Qδ(y

(i+1)
0 ) + x

(i+1)
0 ,

f
(i)
1 =

(
y
′′(i)
1 − y

(i+1)
1

)α
+Qγ(y

′′(i)
1 )− x

′′(i)
1 ,

h
(i)
1 = f

(i)
1 − g

(i)
1 = Qγ(y

′′(i)
1 )− x

′′(i)
1 −Qδ(y

(i+1)
1 ) + x

(i+1)
1 ,

and the CICO constraints are x
(0)
0 = x

(0)
1 = 0 and x

(n)
0 = x

(n)
1 = 0 (the linear

layer applied at the very end should not affect our conclusions).

4.1 Change of variables

Following what has been done in Section 3, we consider the new variables
X

(i)
0

def
= y

′′(i)
0 − y

(i+1)
0

Y
(i)
0

def
= y

′′(i)
0 + y

(i+1)
0

X
(i)
1

def
= y

′′(i)
1 − y

(i+1)
1

Y
(i)
1

def
= y

′′(i)
1 + y

(i+1)
1

. (4)

To undo this change of variables, we perform the following steps, in order.

1. For j ≥ 1, we express y
(j)
0 and y

(j)
1 in terms of the new variables as

y
(j)
0 =

Y
(j−1)
0 −X

(j−1)
0

2
and y

(j)
1 =

Y
(j−1)
1 −X

(j−1)
1

2
.

2. For j ≥ 0, we express y
′′(j)
0 and y

′′(j)
1 in terms of the new variables as

y
′′(j)
0 =

Y
(j)
0 +X

(j)
0

2
and y

′′(j)
1 =

Y
(j)
1 +X

(j)
1

2
.
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3. Then, we write y
(0)
0 and y

(0)
1 linearly in terms of y

′′(0)
0 and y

′′(0)
1 from the

CICO constraints x
(0)
0 = 0 and x

(0)
1 = 0, using coordinates 3 and 4 in

0
0

y
(0)
0

y
(0)
1

 7→


x
′′(0)
0

x
′′(0)
1

y
′′(0)
0

y
′′(0)
1

 .

Finally, we use the expressions of y
′′(0)
0 and y

′′(0)
1 that we have found in 2.

4. Similarly, we can write x
′′(0)
0 and x

′′(0)
1 linearly in terms of y

(0)
0 and y

(0)
1 and

then use the values of y
(0)
0 and y

(0)
1 that have been found in 3.

5. Finally, for any i ≥ 1, we may view the transformation
x
(i)
0

x
(i)
1

y
(i)
0

y
(i)
1

 7→


x
′′(i)
0

x
′′(i)
1

y
′′(i)
0

y
′′(i)
1


as a system of 4 linear equations in the unknowns x

(i)
0 , x

(i)
1 , x

′′(i)
0 and x

′′(i)
1 .

Inverting this system allows to recover these values in terms of y
(i)
0 , y

(i)
1 , y

′′(i)
0

and y
′′(i)
1 .

Modeling 3 We consider the adaptation of Modeling 1 when ℓ = 2 in which we
apply the change of variables given by Equation (4), in the polynomial ring

Fq[(X
(i)
0 , X

(i)
1 )i∈{0..n−1}, (Y

(i)
0 , Y

(i)
1 )i∈{0..n−1}].

4.2 Easy Gröbner basis for Modeling 3

We will compute Gröbner bases with respect to the adaptation of Ordering 1

with weight 4 on all variables X
(i)
0 and X

(i)
1 and weight 2α + 1 on all variables

Y
(i)
0 and Y

(i)
1 , still denoted by ≺. Observe that we can write Modeling 3 as the

union
n−1⋃
i=0

{
f
(i)
0 , h

(i)
0 , f

(i)
1 , h

(i)
1

}
,

where

f
(i)
0 =

g

4
(Y

(i)
0 )2 + (X

(i)
0 )α +

g

2
X

(i)
0 Y

(i)
0 +

g

4
(X

(i)
0 )2 + a

(i)
0 ,

h
(i)
0 = gX

(i)
0 Y

(i)
0 + b

(i)
0 ,

f
(i)
1 =

g

4
(Y

(i)
1 )2 + (X

(i)
1 )α +

g

2
X

(i)
1 Y

(i)
1 +

g

4
(X

(i)
1 )2 + a

(i)
1 ,

h
(i)
1 = gX

(i)
1 Y

(i)
1 + b

(i)
1 ,

10



and where a
(i)
0 , a

(i)
1 , b

(i)
0 and b

(i)
1 are degree 1 polynomials which mix variables

from both branches. For j ∈ {0, 1} and i ∈ {0..n − 1}, we denote by s
(i)
j the

S-polynomial S(f
(i)
j , h

(i)
j ).

Proposition 3. The set

G def
=

n−1⋃
i=0

{
f
(i)
0 , h

(i)
0 , f

(i)
1 , h

(i)
1

}
∪
{
s
(i)
0 , s

(i)
1

}
is a ≺-Gröbner basis of the ideal generated by Modeling 3.

Proof. For i ∈ {0..n−1}, we show that both sets {f (i)
0 , h

(i)
0 , s

(i)
0 } and {f (i)

1 , h
(i)
1 , s

(i)
1 }

are Gröbner bases by using the same argument as in the ℓ = 1 case (see Section
3 and Appendix A where we give more details). We can conclude by Proposi-
tion 1 as the leading monomials between any two of these Gröbner bases involve
different variable sets.

Corollary 2 The degree of the ideal generated by Modeling 3 is (α+ 2)2n.

The proof of Proposition 3 is similar to the one of Proposition 2 in the ℓ = 1

case due to the part in Fq[X
(i)
0 , Y

(i)
0 ] of the polynomials a

(i)
0 and b

(i)
0 (resp. the

part in Fq[X
(i)
1 , Y

(i)
1 ] of the polynomials a

(i)
1 and b

(i)
1 ). This is the topic of the

next lemma.

Lemma 1 For j ∈ {0..1} and for i ∈ {0..n− 1}, we have

x
′′(i)
j = Li,j(X

(i)
j + Y

(i)
j ) + ai,j ,

x
(i+1)
j = Mi,j(X

(i)
j + Y

(i)
j ) + bi,j ,

where Li,j , Mi,j ∈ Fq and where ai,j , bi,j are degree 1 affine polynomials not

involving X
(i)
j nor Y

(i)
j .

Proof. For i = 0, let us recall that x
′′(0)
0 and x

′′(0)
1 are expressed linearly in terms

of y
(0)
0 and y

(0)
1 . Thus, it is enough to show the statement for both y

(0)
0 and y

(0)
1 .

Similarly, both y
(0)
0 and y

(0)
1 are obtained linearly from y

′′(0)
0 and y

′′(0)
1 , whose

expressions are given by

y
′′(0)
0 =

Y
(0)
0 +X

(0)
0

2
, y

′′(0)
1 =

Y
(0)
1 +X

(0)
1

2
.

We can conclude from these expressions. For i ≥ 1, item 5. above the defini-

tion of Modeling 3 shows that x
′′(i)
0 and x

′′(i)
1 are obtained linearly in terms

of y
(i)
0 , y

(i)
1 , y

′′(i)
0 and y

′′(i)
1 . As both y

(i)
0 and y

(i)
1 only involve variables X

(i−1)
j

or Y
(i−1)
j , we can once again conclude from the expressions of y

′′(i)
0 and y

′′(i)
1 .

Finally, the reasoning is similar for x
(i+1)
j .

Since a
(i)
j = −x

′′(i)
j and b

(i)
j = −x

′′(i)
j + x

(i+1)
j , Lemma 1 shows that the part in

Fq[X
(i)
j , Y

(i)
j ] in both equations is a degree 1 term in X

(i)
j + Y

(i)
j .

11



4.3 Generalization to arbitrary ℓ

Our reasoning is not specific to the ℓ = 2 case. If we keep a similar change of
variables as the one given in Equation (4) for general ℓ, we can tackle in the same

way the ℓ polynomial pairs {f (i)
j , h

(i)
j } for j ∈ {0..ℓ− 1} whose top degree parts

only involve the two variables X
(i)
j and Y

(i)
j . Note also that the proof of Lemma

1 does not depend on the precise definition of the linear layer when ℓ = 2. In
particular, this means that the ideal degree is equal to (α + 2)ℓn in the general
case.

5 Anemoi in even characteristic

In even characteristic, we apply a similar change of variables and we arrive at
the same conclusions. More precisely, we set{

Xi
def
= yi+1 + xi + yi + Ci

Yi
def
= xi + yi + Ci

, (5)

where we still write Ci
def
= ci + di for i ∈ {0..n − 1}. To invert this change of

variables, we use y0 = Y0+C0, yi+1 = Xi+Yi and xi+1 = Yi+1+Yi+Xi+Ci+1

for i ∈ {0..n− 1}.

Modeling 4 We consider Modeling 1 with the change of variables given by
Equation (5), in the polynomial ring Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1].

We obtain 
fi = βY 3

i +X3
i + γ + (yi + di)

def
= βY 3

i +X3
i + ai,

hi = βY 3
i + β(Xi + Yi)

3 + γ + (yi + di) + δ + xi+1
def
= βXiY

2
i + βYiX

2
i + βX3

i + Yi +Xi + bi,

(6)

where the polynomials ai and bi are affine of degree 1 and they do not involve
Xi nor Yi. We compute Gröbner bases with respect to the same monomial order
as in odd characteristic.

Ordering 2 We denote by ≺2 the weighted grevlex order on Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1]
with weight 4 on Xi for i ∈ {0..n − 1} and weight 2α + 1 = 7 on Yi for
i ∈ {0..n− 1}.

With respect to this order, the monomials in fi are sorted as 1 ≺2 · · · ≺2 X3
i ≺2

Y 3
i and the monomials in hi are sorted as 1 ≺2 · · · ≺2 X3

i ≺2 X2
i Yi ≺2 XiY

2
i ,

where . . . hide single variables. For i ∈ {0..n−1}, we introduce the S-polynomial

si
def
= S(fi, hi) = βXifi + βYihi,

12



whose leading monomial is equal to X2
i Y

2
i . Contrary to the odd characteristic

case, the set {fi, hi, si} is not a Gröbner basis. Thus, we naturally perform a

reduction step and we define ρi
def
= si+βXihi. We have that LM≺2(ρi) = X4

i and
that the polynomial ρi does not contain cubic monomials (without considering
weights).

Proposition 4. The set

G def
= {f0, h0, . . . , fn−1, hn−1} ∪ {ρ0, . . . , ρn−1}

is a ≺2-Gröbner basis for Modeling 4.

Proof. Since LM≺2(fi) = Y 3
i and LM≺2(ρi) = X4

i , the set {f0, ρ0, . . . , fn−1, ρn−1}
is already a ≺2-Gröbner basis for the subideal it generates (by Proposition 1).
We can then append {h0, . . . , hn−1} to this basis to obtain a Gröbner basis of the
full ideal because the S-polynomials S(hi, ρi) reduce to zero. This follows from
a computation similar to the one in Proposition 2 and we also give arguments
in Appendix B.

Using Proposition 4, we can deduce the degree of the ideal generated by Modeling
4. For i ∈ {0..n− 1}, let us recall that LM≺2

(fi) = Y 3
i , LM≺2

(hi) = XiY
2
i and

LM≺2(ρi) = X4
i .

Corollary 3 The degree of the ideal generated by Modeling 4 is equal to 32n.

Proof. As in the proof of Corollary 1, we count the monomials “under the stair-

case”. It will be convenient to write monomials as µ =

n−1∏
i=0

µi, where µi is a

monomial in Fq[Xi, Yi] for i ∈ {0..n − 1}. We will call “overlaps” the indexes i
for which µi involves both variables Xi and Yi. Any monomial µ under the stair-
case can be constructed by fixing the set of overlaps first (denoted by A) and
then by choosing the corresponding µi’s, whose representatives are among XiYi,
X2

i Yi or X
3
i Yi. It remains to choose the other µi monomials that are univariate

in Xi or Yi. Let B be the subset of {0..n−1}\A such that the µi monomials are
univariate in Yi and different from the constant monomial. The only possibility
for these monomials is Yi or Y 2

i . Finally, for i ∈ {0..n − 1} \ (A ∪ B), we can
choose µi univariate in Xi, possibly constant (i.e., 1, Xi, X

2
i or X3

i ). The basis B
of the quotient space Fq[X0, . . . , Xn−1, Y0, . . . , Yn−1]/⟨G⟩ that we obtain in this
way is of size

#B =
∑n

a=0

(
n
a

)
3a
(∑n−a

b=0

(
n−a
b

)
2b4n−a−b

)
=
∑n

a=0

(
n
a

)
3a6n−a = 9n = 32n.

Remark 1 Using the same combinatorial argument, the value of the ideal degree
could actually be inferred from the Gröbner basis of [BBC+23, Lemma 1 p. 32].
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To conclude this section, note that the reduced Gröbner basis G̃ associated
to G can be obtained in the same way as in odd characteristic and it has the
same structure. Here, we consider the monic reduced versions f̃i = β−1fi and
h̃i = β−1hi as well as the polynomial S(f̃i, h̃i) + Xih̃i. By construction, the

latter cannot be reduced by f̃i and h̃i. If we write ρ̃i for the monic polynomial
obtained after division by the leading coefficient, we get the reduced Gröbner
basis {f̃i, h̃i, ρ̃i}. By the same argument as in Section 3.3, the reduced Gröbner

basis of Modeling 4 is eventually G̃ = ∪n−1
i=0 {f̃i, h̃i, ρ̃i}.

6 Solving methods based on multiplication matrices

We have shown that it was always easy to obtain a first Gröbner basis, even re-
duced. Therefore, we focus our attention on the end of the solving process which
is the most costly part. Since our ideals are zero-dimensional, we may apply stan-
dard techniques such as FGLM variants [FGLM93,FGHR14,FM17,BNSED22] or
Eigenvalue methods [AS88]. All these algorithms can be described in terms of
multiplication matrices. They have in common that (a) they construct these
matrices (b) they perform linear algebra on them.

Definition 2 (Multiplication matrix) Let I be a zero-dimensional ideal of
degree D in a polynomial ring R, let ≺ be a monomial ordering and let B be the
canonical basis of the quotient ring R/I that is obtained from a ≺-Gröbner basis
G of I. The multiplication matrix Tx of the variable x is the square matrix of
size D whose columns are the normal forms NF(xµ,G), µ ∈ B, written in the
basis B.

When the elements of G all have univariate leading monomials, it has been
observed in [BBL+24, Lemma 1] that the multiplication matrices have a nice
block structure. If furthermore one of these leading monomials is of high degree
α0, this is even more interesting. Indeed, the computation of the characteristic
polynomial of the corresponding multiplication matrix reduces to the one of a
determinant of size D/α0 instead of D [BBL+24, Lemma 2]3. For that reason,
the strategy of [BBL+24] was to only compute this characteristic polynomial
which yields a univariate equation rather than to exploit all the multiplication
matrices.

In Section 6.1, we show that the multiplication matrices associated to our ide-
als can be constructed in a more efficient way than for a generic zero-dimensional
ideal with the same number of variables and the same degree. The cost of this
construction has not been precisely studied in [BBL+24]. Perhaps surprisingly,
the experimental results given in [BBL+24, Table 6] for matGen suggest that it
represents the bottleneck. In Section 6.2, we briefly discuss the complexity of
linear algebra on such matrices, even though the naive cost does not improve
upon [BBL+24].

3 The relevant value of D is slightly higher than (α + 2)n in their paper since it is
the degree of a subideal [BBL+24, Proposition 8].
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6.1 Matrix construction

We start by recalling the original construction of the multiplication matrices
of [FGLM93] when the input is a reduced Gröbner basis. As was discussed in
Section 3.3, we can here assume that we start from such a basis because the
reduction procedure is not costly. First, note that some of the columns in these
matrices involve absolutely no computation. For the multiplication matrix Tx,
such “trivial” columns are associated to the monomials µ ∈ B such that xµ ∈
B. In particular, the set of monomials which need to be reduced during the
construction of all the matrices is the following subset defined in [FGLM93,
Definition 2.2].

Definition 3 (Bordering of a Gröbner basis) Let I ⊂ Fq[x1, . . . , xn] be a
zero-dimensional ideal, let ≺ be a monomial order and let B be the canonical
basis of the quotient space R/I that is obtained from a ≺-Gröbner basis G of I.
The bordering of the Gröbner basis G is defined by

M = {xiµ, i ∈ {1..n}, µ ∈ B, xiµ /∈ B} .

An algorithm to compute the normal forms of the bordering elements is presented
in the proof of [FGLM93, Proposition 3.1] when the Gröbner basis G is reduced.
This algorithm treats the elements of M by increasing order with respect to
≺ and it exploits previous reductions of smaller elements that have already
been computed. Treating each element costs O(D2), which gives O(#MD2) in
total. Finally, the commonly adopted bound O(nD3) follows from the fact that
#M ≤ nD using the mere definition of M.

We now move on to the matrix construction in Anemoi by detailing the odd
characteristic case when ℓ = 1. First, we have seen in the proof of Corollary 1
that the canonical basis is

B =

µ, µ =
∏
i∈I

Yi

∏
j∈J, bj∈{1..α}

X
bj
j , I ∩ J = ∅

 . (7)

Using this expression, we can precisely compute the bordering. However, its size
turns out to be smaller than the maximum value 2nD = 2n(α+ 2)n by a factor
which is not more than a constant, which means that the bound O(nD3) is tight
if we apply the above algorithm. Instead, we propose to use the structure of the
reduced Gröbner basis G̃ for a more efficient construction. The idea is still very
similar to the original algorithm. We sort the elements of M with respect to
≺ and when an element µ ∈ M is treated, all the normal forms NF(µ′, G̃) for
µ′ ∈ M, µ′ ≺ µ have already been computed. We also assume that we have
computed the (trivial) normal forms of the elements of B. By definition, any
element µ ∈ M can be written as µ = Xiν (or µ = Yiν) for some i ∈ {0..n− 1}
and ν ∈ B. Due to the structure of B, there in fact exists a more interesting
factorization as µ = µiνi, where µi = LM≺(pi) for some pi ∈ G̃i ⊂ G̃ and νi ∈ B
does not involve variables with index i. We then have

NF(µ, G̃) = NF((µ− pi)νi, G̃) =
∑

λ λjNF(τjνi, G̃), (8)
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where we have written the polynomial µ− pi =
∑

j λjτj as a linear combination
of monomials. Using the shape of pi, we not only know that τjνi ≺ µiνi = µ
but also that τjνi ∈ M or possibly τjνi ∈ B. In this way, we can compute the

normal form NF(µ, G̃) from the previously computed NF(τjνi, G̃) for τj appearing
in µ− pi.

The gain over the original algorithm is that the number of terms of pi in
the Gröbner basis G̃ found in Section 3.3 can be bounded by a constant. Using
the previously computed normal forms, this means that the left-hand side of
Equation (8) can be computed in O(D) operations instead of O(D2) as in the
original algorithm. Since the process has to be repeated for each µ ∈ M and
since #M = O(nD), we obtain

Proposition 5. The number of operations in Fq to compute the set of all the
multiplication matrices TXi

and TYi
for i ∈ {0..n− 1} associated to the Gröbner

basis G̃ of Section 3.3 can be estimated by

O(nD2) = O(n(α+ 2)2n).

Remark 2 The even characteristic case when ℓ = 1 is analogous due to the
structure of the reduced Gröbner basis described at the end of Section 5.

6.2 Linear algebra step

We finish by discussing the cost of linear algebra on the multiplication matrices
since it represents the main complexity. The cost of computing the characteristic
polynomial of one of these matrices naively would be in O(Dω), where 2 ≤ ω < 3
is the linear algebra exponent, D = (α + 2)n in odd characteristic and D = 9n

in characteristic 2 when α = 3. In odd characteristic, this complexity is not
better than the one derived by [BBL+24, §5] for polyDet because one of the
multiplication matrices is much easier to tackle in their work. In characteristic
2 or for several branches however, the cost O(Dω) is the baseline.

The gain in [BBL+24] comes from a particular splitting of the canonical basis
which is described at the very top of page 11 of their paper. This allows to reduce
the computation of the characteristic polynomial4 to that of a determinant of
size D/α0 and degree α0, where α0 is rather big. A similar approach was followed
by [Ste24] on other primitives, even though the size of the determinant is there
only cut by a factor 2. In our case, a tempting splitting of the canonical basis
tailored to the multiplication matrix TXi

in odd characteristic would be

B = ∪α
j=0X

j
i B\{i} ∪ YiB\{i},

where B is defined in Equation (7) and B\{i} ⊂ B corresponds to the subset of
monomials which do not involve a variable Xi or Yi. However, even if it was
possible to perform linear algebra on a block of size only #B\{i}, this would not

bring an asymptotic improvement as #B\{i} = (α+ 2)n−1.

4 i.e., the determinant of a polynomial matrix of size D and degree 1.
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Another route to produce a univariate polynomial could be to apply steps 2
to 8 from the probabilistic version of FGLM in the shape position case [FM17,
Algorithm 2]. If the univariate polynomial produced at step 8 is of degree D,
then the ideal is indeed in shape position. This is what we observed in all our
experiments (this might not always be the case, especially for much smaller
field sizes than the ones used in Anemoi). In practice, this so-called sparseFGLM
method seems cheaper than the computation the characteristic polynomial that
we also call polyDet, see Tables 1 and 2. The tests to generate these tables
were performed in Magma [BCP97]. For the polyDet step, we used a build-in
command5. For the sparseFGLM step, we stored the multiplication matrix as a
sparse matrix6 before computing the matrix-vector products. We give the time
spent on these products as it corresponds to the dominant cost. In comparison,
the final Berlekamp-Massey algorithm [Ber68,Mas69] of step 8 was negligible.
In odd characteristic, we see that we are still much slower than [BBL+24]. The
even characteristic case has not been studied in [KLR24,BBL+24] and we give
timings for future reference. When α = 3, the ideal degree is 9n while it was
equal to (3 + 2)n = 5n in odd characteristic. Due to the large memory demand,
numbers of rounds n ≥ 6 seemed completely out of reach.

n matGen polyDet sparseFGLM matGen [BBL+24] polyDet [BBL+24]

3 < 0.01 0.02 0.04 < 0.01 0.02
4 0.03 2.50 1.51 0.34 0.24
5 0.54 197.8 94.0 23.3 7.6
6 11.3 19,528 5,722 2,127 292
7 541 aborted aborted 156,348 10,725

Table 1. Anemoi with (q, ℓ, α) = (28407454060060787, 1, 3). All timings are in seconds.

n matGen polyDet sparseFGLM

3 0.01 0.15 0.25
4 0.49 91.1 24.0
5 210.4 58,159 2,741

Table 2. Anemoi with (q, ℓ, α) = (217, 1, 3). All timings are in seconds.

From these results, it would be interesting to analyze sparseFGLM to confirm
the practical gain over polyDet. The cost of this method can be expressed as

5 Several routines are available, see https://magma.maths.usyd.edu.au/magma/
handbook/text/279. The default modular algorithm was by far the most efficient.

6 See https://magma.maths.usyd.edu.au/magma/handbook/sparse matrices.
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O(N1D +D log (D)), where N1 is the number of non-zero entries in the multi-
plication matrix (see [FM17, §3.1.2]). A precise estimate of this number requires
further study, even though we can already expect a rather small value because
of the sparse nature of the reduced Gröbner basis (we refer to Appendix C for
more experiments on this).
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BNSED22. Jérémy Berthomieu, Vincent Neiger, and Mohab Safey El Din. Faster
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A Arguments for Proposition 2

We will prove Proposition 2 thanks to Lemma 2 below. Our reasoning actually
applies to any polynomial system {f̃i, h̃i} of the form{

f̃i = Y 2
i + UiX

α
i +X2

i + Vi(Yi −Xi) + ℓi

h̃i = XiYi +Wi(Yi −Xi) + µi,
(9)

where Ui, Vi and Wi are constants in Fq and where ℓi and µi are degree 1

polynomials not involving Xi nor Yi. Note that the system {f̃i, h̃i} where h̃i = hi

and where f̃i is the reduction of fi by hi in Equation (2) is clearly a particular
case of Equation (9).

Lemma 2 Let (U, V,W ) ∈ F3
q and let {f, h} ⊂ Fq[x, y] be the system defined by{

f = y2 + Uxα + x2 + V (y − x)

h = xy +W (y − x)
.

Let ≺ be the grevlex weighted order with weight 4 on x and weight 2α + 1 on y
and let s = (x+W )f − yh. Then, the S-polynomial t = S(s, h) = ys− Uxαh is
such that

t = ((V +W )x+ VW )f − V s+ (x2 − V x)h. (10)

From this identity we deduce that the set {f, h, s} is a ≺-Gröbner basis of the
ideal ⟨f, h⟩. Furthermore, the set {f, h, U−1s} is the reduced Gröbner basis.

Proof. The restriction to the S-polynomial t = S(s, h) = ys−Uxαh in our proof
is due to the fact that the polynomials S(f, h) and S(f, s) trivially reduce to
zero (for the S-polynomial S(f, s), we apply Proposition 1). Finally, by Equation
(10) and using the fact that LM≺(f) = y2, LM≺(h) = xy and LM≺(s) = xα+1,
we see that the polynomial t reduces to zero after reduction by f, s and then h.

We now study the Gröbner basis computation on the system given by Equation
(9), rewritten as {

fi = f + ℓi

hi = h+ µi,

where both polynomials f and h are in Fq[Xi, Yi]. We apply Lemma 2 to {f, h}
and we keep notation from the proof of this lemma, namely the polynomials s
and t. We have

si = s+ (Xiℓi − Yiµi) +Wℓi,

ti = t− UXα
i µi + YiWℓi +

(
XiYiℓi − Y 2

i µi

)︸ ︷︷ ︸
def
= λi

= t+ λi.

As above, the fact that the set {fi, hi, si} is a Gröbner basis is proven by check-
ing that the polynomial ti reduces to zero. For that purpose, we reduce both
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summands t and λi. In the λi summand, we have to kill the terms XiYiℓi and
−Y 2

i µi. We obtain

λi ≡ λi − hiℓi + fiµi

= −UXα
i µi +WYiℓi + (−W (Yi −Xi)ℓi − ℓiµi) +

(
UXα

i µi +X2
i µi + V (Yi −Xi)µi + ℓiµi

)
= WXiℓi +X2

i µi + V (Yi −Xi)µi.

For the t summand, we rely on the identity given by Equation (10). We get

t ≡ −ℓi((V +W )Xi + VW )− µi(X
2
i − V Xi) + V (Xiℓi − Yiµi) + VWℓi

= −ℓiXiW − µi(X
2
i − V Xi)− V Yiµi

= −WXiℓi −X2
i µi + V Xiµi − V Yiµi,

which is the opposite of what has just been obtained for λi. Therefore, the
polynomial ti reduces to zero and we can conclude from there.

Several branches (ℓ > 1). We can use a similar argument to prove Proposition

3. Indeed, Lemma 1 shows that Equation (9) encompasses the case of {f (i)
j , h

(i)
j }

in Modeling 3 for j ∈ {0..1} (there, the variables −X
(i)
j and Y

(i)
j play the role

of Xi and Yi respectively).

B Arguments for Proposition 4

As in odd characteristic, the system given by Equation (6) can be written in the
form {

fi = βY 3
i +X3

i + ai,

hi = βXiY
2
i + βYiX

2
i + βX3

i + Yi +Xi + bi,

where what matters is that both polynomials ai and bi are affine of degree 1 not
involving Xi nor Yi. In Lemma 3, we study the Gröbner basis computation on
the system {fi + ai, hi + bi}.

Lemma 3 Let Fq be a finite extension of F2, let U ∈ Fq and let {f, h} ⊂ Fq[x, y]
be the system defined by{

f = Uy3 + x3

h = Uxy2 + Ux2y + Ux3 + y + x
.

Let ≺ be the grevlex weighted order with weight 4 on x and weight 7 on y and let

ρ = Uxf + U(x+ y)h = (U2 + U)x4 + Uy2 + Ux2.

This polynomial can be seen as the S-polynomial S(f, h) reduced modulo h. Then,
the set {f, h, ρ} is a ≺-Gröbner basis of the ideal ⟨f, h⟩ and {f, h, (U2 +U)−1ρ}
is the reduced Gröbner basis.
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Proof. As above, we can conclude by focusing on the S-polynomial t = S(ρ, h),
whose expression is given by Uy2ρ+ (U2 + U)x3h. First, we have that

t = (Ux2 + Uxy + 1)ρ+ (Ux+ Uy)h+ Uyf.

Using this second expression, the reduction of t by the polynomial ρ will naturally
kill the first term which is divisible by ρ and it will add U(U + 1)−1ρ due to
the Uxh term. Similarly, the reduction of the result by h will kill the term
(Ux+ Uy)h but it will leave the rest unchanged. At this stage we are left with
U(U +1)−1ρ+Uyf , which reduces to zero by the quotients f and eventually ρ.

Finally, we can conclude for the genuine set of polynomials {fi, hi} by an argu-
ment similar to the one below Lemma 2.

Remark 3 The proofs of Lemma 2 and Lemma 3 are just given for the sake of
completeness. These statements can also be checked by using a computer algebra
system (we simply have 2 equations in 2 variables). In order not to create a
dependency with respect to the coefficients, we have to introduce symbolic ones
instead of sampling fixed Fq values.

C Sparsity of the multiplication matrices

Tables 3 and 4 give the sparsity of the multiplication matrix with respect to X0

in both characteristics (expressed as the ratio of the number of non-zero entries
to D2). We can already notice that the matrix becomes sparser as the number of
rounds increases and also for larger values of α. This second observation might
be due to the fact that the elements of the Gröbner basis have the same number
of monomials regardless of the value of α (and thus they can be seen as sparser
when α increases). It is also in line with what was shown for generic systems:
for a fixed number of equations of degree d, the multiplication matrix is sparser
when d increases [FM17, Corollary 6.10]. However, the dependency with respect
to the number of rounds is not encompassed by [FM17, Corollary 6.10].

n Sparsity α = 3 Sparsity α = 5 Sparsity α = 7

3 0.099 0.045 0.026
4 0.038 0.017 0.010
5 0.013 0.006 0.003
6 0.004 0.002 aborted

Table 3. Sparsity of the multiplication matrix of the variable X0 when (q, ℓ) =
(28407454060060787, 1) and α ∈ {3, 5, 7}.

22



n Sparsity

3 0.007

4 9× 10−4

5 1× 10−4

Table 4. Sparsity of the multiplication matrix of the variable X0 when (q, ℓ, α) =
(217, 1, 3).
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