
Masked Computation of the Floor Function and
Its Application to the FALCON Signature

Justine Paillet1,3[0009−0009−6056−7766], Pierre-Augustin
Berthet2,3[0009−0005−5065−2730], and Cédric Tavernier3[0009−0007−5224−492X]

1 Université Jean-Monnet, Saint-Étienne, France,
justine.paillet@univ-st-etienne.fr

2 Télécom Paris, Palaiseau, France, berthet@telecom-paris.fr
3 Hensoldt SAS FRANCE, Plaisir, France,

<pierre-augustin.berthet,justine.paillet,cedric.tavernier>@hensoldt.net

Abstract. FALCON is candidate for standardization of the new Post
Quantum Cryptography (PQC) primitives by the National Institute of
Standards and Technology (NIST). However, it remains a challenge to
define efficient countermeasures against side-channel attacks (SCA) for
this algorithm. FALCON is a lattice-based signature that relies on ra-
tional numbers which is unusual in the cryptography field. While recent
work proposed a solution to mask the addition and the multiplication,
some roadblocks remain, most noticeably how to protect the floor func-
tion. We propose in this work to complete the existing first trials of
hardening FALCON against SCA. We perform the mathematical proofs
of our methods as well as formal security proof in the probing model
using the Non-Interference concepts.

Keywords: Floor Function · Floating-Point Arithmetic · Post-Quantum
Cryptography · FALCON · Side-Channel Analysis · Masking

1 Introduction

With the rise of quantum computing, mathematical problems which were hard
to solve with current technologies will be easier to breach. Among the con-
cerned problems, the Discrete Logarithm Problem (DLP) could be solved in
polynomial times by the Shor quantum algorithm [28]. As much of the cur-
rent asymmetric primitives rely on this problem and will be compromised, new
cryptographic primitives are studied. The National Institute of Standards and
Technology (NIST) launched a post-quantum standardization process [7]. The
finalists are CRYSTALS Kyber [5,22], CRYSTALS Dilithium [9,21], SPHINCS+
[3,23] and FALCON [25].

Another concern for the security of cryptographic primitives is their robustness
to a Side-Channel opponent. Side-Channel Analysis (SCA) was first introduced
by Paul Kocher [18] in the mid-1990. This new branch of cryptanalysis focuses on
studying the impact of a cryptosystem on its surroundings. As computations take
time and energy, an opponent able to access the variation of one or both could

2 J Paillet et al.

find correlations between its physical observations and the data manipulated,
thus resulting in a leakage and a security breach. Thus, the study of weaknesses
in the implementations of new primitives and the way to protect them is an
active field of research.

While many works have been done on CRYSTALS Dilithium and CRYSTALS
Kyber, summed up by Ravi et al. [26], FALCON has been less covered. Indeed,
the algorithm relies on floating-point arithmetic, for which there is little litera-
ture on how to protect it.

Related Work Previous works have identified two main weaknesses within the
signing process of Falcon: the pre-image computation and the Gaussian sampler.
The latest is proved vulnerable by Karabulut and Aysu [17] using an Electro-
Magnetic (EM) attack. Their work was later improved by Guerreau et al. [13].
To counter those attacks, Chen and Chen [6] propose a masked implementation
of the addition and multiplication of FALCON. However, they did not delve into
the second weakness of Falcon, the Gaussian sampler.
The Gaussian sampler is vulnerable to timing attacks, as shown by previous
work [12,10,20,24]. A isochronous design was proposed by Howe et al. [14] to
counter those attacks. Nonetheless, a successful single power analysis (SPA) was
proposed by Guerreau et al. [13] and further improved by Zhang et al. [29]. There
is currently no masking countermeasure for FALCON’s Gaussian Sampler. Ex-
isting work [11] tends to rewrite the Gaussian Sampler to remove the use of
floating arithmetic, thus avoiding the challenge of masking the floor function.

Our Contribution In this work, we further expand the countermeasure from
Chen and Chen [6] and apply it to the Gaussian Sampler. We propose a masking
method based on the mantissa truncation to compute the floor function as well
as a method to mask the division. We discuss the application of those methods
to masking FALCON.

Relying on the previous work of Chen and Chen [6], we also verify the higher-
order security of our method in the probing model. Our formal proofs rely on
the Non-Interference (NI) security model first introduced by Barthe et al. [1].

We provide some performances of our methods and compare them with the
reference unmasked implementation and the previous work of Chen and Chen
[6]. The implementation is tested on a personal computer with an Intel-Core
i7-11800H CPU and is not optimized.

2 Notation and Background

2.1 Notation

– We denote by A ∽ B the set A excluding the values of set B, id est (A ∽
B)

⋂
B = ∅. We denote by K− the negative values of the set K and by K∗

its non-zero values.

Masked Floor Function For FALCON 3

– For x ∈ R, we denote the floor function of x by ⌊x⌋.
– We will use the dot . as the separator between the integer part i and the

fractional part f of a real number x = i.f .
– If (bi) is a 1-bit Boolean shares for value b, we denote (−bi) as the 64-

bit Boolean shares for 264 − b. It means that if b = 0, (−bi) is a 64-
bit boolean shares for 0, and b = 1, (−bi) is a 64-bit boolean shares for
0xffffffffffffffff.

For algorithmic extracts of FALCON [25], refer to the original paper notations.

2.2 Diagram Legend

The diagrams in Section 5 use the same legend:

– Probing sets are denoted by Pi or O and are colored in red.
– Simulation sets are denoted by Sj

i and are colored in blue.
– t-SNI gadgets are colored in green.
– t-NI gadgets are colored in black.

2.3 FALCON Sign

FALCON [25] is a Lattice-Based signature using the GPV framework over the
NTRU problem. In this paper, we will focus on the Gaussian Sampler used in the
signature algorithm. For more details on the key generation or the verification,
refer to the original paper of FALCON[25].

Signature The signature follows the Hash-Then-Sign strategy. The message
m is salted with a random value r and then hashed into a challenge c. The
remainder of the signature aims at building an instance of the SIS problem upon
c and a public key h, id est finding s = (s1, s2) such as s1 + s2h = c. To do so,
the need to compute s = (t − z)B, with t a pre-image vector and z provided
by a Gaussian Sampler. Chen and Chen [6] focus on masking the pre-image
vector computation. In this work, we intend to mask the Gaussian Sampler. The
signature algorithm is detailed in [25] in the corresponding section.

Gaussian Sampler The Gaussian Sampler is the composition built from the
following functions:

ApproxExp. This function return 263 × ccs × e−x and depends of a matrix C
defined in page 42 of [25]:

4 J Paillet et al.

Algorithm 1: ApproxExp(x,ccs) [25]
Data: Foating-point values x ∈ [0, ln(2)] and ccs ∈ [0, 1]
Result: An integral approximation of 263 · ccs · exp(−x)

1 y ← C[0]; // y and z remain in {0 · · · 263 − 1} the whole algorithm
2 z ← ⌊263 · x⌋;
3 for i from 1 to 12 do
4 y ← C[i]− (z · y) >> 63;

5 z ← ⌊263 · ccs⌋;
6 y ← (z · y) >> 63;
7 return y ;

BerExp. This function return 1 with probability ccs× e−x:

Algorithm 2: BerExp(x,ccs) [25]
Data: Foating-point values x, ccs ≥ 0
Result: A single bit, equal to 1 with probability ≈ ccs · exp(−x)

1 s← ⌊x/ ln(2)⌋ ; // Compute the unique decomposition x = ln(2s) + r with
(r, s) ∈ [0, ln(2))× Z+

2 r ← x− s · ln(2);
3 s← min(s, 63);
4 z ← (2 ·ApproxExp(r, ccs)− 1) >> s;
5 i← 64;
6 do
7 i← i− 8;
8 w ← UniformBits(8)− ((z >> i) & 0xff);
9 while ((w = 0) and (i > 0));

10 return Jw < 0K;

SamplerZ. The Gaussian Sampler:

Algorithm 3: SamplerZ(µ,σ′) [25]
Data: Foating-point values µ,σ′ ∈ R such that σ′ ∈ [σmin, σmax]
Result: z ∈ Z sampled from a distribution very close to DZ,µ,σ′

1 r ← µ− ⌊µ⌋;
2 ccs← σmin/σ

′;
3 while 1 do
4 z0 ← BaseSampler();
5 b← UniformBits(8) & 0x1;
6 z ← b+ (2 · b− 1)z0;

7 x← (z−r)2

2σ′2 −
z20

2σmax
;

8 if BerExp(x, ccs) = 1 then
9 return z + ⌊µ⌋;

Masked Floor Function For FALCON 5

Algorithm 4: BaseSampler() [25]
Data: –
Result: An integer z0 ∈ {0, · · · , 18} such that z ∼ χ

1 u← UniformBits(72);
2 z0 ← 0;
3 for i from 0 to 17 do
4 z0 ← z0 + Ju < RCDT[i]K;

5 return z0;

where RCDT is defined in Falcon Specification [25].

2.4 Floor Function

The floor function is defined as follows:

Definition 1. ∀x ∈ R, the floor function of x, denoted by ⌊x⌋, returns the
greatest integer z such as z ≤ x.
∀x ∈ R, the truncate function of x = i.f, (i, f) ∈ Z×N, denoted by truncate(x),
returns i.

Binary64 Encoding A floating-point [16] is encoded with a sign bit s, a 11-bits
long exponent e and a 52-bits long mantissa m such as:

x ∈ R, x = (−1)s × 2e−1023 × (1 +m× 2−52). (1)

Computing The Floor Computing the floor function on a floating-point is
performed by truncating the mantissa according to the value of the exponent
and the sign:

– If e < 1023 then if s = 0 then ⌊x⌋ = 0 else ⌊x⌋ = −1. Indeed,

(e < 1023) ∧ (s = 0) =⇒ 0 ≤ x ≤ 2−1 +m× 2−53 < 1 (2)

(e < 1023) ∧ (s = 1) =⇒ 0 > x ≥ −2−1 +−m× 2−53 ≥ −1. (3)

– If e > 1074 then ⌊x⌋ = x. We have

e > 1074 =⇒ |x| = 2e−1023 +m× 2e−1023−52 (4)

= (2e−1023) ∈ N∗ + (m× 2e−1075) ∈ N =⇒ x ∈ N∗. (5)

The sign bit s only changes "∈ N" in "∈ Z−".
– If 1023 ≤ e ≤ 1074 then we truncate the mantissa m of x and remove its

1074− e last bits m[52−(e−1023):1]. That way we have

1023 ≤ e ≤ 1074 =⇒ x = 2e−1023 +m[64:1075−e] × 252−(e−1023)+e−1023−52

(6)

= (2e−1023) ∈ N∗ + (m[64:1075−e]) ∈ N. (7)

6 J Paillet et al.

However, this only provides truncate(x). To get ⌊x⌋, one has to take into ac-
count the sign bit s. We can rely on the fact that ∀x ∈ R− ∽ Z, truncate(x) =
⌊x⌋ + 1 and ∀x ∈ R+, truncate(x) = ⌊x⌋. Thus, recovering the sign bit al-
lows us to properly compute the floor function from the truncated one in
this case.

Remark 1. To compute the truncate(x) function, one can use the same method
but discard the use of the sign. For the case e < 1023, the result is always 0.

This method requires the use of the exponent and the sign, which are both
sensitive values. In this work, we propose a method to perform this truncation
securely.

2.5 Masking

Masking is a generic countermeasure to SCA at the software level. Instead of
processing a sensitive data, it is split into random shares which are processed
separately, like in Boolean and Arithmetic masking [19]. Masking security can
be evaluated thanks to the t-probing model, first introduced in [15]. A gadget is
then said secured against t-order attacks if no information can be recovered by
any set of t intermediate values. However, for the composition of gadgets we use
a stronger model introduced in [1]: the (Strong) Non-Interference model.

Definition 2. (t-Non Interference (t-NI) security [1]). A gadget is said t-Non
Interference (t-NI) secure if every set of t intermediate values can be simulated
by no more than t shares of each of its inputs.

t-NI gadgets composition does not imply t-NI security. We need a stronger
definition for this:

Definition 3. (t-Strong Non Interference (t-SNI) security [1]). A gadget is said
t-Strong Non-Interference (t-SNI) secure if for every set of tI of internal inter-
mediate values and tO of its output shares with tI + tO ≤t, they can be simulated
by no more than tI shares of each of its inputs.

We use those models in Section 5 to demonstrate the security of our design.
We rely on existing gadgets and propose new ones, as shown in Table 2.5.

3 Masking the Floor Function

In Section 2.4 we have described how to compute the floor using floating-point
arithmetic. We present now the corresponding masking gadgets.

Remark 2. With small modifications, our design can also be used to compute
the truncate and the rounding functions. As only the floor is required to protect
FALCON, we provide their pseudo-codes in Appendix B.

Masked Floor Function For FALCON 7

Table 1. List of gadgets, their security and their reference

Algorithm Description Security Reference

SecAnd AND of Boolean shares t-SNI [1],[15]
SecAdd Addition of Boolean shares t-SNI [2],[8]
A2B Arithmetic to Boolean conversion t-SNI [27]
B2A Boolean to Arithmetic conversion t-SNI [4]
RefreshMasks t-NI refresh of masks t-NI [1], [4]
Refresh t-SNI refresh of masks t-SNI [1]
SecOr OR of Boolean shares t-SNI [6]
SecNonZero NonZero check of shares t-SNI [6]
SecFprUrsh Right-shift with sticky bit t-SNI [6]
SecFprNorm64 Normalization to [263, 264) t-NI [6]
SecFprAdd Floating addition t-SNI [6]
SecFprMul Floating multiplication t-SNI [6]
SetExponentZero Set exponent to zero t-SNI Algorithm 8
SecFprUrshf Right-shift without sticky bit t-SNI Algorithm 7
RemoveDecimal Truncate the mantissa t-SNI Algorithm 6
SecFprBaseInt Compute the floor t-SNI Algorithm 5
SecFprScalePow2 Multiplies by a power of 2 t-SNI Algorithm 11
SecFprComp Compares two values t-SNI Algorithm 10
SecFprInv Inversion t-SNI Algorithm 9

SecFprBaseIntf : The gadget SecFprBaseIntf (Algorithm 5) is the main func-
tion of the masked floor, the masked truncate, and the masked rounding. Gad-
gets and Zerof are parametered4 by these functions.

We now focus on f = floor. We first extract5 the data from the encoding used
by [6] and place into three variables sy, ey, and my, which are directly linked to
the output of the algorithm.

We first check if cx = ey − Zerof < 0, corresponding to Equation 2. If cx
is negative, | x |< 1 and all decimals can be removed by putting my = 0. The
case −1 < x < 0 is solved by SetExponentZero (Algorithm 8) at the end of the
algorithm. For the other cases, the mantissa is unchanged and we can cover the
two remaining cases using RemoveDecimal (Algorithm 6).

4 Zerofloor = Zerotrunc = 1023 and Zeroround = 1022
5 Pseudo-code in Appendix: SecFprExtract – Algorithm 12

8 J Paillet et al.

Algorithm 5: SecFprBaseIntf(x)
Data: 64-bit boolean shares (xi)1≤i≤n for value x
Result: 64-bit boolean shares (yi)1≤i≤n for mantissa value y = f(x).

1 ((myi), (eyi), (syi))← SecFprExtract((xi));
2 (cxi)← (eyi), cx1 ← ey1 − Zerof ;
3 (ci)← A2B((cx(16)

i));
4 (myi)← SecAnd((myi), (¬(−ci)));
5 (myi), (eyi), (Rndi)←

RemoveDecimalf ((myi), (eyi),Refresh(syi),Refresh((cxi)));
6 (myi), (eyi)← SecFprNorm64((myi), (eyi));
7 (myi)← (my

[63:11]
i);

8 ey1 ← ey1 + 11;
9 (eyi), (syi)← SetExponentZerof ((eyi), (¬(−ci)), (si), (Rndi));

10 (y
(64)
i)← (syi), (y

[63:53]
i)← (eyi), (y

[53:1]
i)← (myi);

11 return (yi);

As the algorithm RemoveDecimal does not normalize the mantissa, then we
apply SecFprNorm64 (see [6] Algorithm 10 page 286) and compute a shifted
my and ey to set the mantissa back to bits [52 : 1] and update ey. Finally, the
last step in the algorithm, before reformatting the initial encoding, consists in
applying the specific encoding of "0" if it is the expected result. To do this, we
apply the SetExponentZerof function (Algorithm 8).

Algorithm 6: RemoveDecimalfloor((myi), (eyi), (syi), (cxi))

Data: 64-bit boolean shares (myi)1≤i≤n for mantissa value my;
16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey;
1-bit boolean shares (syi)1≤i≤n for sign value sy
16-bit arithmetic shares (cxi)1≤i≤n for value cx = ex-2013.
Result: 64-bit boolean shares (myi)1≤i≤n for mantissa value

my >> (52− cx);
16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey + (52− cx)

1 cx1 ← cx1 − 52;
2 (ci)← A2B((cxi));
3 (cpi)← ((c(16)i)) ;
4 (ci)← SecAnd(Refresh((ci)), (−cpi));
5 (cxi)← B2A((ci));
6 (myi), (roti)← SecFprUrshf ((myi), (−cxi));
7 (bi)← SecNonZero((roti));
8 (cpi)← SecAnd((cpi), (syi));
9 (cpi)← SecAnd((cpi), (bi));

10 (myi)← SecAdd((myi), (cpi));
11 (eyi)← (Refresh(eyi)− cxi);
12 return ((myi), (eyi));

Masked Floor Function For FALCON 9

RemoveDecimalfloor : cx = ey−1023 < 0 (Equation 2) being covered, we use
RemoveDecimalfloor (Algorithm 6) for the two remaining cases6, as described
in Section 2.4. If cx ≥ 52, then x is an integer as shown in Equation 4. To avoid
information loss during the remainder of SecFprBaseInt, we replace cx by 0.
Finally, if 0 ≤ cx ≤ 51, the mantissa must be truncated accordingly.

We use a modification of the SecFprUrsh method from [6] (Algorithm 9 page
286) to shift the mantissa my by cd = 52− cx. Our method, SecFprUrshf (Algo-
rithm 7, does not keep the sticky bit but the removed part. Once the mantissa is
shifted, we have consequently performed the truncate(x) function. As described
in Section 2.4, for the floor we also have to check whether the sign sy is 1. In that
case, we check by applying SecNonZero, with result denoted b, if the removed
part is 0. If so, we apply the floor function to a negative integer. Else, we have
to retrieve 1 to the result in accordance with Section 2.4. We do so by securely
adding cp = s ∧ b to the shifted my, as summed up in Table 2.

Table 2. Truth table of cp = s ∧ b and interpretations

sy b cp = sy ∧ b Interpretation

0 b 0 x is a positive real
1 0 0 x is an negative integer
1 1 1 x is an non-integer negative real

SetExponentZerofloor: This last function (Algorithm 8) is necessary in the
algorithm and uses the data collected throughout the calculations of the whole
algorithm to modify ey and sy if the expected result is 0. The encoding of 0 is
special because it is encoded by itself. The desired result is zero only if | x |< 1
and sy = 0. We remind that floor(x) = −1 if sy = 1 and | x |< 1. −1 is encoded
as sy = 1, ey = 1023 and my = 0.

4 Application to Falcon : Gaussian Sampler

The floor function has been described above and we now address the SamplerZ
function (Algorithm 3 or see [25] Algorithm 15 page 43). In the algorithms
SamplerZ and BerExp (Algorithm 2 or see [25] Algorithm 14 page 43), division
operations are used. Most of these divisions involve constants as the divisor,
allowing us to pre-calculate the inverse and perform a multiplication. However,
the first division in SamplerZ (line 2) involves a division with secret information.
Hence, it is necessary to design a way to perform a division by an arbitrary value
securely. To do so we choose to invert x and then compute a multiplication in
6 First case is not affected by RemoveDecimal as mantissa is set to 0.

10 J Paillet et al.

Algorithm 7: SecFprUrshfloor((myi), (cxi))

Data: 6-bit arithmetic shares (cxi)1≤i≤n for value cx;
64-bit boolean shares (myi)1≤i≤n for sign value my.
Result: 64-bit boolean shares (my′

i)1≤i≤n for value my >> cx
64-bit boolean shares (roti)1≤i≤n for value my[cx:1].

1 (mi)1≤i≤n ← ((1 << 63), 0, · · · , 0);
2 for i from 1 to n do
3 Right-Rotate (myi) by cxj ;
4 (myi)← RefreshMasks((myi));
5 Right-Rotate (mi) by cxj ;
6 (mi)← RefreshMasks((mi));

7 len← 1;
8 while len ≤ 32 do
9 (mi)← (mi ⊕ (mi >> len));

10 len← len << 1;

11 (my′
i)← SecAnd((myi), (mi));

12 (roti)← SecAnd((myi), (¬(mi)));
13 return ((my′

i), (roti));

Table 3. Encoding 0, minus 1 or others: Truth table

−sy b −sy ∨ b Interpretation

0 · · · 0 0 · · · 0 0 · · · 0 "Small" positive number : ey = 0 and sy = 0

1 · · · 1 0 · · · 0 1 · · · 1 "Small" negative number : ey = 1023 and sy = 1

−sy 1 · · · 1 01 · · · 1 Non zero number : ey = ey and sy = sy

Algorithm 8: SetExponentZerofloor((eyi), (syi), (bi))

Data: 16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey;
1-bit boolean shares (syi)1≤i≤n for sign value sy
64-bit boolean shares (bi)1≤i≤n.
Result: 16-bit boolean shares (eyi)1≤i≤n for exponent value ey + (52− cx);
1-bit boolean shares (syi)1≤i≤n for sign value.

1 (eyi)← A2B((eyi));
2 (b′i)← (−syi);
3 (b′i)← SecOr((b′i), (bi));
4 (eyi)← SecAnd((eyi, b′i));
5 (syi)← SecAnd((syi, b′i));
6 return ((eyi), (syi));

Masked Floor Function For FALCON 11

order to divide. Computing the inverse involves performing a Euclidean division
until obtaining sufficient precision (55 bits) to construct it.

Division : Remind that a binary64 value is represented by a tuple of three
elements (s, e,m), where s is a 1-bit sign, e a 11-bit exponent and m a 52-bit
mantissa. We construct the result tuple (sy, ey,my) considering each element
separately. Inverse operation preserves the sign, so sy = sx. Then we consider
the exponent. It consists in finding how many shift we require before starting
to subtract information, hence we calculate cx = ex − 1023. If the mantissa is
zero, then x is a power of 2 and 1 << cx = x, enabling us to perform the only
subtraction necessary for the inverse calculation. However, if mx ̸= 0, (1 <<
cx) < x, an additional shift is required. This is the reason for which we compute
b = SecNonZero(mx) and write the final formula for cx as cx = ex − 1023 + b.
By inversing this operation, we finally get:

einv = 1023− cx = 2046− ex − b

The last step consists in finding the 52 bit-length mantissa. This part essentially
corresponds to the Euclidean division: first, we compare our dividend d = (1 <<
cx) to x, by computing comp = SecFprComp(d, x) (Algorithm 10). If x < d, then
comp = 1, and this value needs to be carried over to the new mantissa. We then
add −x (just a sign modification) to d. If comp = 0, then we replace x by 0
applying SecAnd(x, comp) and performing an addition with d, which does not
alter the result. Finally, we shift d one time to the left to continue the division.
After computing 53 bits (52 plus implicit bit) we calculate two additional bits,
totaling 55 bits, to preserve the sticky bit. The method for calculating the sticky
bit is available in the pseudo-code and is directly derived from SecFpr (see [6]
Algorithm 11 page 287).

Comparison. In the inversion process, we must compare two masked binary64
values. We adapt the swap part of the SecFprAdd function (see [6] Algorithm 13
page 290). We add refresh operations to make the gadget t-SNI.

Minimum and Shift. BerExp (Alogirthm 2 or see [25] Algorithm 14 page
43) must be briefly described. It requires to multiply a number by 2−s, with s
masked after taking the minimum between s and 63. s must not be greater than
63 to retain its value, we can simply check if the exponent of s is less than 1029,
same as checking if (s(63)i) is equal to 1.

To perform a shift, we extract the integer value of the masked s, then it is
injected into the SecFprUrshf function (Algorithm 7). More precisely we extract
the mantissa of s, to which we add the implicit bit (unless s = 0), and shift it
by 46 to obtain the bits (information is in 6 bits). Then we shift again using
SecFprUrshf by es− 1023(1023 <= es <= 1029 or es = 0). Finally we subtract
the integer s from the exponent of the z that must be shifted.

12 J Paillet et al.

Algorithm 9: SecFprInv((xi))

Data: 64-bit boolean shares (xi)1≤i≤n for value x.
Result: 64-bit boolean shares (yi)1≤i≤n for value 1/x

1 (sxi), (exi), (mxi)← SecFprExtract((xi));
2 (bi)← SecNonZero((mxi));
3 (bai)← B2A(bi);
4 (edi)← (exi + bai);
5 (eyi)← (−edi);
6 (eyi)← A2B((eyi)), (edi)← A2B((edi));
7 (di)← (edi << 52);
8 (minusXi)← Or((263, 0, · · · , 0), (xi));
9 for j from 1 to 55 do

10 (compi)← SecFprComp((xi), (di));
11 (myi)← (myi ⊕ (compi << (63− j)));
12 (xcpyi)← SecAnd((minusXi),−(compi));
13 (di)← SecFprAdd((xcpyi), (di));
14 (di)← SecFprScalPtwo((di), 1);

15 (myi)← SecAnd((myi),−(bi));
16 (y

(64)
i)←Refresh((syi)), (y[63:53]

i)← (eyi), (y
[52:1]
i)← (my

[54:3]
i);

17 (fi)← SecOr(Refresh(my
(1)
i), (my

(3)
i));

18 (fi)← SecAnd((fi), (my
(2)
i));

19 (yi)← SecAdd((yi), (fi));
20 return (yi);

Algorithm 10: SecFprComp((xi), (yi))

Data: 64-bit boolean shares (xi)1≤i≤n for value x;
64-bit boolean shares (yi)1≤i≤n for sign value y.
Result: 1-bit boolean shares (compi)1≤i≤n for value Jx < yK

1 Refresh((xi));
2 (mxi)← (x

[63:1]
i), (myi)← (y

[63:1]
i);

3 (di)← SecAdd((mxi), (¬my1,my2, · · · ,myn));
4 Refresh((di));
5 (bi)← SecNonZero((¬d1, d2, · · · , dn));
6 (b′i)← SecNonZero((¬(d1 ⊕ 263), d2, · · · , dn));
7 (compi)← (d

(63)
i ⊕ bi ⊕ b′i);

8 return (compi);

Masked Floor Function For FALCON 13

Our function SecFprScalPow2 (Algorithm 11) handles the case of shifting by
an unmasked integer value by simply performing a left shift if pow2 is positive
and a right shift if it is negative, then we remove the useless information applying
the truncation function 7. Using this algorithm, division and multiplication by
two are cheaper to perform.

Algorithm 11: SecFprScalPow2((xi), p)

Data: 64-bit boolean shares (xi)1≤i≤n for value x;
An integer p.
Result: 64-bit boolean shares (yi)1≤i≤n for value x× 2p

1 (sxi), (exi), (mxi)← SecFprExtract((xi));
2 (bi)← SecNonZero((xi));
3 (exi)← B2A((exi));
4 ex1 ← ex1 + p;
5 (exi)← A2B((exi));
6 (eyi)← SecAnd((exi),−(bi));
7 (y

(64)
i)← (syi), (y

[63:53]
i)← (eyi), (y

[53:1]
i)← (myi);

8 return Refresh(yi);

5 Security Proof

In this section we cover the t-SNI security of our design with n = t+ 1 shares.
We follow and rely on the same principles used by Chen and Chen [6] for our
proofs. We aim to propose only t-SNI secure gadgets as they are composable. It
limits the risks of compositional flaws. We are aware that it leads to performance
overheads and more demanding randomness requirements.

5.1 Floor Function

Lemma 1. The gadget SetExponentZerofloor (Algorithm 8) is t-SNI secure.

Proof. We use an abstract diagram in Figure 1 for our demonstration. The gad-
get only contains t-SNI gadgets. By composition of t-SNI gadgets, this gadget
is itself t-SNI. ⊓⊔

Lemma 2. The gadget SecFprUrshfloor (Algorithm 7) is t-SNI secure.

Proof. The gadget SecFprUrshfloor is a slight modification of the gadget SecF-
prUrsh from [6]. Our gadget does not compute the sticky bit but retains the
rotated out information. We rely on their proof regarding the t-SNI security of
7 The pseudo-code is provided in Appendix B

14 J Paillet et al.

A2B

SecAnd

SecAnd

P4

P1

P2

P3

S3
2

S3
1

S2
2

S2
1

S1
2

S1
1

S4

SecOr

(ey)

(b)
(sy)

(ey)

(sy)

Fig. 1. Abstract diagram of SetExponentZerofloor

Rotate

Rotate

SecAnd

SecAnd

S1
1

S1
2

S2
1

S4
1

S4
2

S5
2

S5
1

S2
2

S3

P5

P4 P3

P2

P1

(xi) (xi)>>(ci)

(rot)

(ci)

(mi)

Fig. 2. Abstract diagram of SecFprUrshfloor

the gadget Rotate (see [6], Lemma 3 and Figure 2). We now show that the op-
erations below the rotation loop are t-SNI secure. We use an abstract diagram
in Figure 2 for the demonstration. Let an adversary probes the intermediate val-
ues sets P1 of SecAnd, P2 of SecAnd and P3 of XOR. As SecAnd is t-SNI
secure, one can use the sets S1

2 ,S2
2 (resp. S1

1 ,S2
1) to simulate P2 (resp. P1) and

the ouput shares of (rot) (resp. (xi) >> (ci)) with sizes no more than P2 (resp.
P1). One can simulate the probing set of P3 in the XOR and the simulation
sets S2

2 and S2
1 with the output shares S3 of the rotation of (mi). Indeed, as

the XOR is a linear operation performed on each share separately, it is t-NI
secure. All probes are now simulated with output shares S1

1 ∪ S1
2 of the rota-

tion of (xi) and S3 of the rotation of (mi). We have |S1
1 ∪ S1

2 | ≤ |P1|+ |P2| and
|S3| ≤ |P3|+ |S2

2 |+ |S2
1 | ≤ |P3|+ |P2|+ |P1|. Along with the internal probes P5

and P4 from the rotation loop, all gadgets can be simulated by input shares with
no more than tI values due to the t-SNI security showed at first in ([6], Lemma
3). ⊓⊔

Lemma 3. The gadget RemoveDecimalfloor (Algorithm 6) is t-SNI secure.

Proof. We use an abstract diagram in Figure 3 for the demonstration. We assume
an adversary probes the intermediate values sets of the output shares O and Pi

in each gadget for i ∈ J1; 12K. We use simulation sets Sj
i to simulate the values

Masked Floor Function For FALCON 15

A2B Refresh

SecNonZero

SecAnd

SecAnd

SecAnd

SecAddSecFprUrsh_f

B2A

(ey)

(cx)

(my)

(sy)

(ey)

(my)

P12 P11

P9

P8

P2

P4

P7

P6P5

P10

S2
1

S2
2

S4
1

S4
2

S5
1

S5
2

S6

S7
1 S7

2

S8

S9
1

S9
2

S11S12

S10
1

S10
2

Refresh

P1

S1

Fig. 3. Abstract diagram of RemoveDecimalfloor

for each gadget. t-SNI security implies that: if the size of all probing sets Pi is
tI ≤ t and if the size of values required to simulate in each gadget is smaller
than t, then the simulation sets linked to the input shares are not bigger than tI .
The t-SNI gadgets imply |S| ≤ |P | and the t-NI gadgets imply |S| ≤ |P |+ |O|.
As Refresh, SecAnd, SecNonZero, SecFprUrshfloor, B2A and A2B are
all t-SNI secure whereas SecAdd and "+" are t-NI secure, we can sequentially
derive the following:

– |S1| ≤ |P1|
– |S1

2 |, |S2
2 | ≤ |P2|+ |O(ey)|

– |S1
4 |, |S2

4 | ≤ |P4|+ |O(my)|
– |S1

5 |, |S2
5 | ≤ |P5|

– |S6| ≤ |P6|
– |S1

7 |, |S2
7 | ≤ |P7|

– |S8| ≤ |P8|
– |S1

9 |, |S2
9 | ≤ |P9|

– |S1
10|, |S2

10| ≤ |P10|
– |S11| ≤ |P11|
– |S12| ≤ |P12|

Based on the previous inequalities, we know that no gadget requires more than
tI+tO = t values to be simulated. This above method can be applied to the input
shares as well, with |S1

10| ≤ |P10| for (sy), |S1
7 | ≤ |P7| for (my), |S12| ≤ |P12| for

(cx) and |S1
2 | ≤ |P2| + |S1| ≤ |P2|+ |P1| for (ey), no sizes being more than tI .

⊓⊔

Theorem 1. The gadget SecFprBaseIntfloor (Algorithm 5) is t-SNI secure.

Proof. We use the same method as for the demonstration of Lemma 3. We use
an abstract diagram in Figure 4 for the demonstration. Let assume an adver-
sary probes the intermediate values sets of the output shares O and Pi in each

16 J Paillet et al.

SecAnd

A2B

RemoveDecimal

P6

RefreshS6

SecFprNorm64

SetExponentZero

P1

P3

P2

P4

P5 S1
1

S1
2 S1

3

S2
1 S2

2
S3

4
S3

3

S3
2

S4
2

S3
1

S5

(my)

(ey)

(sy)

(ey)
(sy)

(my)

S4
1

Fig. 4. Abstract diagram of SecFprBaseIntfloor

gadget for i ∈ J1; 6K. We use simulation sets Sj
i to simulate the values for each

gadget. t-SNI security implies that if the size of all probing sets Pi is tI ≤ t
and if the size of values required to simulate in each gadget is smaller than t,
then the simulation sets linked to the input shares are not bigger than tI . As
SetExponentZero, RemoveDecimal, SecAnd, A2B and Refresh are all
t-SNI secure while SecFprNorm64 is t-NI secure, we can sequentially derive
the following:

– |S1
1 |, |S2

1 |, |S3
1 | ≤ |P1|

– |S1
2 |, |S2

2 | ≤ |P2|+ |O(my)|
– |S1

3 |, |S2
3 |, |S3

3 |, |S4
3 | ≤ |P3|

– |S1
4 |, |S2

4 | ≤ |P4|
– |S5| ≤ |P5|
– |S6| ≤ |P6|

Based on the previous inequalities, we know that no gadget requires more than
tI + |O(my)| ≤ t values to be simulated. The above method is also applied to the
input shares, with |S1

4 | ≤ |P4| for (my), |S5 ∪ S2
3 ∪ S6| ≤ |P5|+ |P3|+ |P6| for

(ey) and |S4
3 ∪ S3

1 | ≤ |P3|+ |P1| for (sy), none being more than tI . ⊓⊔

5.2 Inverse

Lemma 4. The gadget SecFprComp (Algorithm 10) is t-SNI secure.

Proof. We use an abstract diagram in Figure 5 for our demonstration. This
gadget is similar to the swap part of the SecFprAdd gadget from [6] (Theorem
3, first part of the proof). We add some Refresh to ensure the t-SNI property.
Note that the XOR associated to the probing set P1 is t-NI secure as this linear
operation is performed on each share separately. The gadget SecAdd associated
to the probe P5 is also t-NI secure. The other gadgets are t-SNI secure. Hence,
we have the following inequalities:

Masked Floor Function For FALCON 17

Refresh

Refresh SecNonZero

SecNonZero

SecAdd

(xi)

(yi) (comp)

(xi)

P4 P1

P2

P6

P5
P3

S4 S1
1

S1
0

S1
2

S3

S2

S5

S6

Fig. 5. Abstract diagram of SecFprComp

– |S0
1 |, |S1

1 |, |S2
1 | ≤ |P1|+ |O(comp)|

– |S2| ≤ |P2|
– |S3| ≤ |P3|

– |S4| ≤ |P4|
– |S0

5 |, |S1
5 | ≤ |P5|+|S4| ≤ |P5|+ |P4|

– |S6| ≤ |P6|

According to these inequalities, no gadget requires more than tI + |O(comp)| ≤ t
values to be simulated. This method can be applied to the input shares: For (xi),
we have |S6| ≤ |P6| ≤ tI and for (yi) we have |S0

5 | ≤ |P5|+ |P4| ≤ tI . ⊓⊔

Lemma 5. The gadget SecFprScalePow2 (Algorithm 11) is t-SNI secure.

Refresh

A2BB2A

SecNonZero SecAnd

(sy)

(ey) (y)

(my)

P1

P2P3

P6 P5 P4

S1
S2

1

S2
2

S4S5S6

S3

Fig. 6. Abstract diagram of SecFprScalePow2

Proof. We use an abstract diagram in Figure 6 for our demonstration. This
gadget mainly affects the exponent shares (ey). Apart from "+" which is t-NI
as it is simply adding a constant to one share, all other gadgets are t-SNI. As
the single input of the gadget "+" comes from a t-SNI gadget B2A and then
has its single output fed into another t-SNI gadget, the chain B2A → ” + ”→
A2B is itself t-SNI. By composition, the entire gadget is t-SNI. ⊓⊔

Theorem 2. The gadget SecFprInv (Algorithm 9) is t-SNI secure.

18 J Paillet et al.

SecFprComp SecAnd SecFprAdd SecFprScalePow2
(xi)

(di)
(di)

(mi)(mi)

(xi)

P1P2P3P4

P5

S1S2S3

S4
0

S4
1

S5
1

S5
0

SecOr

Fig. 7. Abstract diagram of LOOP

Proof. We use an abstract diagram in Figure 8 for our demonstration. We first
prove that the gadget LOOP associated to the probes set P5 is t-SNI secure.
We use an abstract diagram in Figure 7 for our demonstration. This gadget com-
poses t-SNI gagdets, including SecFprComp and SecFprScalePow2, proven
t-SNI in Lemmas 4 and 5. As the first iteration of the loop is t-SNI secure by
composition, and the loop cycles on itself, all remaining iterations are also t-SNI
secure. This implies the gadget LOOP is itself t-SNI secure.
For the rest of the SecFprInv gadget, all gadgets are t-SNI apart from + as-
sociated to the probes set P7 and SecAdd associated to the probes set P1. We
can derive the following:

– |S1| ≤ |P1|+ |O(x_inv)|
– |S0

2 |, |S1
2 | ≤ |P2|

– |S0
3 |, |S1

3 | ≤ |P3|
– |S4| ≤ |P4|
– |S0

5 |, |S1
5 | ≤ |P5|

– |S0
6 |, |S1

6 |, |S2
6 | ≤ |P6|

– |S7| ≤ |P7|

– |S8| ≤ |P8|
– |S0

9 |, |S1
9 | ≤ |P9| + |S2|+ |S8| ≤

|P9|+ |P2|+ |P8|
– |S10| ≤ |P10|
– |S11| ≤ |P11|
– |S12| ≤ |P12|

Based on these inequalities, we know that no gadgets requires more than
tI + |O(x_inv)| ≤ t values to be simulated. This method can also be applied to
the input shares: For (xi) we have |S11 ∪ S1

6 | ≤ |P11|+ |P6| ≤ tI , for (exi) we
have |S1

9 | ≤ |P9|+ |P8|+ |P2| ≤ tI , for (sxi) we have |S12| ≤ |P12| ≤ tI and for
(mi) we have |S2

6 | ≤ |P6| ≤ tI . ⊓⊔

6 Performances

Some results are shown in Table 4. This implementation is not optimized and is
realized with a personal computer equipped with an Intel Core i7-11800H CPU.
The compiler used is gcc version 9.4.0 with options -O3. We have considered
our performances of SecFprAdd and SecFprMul as reference and compare our
work with the one of Chen and Chen [6], as they used a different hardware (Intel

Masked Floor Function For FALCON 19

B2A

A2B

A2B LOOP

SecNonZero

SecAnd

SecAndSecOr SecAdd

Refresh
Refresh

(xi) (mi)

(x_inv)

P1

S1
0

P2

P4

P12

P3

P5

P7
P9

P8

P10

P11

S1
1

S5
1

S5
0

S7
S9

0

S9
1

S12

S10

S8

S11

S6
1 S6

2

S6
0

S3
0 S3

1

S2
1

S2
0

S4

P6

(exi)

(sxi)

Fig. 8. Abstract diagram of SecFprInv

Core i9-12900KF). We have designed our code around 3 shares and some well-
known optimizations for 2 shares masking have not been implemented. Hence,
we observe that the complexity increases linearly with the number of shares.

Table 4. Time in microseconds

Algorithm [25] 2 Shares 3 Shares

SecFprAdd [6] 0.000 11 7.533 13.552

SecFprMul [6] 0.000 14 5.563 11.622

SecFprBaseIntfloor 0.000 136 7.084 13.284

SecFprUrshfloor - 0.113 0.219

SecFprInv 0.000 138 559.658 994.416

SecFprComp - 1.601 2.471

SecFprScalPwo2 - 0.943 1.903

ApproxExp 0.000 126 190.207 367.245

BerExp 0.005 446 227.187 441.951

SamplerZ 0.114 1807.353 4205.701

1024 SamplerZ 8 122.962 1 850 633 4 382 602

2048 SamplerZ 9 247.902 3 780 432 8 731 953

To replicate the performances of the calls to the Gaussian Sampler by FAL-
CON, we performed SamplerZ by the same amount of iterations required in both

20 J Paillet et al.

FALCON-512 and FALCON-1024. Table 4 highlights the impact of the division
computation on SamplerZ. The SecFprInv gadget is the main bottleneck of our
design as it involves 55 SecFprAdd. On the other hand, our SecFprBaseIntfloor
gadget is no more costly than one SecFprAdd.

7 Conclusion

In this paper we have extended the work of Chen and Chen [6] and have used
their gadgets and our new own gadgets to mask the floor function (Section 3).
The Gaussian sampler of FALCON (Section 4) has been protected with this floor
gadget. Additionally, to reach this task, we provided a masked implementation of
the division (Section 4). We discussed about the t-SNI properties of our gadgets
(Section 5). Finally, we provided some performances got on a personal computer
equipped with an Intel Core CPU (Section 6).
Future works could lead to a complete masked implementation of the FALCON
signature relying both on Chen and Chen [6] and our work. Improving the di-
vision should lead to better performances, as it is the main bottleneck in our
current design. New masking methods for floating-point arithmetic, less reliant
on A2B and B2A conversions, could be studied. Finally, fault-injection resilient
designs could be of interest.

Acknowlegdments We would like to thank Ken-Yu Chen and Jiun-Peng Chen
who responded to our questions regarding their work.
This work thanks grant 2022156 and grant 2023151 from the Appel à projets
2022 and Appel à projets 2023 thèses AID CIFRE-Défense by the Agence de
l’Innovation de Défense (AID), Ministère des Armées (French Ministry of De-
fense).
This paper is also part of the on-going work of Hensoldt SAS France for the
Appel à projets Cryptographie Post-Quantique launched by Bpifrance for the
Stratégie Nationale Cyber (France National Cyber Strategy) and Stratégie Na-
tionale Quantique (France National Quantum Strategy). In this, Hensoldt SAS
France is a part of the X7-PQC project in partnership with Secure-IC, Télécom
Paris and Xlim.

Masked Floor Function For FALCON 21

References

1. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. p. 116–129. CCS ’16, Association for Computing Machin-
ery, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978427, https:
//doi.org/10.1145/2976749.2978427

2. Barthe, G., Belaïd, S., Espitau, T., Fouque, P.A., Grégoire, B., Rossi, M., Tibouchi,
M.: Masking the glp lattice-based signature scheme at any order. In: Nielsen, J.B.,
Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018. pp. 354–384.
Springer International Publishing, Cham (2018)

3. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The sphincs+ signature framework. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. p. 2129–2146. CCS ’19,
Association for Computing Machinery, New York, NY, USA (2019). https://doi.
org/10.1145/3319535.3363229, https://doi.org/10.1145/3319535.3363229

4. Bettale, L., Coron, J.S., Zeitoun, R.: Improved high-order conversion from boolean
to arithmetic masking. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2018(2), 22–45 (May 2018). https://doi.org/10.13154/tches.
v2018.i2.22-45, https://tches.iacr.org/index.php/TCHES/article/view/873

5. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: Crystals - kyber: A cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353–367 (April 2018). https://doi.org/10.1109/EuroSP.2018.00032

6. Chen, K.Y., Chen, J.P.: Masking floating-point number multiplication and addition
of falcon: First- and higher-order implementations and evaluations. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2024(2), 276–303
(Mar 2024). https://doi.org/10.46586/tches.v2024.i2.276-303, https://tches.iacr.
org/index.php/TCHES/article/view/11428

7. Chen, L., Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R.A.,
Smith-Tone, D.: Report on post-quantum cryptography, vol. 12. US Department
of Commerce, National Institute of Standards and Technology . . . (2016)

8. Coron, J.S., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from arith-
metic to boolean masking with logarithmic complexity. In: Leander, G. (ed.) Fast
Software Encryption. pp. 130–149. Springer Berlin Heidelberg, Berlin, Heidelberg
(2015)

9. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2018(1), 238–268
(Feb 2018). https://doi.org/10.13154/tches.v2018.i1.238-268, https://tches.iacr.
org/index.php/TCHES/article/view/839

10. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on bliss
lattice-based signatures: Exploiting branch tracing against strongswan and elec-
tromagnetic emanations in microcontrollers. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. p. 1857–1874.
CCS ’17, Association for Computing Machinery, New York, NY, USA (2017). https:
//doi.org/10.1145/3133956.3134028, https://doi.org/10.1145/3133956.3134028

11. Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M.,
Wallet, A., Yu, Y.: Mitaka: A simpler, parallelizable, maskable variant of falcon. In:

https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.13154/tches.v2018.i2.22-45
https://doi.org/10.13154/tches.v2018.i2.22-45
https://doi.org/10.13154/tches.v2018.i2.22-45
https://doi.org/10.13154/tches.v2018.i2.22-45
https://tches.iacr.org/index.php/TCHES/article/view/873
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.46586/tches.v2024.i2.276-303
https://doi.org/10.46586/tches.v2024.i2.276-303
https://tches.iacr.org/index.php/TCHES/article/view/11428
https://tches.iacr.org/index.php/TCHES/article/view/11428
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1145/3133956.3134028

22 J Paillet et al.

Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology – EUROCRYPT
2022. pp. 222–253. Springer International Publishing, Cham (2022)

12. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the bliss lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) Cryptographic Hardware and Embedded Systems – CHES
2016. pp. 323–345. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

13. Guerreau, M., Martinelli, A., Ricosset, T., Rossi, M.: The hidden paral-
lelepiped is back again: Power analysis attacks on falcon. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2022(3), 141–164
(Jun 2022). https://doi.org/10.46586/tches.v2022.i3.141-164, https://tches.iacr.
org/index.php/TCHES/article/view/9697

14. Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous gaussian sampling:
From inception to implementation. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum
Cryptography. pp. 53–71. Springer International Publishing, Cham (2020)

15. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003. pp.
463–481. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

16. Kahan, W.: Ieee standard 754 for binary floating-point arithmetic. Lecture Notes
on the Status of IEEE 754(94720-1776), 11 (1996)

17. Karabulut, E., Aysu, A.: Falcon down: Breaking falcon post-quantum signa-
ture scheme through side-channel attacks. In: 2021 58th ACM/IEEE Design Au-
tomation Conference (DAC). pp. 691–696 (Dec 2021). https://doi.org/10.1109/
DAC18074.2021.9586131

18. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In: Koblitz, N. (ed.) Advances in Cryptology — CRYPTO ’96. pp.
104–113. Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

19. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: Revealing the secrets
of smart cards, vol. 31. Springer Science & Business Media (2008)

20. McCarthy, S., Howe, J., Smyth, N., Brannigan, S., O’Neill, M.: Bearz attack fal-
con: Implementation attacks with countermeasures on the falcon signature scheme.
Cryptology ePrint Archive, Paper 2019/478 (2019), https://eprint.iacr.org/2019/
478, https://eprint.iacr.org/2019/478

21. NIST: Module-lattice-based digital signature standard. NIST FIPS (2024). https:
//doi.org/10.6028/NIST.FIPS.204.ipd

22. NIST: Module-lattice-based key-encapsulation mechanism standard. NIST FIPS
(2024). https://doi.org/10.6028/NIST.FIPS.203.ipd

23. NIST: Stateless hash-based digital signature standard. NIST FIPS (2024). https:
//doi.org/10.6028/NIST.FIPS.205.ipd

24. Pessl, P., Bruinderink, L.G., Yarom, Y.: To bliss-b or not to be: Attacking
strongswan’s implementation of post-quantum signatures. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security.
p. 1843–1855. CCS ’17, Association for Computing Machinery, New York, NY,
USA (2017). https://doi.org/10.1145/3133956.3134023, https://doi.org/10.1145/
3133956.3134023

25. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon. Post-Quantum Cryptogra-
phy Project of NIST (2020)

26. Ravi, P., Chattopadhyay, A., D’Anvers, J.P., Baksi, A.: Side-channel and fault-
injection attacks over lattice-based post-quantum schemes (kyber, dilithium): Sur-
vey and new results. ACM Trans. Embed. Comput. Syst. 23(2) (mar 2024).
https://doi.org/10.1145/3603170, https://doi.org/10.1145/3603170

https://doi.org/10.46586/tches.v2022.i3.141-164
https://doi.org/10.46586/tches.v2022.i3.141-164
https://tches.iacr.org/index.php/TCHES/article/view/9697
https://tches.iacr.org/index.php/TCHES/article/view/9697
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1109/DAC18074.2021.9586131
https://doi.org/10.1109/DAC18074.2021.9586131
https://eprint.iacr.org/2019/478
https://eprint.iacr.org/2019/478
https://eprint.iacr.org/2019/478
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.1145/3133956.3134023
https://doi.org/10.1145/3133956.3134023
https://doi.org/10.1145/3133956.3134023
https://doi.org/10.1145/3133956.3134023
https://doi.org/10.1145/3603170
https://doi.org/10.1145/3603170
https://doi.org/10.1145/3603170

Masked Floor Function For FALCON 23

27. Schneider, T., Paglialonga, C., Oder, T., Güneysu, T.: Efficiently masking bino-
mial sampling at arbitrary orders for lattice-based crypto. In: Lin, D., Sako, K.
(eds.) Public-Key Cryptography – PKC 2019. pp. 534–564. Springer International
Publishing, Cham (2019)

28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Review 41(2), 303–332 (1999). https://doi.
org/10.1137/S0036144598347011, https://doi.org/10.1137/S0036144598347011

29. Zhang, S., Lin, X., Yu, Y., Wang, W.: Improved power analysis attacks on falcon.
In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. pp.
565–595. Springer Nature Switzerland, Cham (2023)

A SecFprExtract

Algorithm 12: SecFprExtract(x)
Data: 64-bit boolean shares (xi)1≤i≤n for value x
Result: 64-bit boolean shares (mxi)1≤i≤n for mantissa value mx;
16-bit arithmetic shares (exi)1≤i≤n for exponent value ex;
1-bit boolean shares (sxi)1≤i≤n for sign value s.

1 (mxi)← (x
[52:1]
i);

2 (mxi)← SecAdd((mxi), (2
52, 0, · · · , 0)); // add implicit bit in the

mantissa

3 (exi)← (x
[63:53]
i);

4 (exi)← B2A((exi));
5 (sxi)← (x

(64)
i);

6 return ((mxi), (exi), (sxi));

This algorithm provides us the extraction of (sx, ex,mx) by converting the 11-
bit boolean shares ex into 16-bit arithmetic shares and adding the implicit bit to
the mantissa mx. This bit which is not present in the x information (in order to
save one bit and gain in precision), is nevertheless very important. It especially
enables us to normalize our shares correctly.

https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1137/S0036144598347011

24 J Paillet et al.

B Alternate Algorithms For Truncate and Rounding

B.1 Truncature Function: Gadgets

Algorithm 13: RemoveDecimaltrunc((myi), (eyi), (syi), (cxi))

Data: 64-bit boolean shares (myi)1≤i≤n for mantissa value my;
16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey;
1-bit boolean shares (syi)1≤i≤n for sign value sy
16-bit arithmetic shares (cxi)1≤i≤n for value cx = ex-2013.
Result: 64-bit boolean shares (myi)1≤i≤n for mantissa value

my >> (52− cx);
16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey + (52− cx);

1 cx1 ← cx1 − 52; // check if 0≤c<51
2 (ci)← A2B((cxi));
3 (cpi)← (c

(16)
i);

4 Refresh((ci));
5 (c′i)← (−cpi); // if cp = 0 cx = 0. if not cx = cx
6 (ci)← SecAnd((ci), (cpi));
7 (cxi)← B2A((ci));
8 (cdi)← (−cxi);
9 (myi)← SecFprUrshf ((myi), (cdi)); // my >> 52− cx

10 (eyi)← (Refresh(eyi) + cdi);
11 return ((myi), (eyi));

Algorithm 14: SetExponentZerotrunc((eyi), (syi), (bi))

Data: 16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey;
1-bit boolean shares (syi)1≤i≤n for sign value sy
64-bit boolean shares (bi)1≤i≤n.
Result: 16-bit boolean shares (eyi)1≤i≤n for exponent value

ey + (52− cx);
1-bit boolean shares (syi)1≤i≤n for sign value.

1 (eyi)← A2B((eyi));
2 (eyi)← SecAnd((eyi, bi));
3 (syi)← SecAnd((syi, bi));
4 return ((eyi), (syi));

For truncature function, 0 is the result if ex−1023 < 0. So SetExponentZerotrunc
sets ey and sy to 0 depending only on (bi), the zero condition.

Masked Floor Function For FALCON 25

B.2 Rounding Function: Gadgets

Algorithm 15: RemoveDecimalround((myi), (eyi), (syi), (cxi))

Data: 64-bit boolean shares (myi)1≤i≤n for mantissa value my;
16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey;
1-bit boolean shares (syi)1≤i≤n for sign value sy
16-bit arithmetic shares (cxi)1≤i≤n for value cx = ex-2013.
Result: 64-bit boolean shares (myi)1≤i≤n for mantissa value

my >> (52− cx);
16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey + (52− cx);
1-bit boolean shares (Rndi) for value Rnd – the bit at position -1.

1 cx1 ← cx1 − 53; // check if 0≤c<51
2 (ci)← A2B((cxi));
3 (cpi)← (c

(16)
i);

4 (rshORnoti)←Refresh(−cp[i]);
5 (c′i)← (−cpi); // if cp = 0 cx = 0. if not cx = cx
6 cx1 ← cx1 + 1;
7 (ci)← A2B((cxi));
8 (ci)← SecAnd((ci), (cpi));
9 (cxi)← B2A((ci));

10 (cdi)← (−cxi);
11 (myi)← SecFprUrsh((myi), (cdi)); // my >> 53− cx

12 (Rndi)← (my
(1)
i);

13 (Rndi)← SecAnd((Rndi), (rshORnoti));
14 (my1i)← (myi) >> 1 , (e1i)← (1, 0, · · · , 0);
15 (my2i)← (myi) , (e2i)← (0, · · · , 0);
16 (my1i)← SecAnd((my1i), (rshORnoti));
17 (e1i)← SecAnd((e1i), (rshORnoti));
18 (rshORnoti)← (−rshORnoti);
19 (my2i)← SecAnd((my2i), (rshORnoti));
20 (e2i)← SecAnd((e2i), (rshORnoti));
21 (myi)← SecOr((my1i), (my2i)); // choice of my
22 (myi)← SecAdd((myi), (Rndi));
23 (e1i)← SecOr((e1i), (e2i)); // choice of ey
24 (e1i)← B2A((e1i));
25 (eyi)← (eyi + e1i);
26 (eyi)← (eyi + cdi);
27 return ((myi), (eyi), (Rndi));

RemoveDecimalround provides us an algorithm able to remove decimals and
round up or down if necessary. It’s important to compare cx to 53 instead of 52.
The reason is that we first subtract to ey 1022 instead of 1023 when we were
checking if the result was 0 in Algorithm 5.

Remark 3. Line 12-25 can be replace by using the last bit of removed values,
after checking if a rounding must be done (check if rshOrNot = 1 · · · 1).

26 J Paillet et al.

Algorithm 16: SetExponentZeroround((eyi), (syi), (bi), (Rndi))

Data: 16-bit arithmetic shares (eyi)1≤i≤n for exponent value ey;
1-bit boolean shares (syi)1≤i≤n for sign value sy
64-bit boolean shares (bi)1≤i≤n.
Result: 16-bit boolean shares (eyi)1≤i≤n for exponent value

ey + (52− cx);
1-bit boolean shares (syi)1≤i≤n for sign value.

1 (eyi)← A2B((eyi));
2 (b′i)← (Rndi);
3 (b′i)← SecOr((b′i), (bi));
4 (eyi)← SecAnd((eyi, b′i));
5 (syi)← SecAnd((syi, b′i));
6 return ((eyi), (syi));

B.3 Performances

Table 5. Time in microseconds

Algorithm 2 Shares 3 Shares

SecFprAdd [6] 7.533467 13.552070

SecFprMul [6] 5.563748 11.622864

SecFprBaseIntfloor 7.084196 13.284748

SecFprBaseInttruncate 5.502315 11.367418

SecFprBaseIntrounding 6.960874 13.404681

SecFprUrshtrunc 0.095197 0.172693

SecFprUrshfloor 0.113149 0.219650

	Masked Computation of the Floor Function and Its Application to the FALCON Signature

