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Abstract. This paper presents a generalization of the Learning With
Rounding (LWR) problem, initially introduced by Banerjee, Peikert, and
Rosen, by applying the perspective of vector quantization. In LWR,
noise is induced by rounding each coordinate to the nearest multiple
of a fraction, a process inherently tied to scalar quantization. By con-
sidering a new variant termed Learning With Quantization (LWQ), we
explore large-dimensional fast-decodable lattices with superior quantiza-
tion properties, aiming to enhance the compression performance over
conventional scalar quantization. We identify polar lattices as exem-
plary structures, effectively transforming LWQ into a problem akin to
Learning With Errors (LWE), where the distribution of quantization
noise is statistically close to discrete Gaussian. Furthermore, we develop
a novel “quancryption” scheme for secure source coding. Notably, the
scheme achieves near-optimal rate-distortion ratios for bounded ratio-
nal signal sources, and can be implemented efficiently with quasi-linear
time complexity. Python code of the polar-lattice quantizer is available
at https://github.com/shx-lyu/PolarQuantizer.

Keywords: Lattice-Based Cryptography · Learning with Quantization
· Polar Lattice · Ciphertext Compression.

1 Introduction

Recent advancements have firmly established lattice-based cryptography (LBC)
as a leading candidate to replace number-theoretic cryptography, particularly in
anticipation of the quantum computing era. A shared objective across various
LBC domains, including secret-key encryption [25], homomorphic encryption
[10], trapdoor-based public key encryption (PKE) [28], reconciliation-based key
encapsulation mechanism (KEM) [2], and encryption-based KEM [30], is the
compression of ciphertexts.

To encrypt analog or floating-point signal sources, such as gradients in feder-
ated learning [31, 32] and audios [24], using lattice-based secret-key encryption
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(e.g., via the Micciancio-Schultz encryption framework [25]), a series of sequen-
tial steps are typically executed: source quantization, error correction coding
(ECC), encryption, ciphertext compression, and ECC decoding. This process in-
volves quantization being employed twice: first, a lattice quantizer to reduce the
source rate, and then encryption followed by quantization to reduce the cipher-
text rate. However, the computational complexity of a robust lattice quantizer,
along with ECC encoding and decoding, can be prohibitive. Additionally, man-
aging public parameters in the separated setting can be cumbersome. To strike
the optimal balance between rate and distortion in source coding, a common
approach is dithered quantization, which involves applying a uniform dither to
the signal before quantization, necessitating the sharing of the dither as public
randomness.

1.1 Our Results

We define the Learning With Quantization (LWQ) problem, which serves as
the cornerstone of cryptographic functionalities. LWQ extends the concepts of
Learning with Errors (LWE) [29] and Learning with Rounding (LWR) [7] by in-
corporating a general lattice quantizer. When a lattice quantizer effectively quan-
tizes, its error distribution resembles a uniform distribution over a ball-shaped
Voronoi cell. Leveraging the sphere-Gaussian equivalence, the per-component
marginal of this uniform distribution converges to a Gaussian density. Thus, a
well-designed quantizer-enabled LWQ behaves analogously to LWE with Gaus-
sian noise, while a hypercube lattice q

pZ
m (p divides q) based LWQ corresponds

to LWE with uniform noise (i.e., LWR).
Furthermore, we introduce a high-dimensional lattice quantizer based on

polar lattices. Our design adheres to several crucial criteria in lattice-based
cryptography: the ciphertext resides within a large ring, the quantizer’s com-
putational complexity remains manageable, and the quantizer’s output does not
compromise the system’s security. Through the application of polar lattices, we
demonstrate that LWQ achieves security levels comparable to LWE with dis-
crete Gaussian noise. This demonstration relies on establishing the close prox-
imity of distributions between LWQ samples (A, QΛ(As)) and LWE samples
(A, QΛ(As+ e)) in terms of Rényi divergence. Consequently, breaking LWQ
would imply an advantage for solving LWE. The computational complexity of
our proposed polar-lattice quantizer is O(m logm) for blocklength m.

Lastly, we present a novel approach integrating source and ciphertext quan-
tization into a single process. Unlike conventional methods involving multiple
stages of quantization, our scheme applies lattice quantization only once, di-
rectly transforming the signal source into ciphertext. The encryption-decryption
cycle bypasses error correction mechanisms, such as x 7→ q

2x or general lattice
codes, instead opting for direct lifting of messages to the Zq domain for dithered
quantization. In this setup, the ciphertext represents a compressed version of the
encrypted source message m, with the decrypted message m̂ lying within the
Voronoi region of a lattice coset Λ +m, denoted as m − m̂ ∈ VΛ. Notably, our
approach achieves the highest achievable source-to-ciphertext ratio (SCR). For
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context, the most favorable reported SCR to date stands at 1− o(1) [25, Table
1], where the vanishing term o(1) requires a large number m of samples.

1.2 Related Work

While sphere packing focuses on achieving the highest sphere packing density
[34, 12], the inquiry into optimal lattices for quantization, aiming for the smallest
average distortion, appears less mature. The theoretical proof of optimal lattice
quantizers has been limited to dimensions up to 3 (i.e., Z, A2, A

∗
3) [8], although

efforts to identify good lattice quantizers have resulted in periodic updates of
tables for small-dimensional lattices n ≤ 24 [3, 1].

In source coding, beyond minimizing quantization distortion, achieving unbi-
ased quantization (where the expected quantization error is zero) is often desir-
able, although challenging due to its dependence on the density of source signals.
Another pertinent task is achieving the rate-distortion bound for Gaussian source
signals [36]. In this context, dithered quantization has been under development
for decades [16, 37], where a (pseudo-)random signal, known as a dither, is in-
troduced to the input signal before quantization. This regulated perturbation
has the potential to enhance the statistical characteristics of the quantization
error. While obtaining the rate-distortion bound with random lattices seems fea-
sible [35], decoding a high-dimensional random lattice poses challenges, albeit
mitigated by the law of large numbers. For a continuous Gaussian source, an
explicit construction of polar lattices to achieve the rate-distortion bound has
been presented in [22], where the computational complexity of the quantizer is
O(m logm).

Ciphertext compression in LBC is closely tied to lattice quantization, strik-
ing a balance between structured lattices for efficiency and random lattices for
security. A prevalent compression technique is scalar quantization, also known
as modulus switching/modulus reduction. For instance, CKKS homomorphic
encryption [10] employs simple modulus reduction to a smaller modulus be-
fore computation on ciphertexts at different levels, while CRYSTALS-Kyber [30]
utilizes it for ciphertext compression. In contrast, (lattice) vector quantization,
rooted in Shannon’s rate-distortion theory, consistently outperforms scalar quan-
tization by quantizing vectors rather than individual scalars. Until the advent
of polar lattices, it remained unknown whether there exists a fast decodable,
high-dimensional quantizer achieving optimal quantization performance.

Scalar quantization has been adapted to define a variant of LWE. Banerjee,
Peikert, and Rosen [7] introduced the LWR problem, serving as a derandomized
version of LWE. By replacing Gaussian sampling in LWE with deterministic
rounding, LWR samples can be generated faster and with less randomness. The
hardness of LWR has been established only for restricted settings. Reference
[7] demonstrated that if one can distinguish the LWR distribution from uniform
distribution with advantage δ, then one can also distinguish LWE with advantage
δ −O(mBp/q), where the error of LWE is assumed to be uniformly distributed
over {−B, . . . , B}, and the modulus q is exponential. The size of q was reduced
by assuming it is a prime in [4], while [9] showed that q can be polynomial when
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the given number of LWR samples is bounded. Restrictions on the number of
samples were removed in [26], and a lower bound for proving the hardness of
LWR with polynomial modulus was provided.

2 Preliminaries

Table 1 summarizes a few important notations in this paper for easy reference.

Symbol Definition

x a boldface lower case for vectors

X a boldface capital for matrices

x ∼ U (random variable) x admits a uniform distribution on U

x← χ (sample) x is drawn according to distribution χ

Zq set {0, 1, ..., q − 1}
Zn∗
q set of integer vectors in Zn

q with gcd(s1, ..., sn, q) = 1

Xℓ binary representation random variable of X at level ℓ

xi
ℓ i-th realization of Xℓ

xi:j
ℓ shorthand for (xi

ℓ, ..., x
j
ℓ)

xi
ℓ:ȷ realization of i-th random variable from level ℓ to level ȷ

[m] set of all integers from 1 to m

XI subvector of X [m] with indices limited in I ⊆ [m]
Table 1. IMPORTANT NOTATIONS

2.1 Lattices and Quantization

A lattice is a discrete subgroup Λ ⊆ Rn. The rank of a lattice is the dimension
of the subspace of Rn that it spans. A lattice is called full-rank if its rank equals
its dimension.

Definition 1 (Partition Cell). A partition cell of the lattice Λ is a bounded
set PΛ that satisfies the following properties:

1. Covering Property: The union of translates of PΛ by lattice points covers the
entire space Rn, i.e., ∪v∈Λ(v + PΛ) = Rn.

2. Partitioning Property: For any pair of distinct lattice points v and w in Λ,
if their corresponding translated partition cells intersect, then v must equal
w.

For instance, the half-open Voronoi cell VΛ is a partition cell. This cell encom-
passes the set of points in Rn that are closer to a specific lattice point (referred
to as the generating lattice point) within Λ than to any other lattice point. Es-
sentially, it defines the region surrounding each generating lattice point where it
is the closest lattice point.
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A quantization function maps a vector y ∈ Rn to the nearest lattice point in
Λ. This is formulated as:

QΛ(y) = argmin
λ∈Λ

∥y − λ∥ (1)

where the implicit selection of a half-open Voronoi cell is crucial, as it allows QΛ

to consistently choose a single representative when multiple lattice points are
equidistant from y.

Definition 2 (Dithered quantizer). A dithered quantizer over lattice Λ is
defined by sampling g← VΛ and outputting

QΛ+g(y) = g +QΛ(y − g). (2)

Definition 3 (Second moment). The second moment of a lattice is defined
as the second moment per dimension of a random variable u which is uniformly
distributed over the fundamental Voronoi cell V:

σ̃2(Λ) =
1

n
E∥u∥2 =

1

n

1

det(Λ)

∫
V
∥x∥2 dx

where E denotes expectation, and det(Λ) is the volume of a Voronoi cell.

For a dithered quantizer, y − QΛ+g(y) is uniformly distributed over VΛ, so
the averaged quantization error of the dithered quantizer can be quantified by
σ̃2(Λ): for any distribution of y, with g← VΛ, then

1

n
E ∥y −QΛ+g(y)∥2 = σ̃2(Λ). (3)

The normalized second moment (NSM), i.e., the second-moment to volume
ratio, is defined as

G(Λ) =
σ̃2(Λ)

det2/n(Λ)
. (4)

The minimum possible value of G(Λ) over all lattices in Rn is denoted by Gm.

Definition 4 (Quantization-good). A sequence of lattices Λ(n) with growing
dimension is called good for mean squared error quantization if

lim
n→∞

G(Λ(n)) =
1

2πe
. (5)

2.2 LWE, LWR, LWQ

This section reviews the definitions of LWE [29] and LWR [7], and presents
our generalization called LWQ. For the sake of theoretical analysis, this work
considers s ∈ Zn∗

q rather than s ∈ Zn
q . This adaption is minor as the probability

of s ∈ Zn∗
q is at least 1−O(1/2n) for s ∈ Zn

q .
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Definition 5 (LWE/LWR/LWQ distributions). Let n,m, q ∈ N, p | q and
p ≥ 2, χm be a distribution on Zm

q , and Λ is an m-dimensional integer lattice
satisfying qZm ⊂ Λ ⊂ Zm.

– Samples from LWE distribution: A ← Zm×n
q , s ← Zn∗

q , e ← χm, set b =
As+ e and output (A,b) ∈ Zm×n

q × Zm
q .

– Samples from LWR distribution: A ← Zm×n
q , s ← Zn∗

q , set b = Q q
pZm(As)

and output (A,b) ∈ Zm×n
q × (Zm

q ∩
q
pZ

m) 4.

– Samples from LWQ distribution: A← Zm×n
q , s← Zn∗

q , set b = QΛ(As) and
output (A,b) ∈ Zm×n

q × (Zm
q ∩ Λ)

Definition 6 (LWE/LWR/LWQ problems).

– Search Problem: Given (A,b) from the LWE/LWR/LWQ distribution, the
Search problem asks to find s.

– Decisional Problem: Given (A,b) from the LWE/LWR/LWQ distribution,
the decisional problem asks to distinguish whether (A,b) is generated from
the LWE/LWR/LWQ distribution or a uniform distribution over Zm×n

q ×Zm
q ,

Zm×n
q × (Zm

q ∩
q
pZ

m), Zm×n
q × (Zm

q ∩ Λ).

In terms of efficiency, both LWR and LWQ sidestep Gaussian sampling by
discarding the e terms. The advantage of the proposed LWQ over LWR is that,
due to the sphere-like effective noise eef (eef = As−QΛ(As)) of LWQ if enabled
by a good quantization lattice, its noise term has a smaller second moment.

In terms of computational hardness, LWQ amounts to LWR by setting the
quantization lattice as Λ = q

pZ
m. The hardness of LWR is often evaluated by

running security reduction from “quantized” LWE with e admitting bounded
uniform errors. The hardness of the LWE problem has been justified for specific
error distributions χ, under the assumption of worst-case hardness for certain
lattice problems. In particular, this holds true when χ is a discrete Gaussian
distribution with an appropriate variance.

3 Polar Lattice for Quantization

Our recent work in [21] has shown that polar lattices are good for quantization
(G(Λ(n))→ 1

2πe ). In this section, we will adopt this polar quantizer to compress
the discrete sources. The technical novelty is to prove the quantization noise
converges to a discrete Gaussian distribution. This is key to prove the closeness
of the LWQ and LWE distributions, therefore justifying the hardness of LWQ.

Polar lattices are an instance of the well-known “Construction D” [13, p.232]
which uses a set of nested polar codes as component codes. Thanks to the nice
structure of “Construction D”, both the encoding and decoding complexity of
polar lattices are quasilinear in the block length (i.e., dimension of the lattice).
A construction of polar lattices achieving the Shannon capacity of the Gaussian

4 p
q
(Zm

q ∩ q
p
Zm) = Zm

p , so this definition is the same as the conventional LWR definition.
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noise channel was presented in [23]. A follow-up work [22] gave a construction
of polar lattices to achieve the rate-distortion bound of source coding for Gaus-
sian sources. Note that the two types of polar lattices constructed in [23, 22]
are related but not the same (i.e., one for channel coding and the other for
source coding). The multilevel structure of polar lattices enables not only effi-
cient encoding and decoding algorithms, but also a layer-by-layer lattice shaping
implementation.

3.1 Polar Codes

As a major breakthrough in coding and information theory, polar coding [5]
presents arguably the first explicit construction of codes that are capacity-
achieving for any binary-input memoryless symmetric channels (BMSCs). Given
a BMSC W : X → Y , a polar code with block length m = 2t selects K rows
from the generator matrix Gm = [ 1 0

1 1 ]
⊗t
, where ⊗ denotes the Kronecker prod-

uct. The set containing the K row indices is named as the information set I, and
its complement set F is called the frozen set. The combination of N identical
copies of W is denoted by Wm : X [m] → Y [m]. After the polarization transform
U [m] = X [m]Gm, Wm can be successively split into m binary memoryless sym-
metric subchannels according to the chain rule of mutual information, denoted

by W
(i)
N : U i → (Y [m], U1:i−1) with 1 ≤ i ≤ m. By channel polarization [5], the

fraction of good (roughly error-free) subchannels approaches the capacity C of
W as m→∞. Therefore, to achieve the capacity, the K selected row indices of
a polar code are corresponding to these good subchannels, while the rest m−K
rows are abandoned as if frozen bits are assigned to those non-good subchan-
nels. The quality of a subchannel is generally identified based on its associated
Bhattacharyya parameter.

Definition 7. Given a BMSC W with transition probability PY |X , the Bhat-
tacharyya parameter Z ∈ [0, 1] is defined as

Z(W ) = Z(X|Y ) ≜
∑
y

√
PY |X(y|0)PY |X(y|1). (6)

In [6], the rate of channel polarization is characterized in terms of the Bhat-

tacharyya parameter as limm→∞ Pr
(
Z(W

(i)
m ) < 2−m

β
)
= C, for any 0 < β <

0.5. For efficient construction of polar codes, Z(W
(i)
m ) can be evaluated using

the methods introduced in [33, 27]. The above mentioned channel splitting pro-
cess also gives rise to a simple decoding algorithm called Successive Cancellation
(SC) decoding [5], which executes the maximum a posteriori (MAP) decoding
for each subchannel sequentially from i = 1 to m. Consequently, by the union
bound, the block error probability of the SC decoding can be upper-bounded by∑

i∈I Z(W
(i)
m ).

In the context of lossy compression, polar codes have been shown to be able to
achieve the rate-distortion bound for binary symmetric sources [17]. To achieve
a target distortion, a test channel W : X → Y is built for the source Y and the
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reconstruction X. The polar codes for compression are constructed according to
the test channel W , with slight modification on the information set, which is

defined as I ≜ {i ∈ [m] : Z(W
(i)
m ) < 1− 2−m

β}. By the duality between channel
coding and source coding, the SC decoding algorithm for polar channel coding
can be transformed to the SC encoding algorithm for polar source coding. Given
m i.i.d. sources Y [m], the polarized bits UF are almost independent to Y [m]

since Z(W
(i)
m ) ≥ 1 − 2−m

β

by definition. The compression of Y [m] is achieved
by replacing UF with irrelevant random bits and saving the relevant bits UI ,
which can be determined from Y [m] and UF using the SC encoder.

Polar lattices [22] offer an effective solution for achieving the rate-distortion
bound in the context of the i.i.d. Gaussian source. In essence, one constructs a
polar lattice for the Gaussian source by utilizing a series of nested polar codes, as
introduced by Forney et al. [15]. These polar codes compress the Gaussian source
vector based on the characteristics of the test channel at each level. Moreover,
research [23] indicates that employing a binary lattice partition keeps the number
of levels r relatively small (r = O(log logm)), yet still enables the attainment
of the capacity 1

2 log(1 + SNR) of the additive white Gaussian noise (AWGN)
channel, where SNR represents the signal-to-noise ratio.

The concept of duality between source coding and channel coding allows us
to interpret quantization polar lattices as analogous to a channel coding lat-
tice constructed on the test channel. In the scenario of a Gaussian source with
variance σ2

s and an average distortion ∆, the test channel effectively becomes
an AWGN channel with a noise variance of ∆. Consequently, the SNR of this

test channel equals
σ2
s−∆
∆ , while its capacity is 1

2 log
(

σ2
s

∆

)
. This insight suggests

that the rate of the polar lattice quantizer can be finely adjusted to approach
1
2 log

(
σ2
s

∆

)
. Consequently, polar lattices demonstrate the capability to achieve

the rate-distortion bound of Gaussian sources by employing discrete Gaussian
distribution instead of continuous, offering a notable advancement in compres-
sion techniques.

3.2 Polar Lattice: Performance Analysis

In this subsection, we present an explicit construction of polar lattices for the
quantization of random integers, which produces Gaussian-like quantization er-
rors. Before that, we need some preliminaries on the lattice structure based on
multi-level codes [15]. A sublattice Λ′ ⊂ Λ induces a partition (denoted by Λ/Λ′)
of Λ into equivalence groups modulo Λ′. The order of the partition is denoted by
|Λ/Λ′|, which is equal to the number of the cosets. If |Λ/Λ′| = 2, we call this a
binary partition. Let Λ(Λ0)/Λ1/ · · · /Λr−1/Λ

′(Λr) for r ≥ 1 be an n-dimensional
lattice partition chain. If only one level is applied (r = 1), the construction
is known as “Construction A”. If multiple levels are used, the construction is
known as “Construction D”. For each partition Λℓ−1/Λℓ (1 ≤ ℓ ≤ r) a code
Cℓ over Λℓ−1/Λℓ selects a sequence of coset representatives aℓ in a set Aℓ of
representatives for the cosets of Λℓ. This construction requires a set of nested
linear binary codes Cℓ with block length m and dimension of information bits
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kℓ, which are represented as [m, kℓ] codes for 1 ≤ ℓ ≤ r and C1 ⊆ C2 · ·· ⊆ Cr.
Let ψ be the natural embedding of Fm

2 into Zm, where F2 is the binary field.
Consider g1,g2, · · · ,gm be a basis of Fm

2 such that g1, · · ·gkℓ
span Cℓ. When

n = 1, the binary lattice L of Construction D consists of all vectors of the form

r∑
ℓ=1

2ℓ−1
kℓ∑
j=1

ujℓψ(gj) + 2rz, (7)

where ujℓ ∈ {0, 1}, z ∈ Zm and ψ denotes the embedding into Rm.

From the perspective of information theory, to compress the source Y which
is uniformly random in [−2r−1, 2r−1), we build a test channel Y = X + E
mod qZ (q = 2r), where E ∼ DZ,σ is a discrete Gaussian noise random vari-
able and the reconstruction X is uniformly random in [−2r−1, 2r−1). Our po-
lar lattice quantizer is constructed on this test channel using the binary par-
tition chain Z/2Z/ · · · /2rZ. We also assume that r is sufficiently large such
that the modulo 2rZ operation is insignificant on E. X can be represented by
a bit sequence X1, ..., Xℓ, ..., Xr, where Xℓ specifies the coset 2ℓ−1Z/2ℓZ. Then,
X1, ..., Xr uniquely describes the cosets of Z/2rZ. For the first partition level, the

quantizer executes the SC decoding to obtain X
[m]
1 from Y [m], using the statistic

of the first partition channel PY |X1
. For the second level, X

[m]
2 is decoded from

Y [m] and X
[m]
1 using PY,X1|X2

. This process ends until X
[m]
r is decoded. Finally,

X [m] is recovered as X [m] = X
[m]
1 + 2X

[m]
2 + · · ·+ 2r−1X

[m]
r mod 2rZ. We will

show that the distribution of Y [m] − X [m] is close to that of m i.i.d. discrete
Gaussian random variables.

Because the quantization noise is represented by q = 2r integers in [−2r−1, 2r−1)
but not exactly in Z, the following lemma may be needed to show that a discrete
Gaussian distribution with truncated tail behaves similarly to the standard one.

Lemma 1. Let E ∼ DZ,σ be a discrete Gaussian random variable, and let E′ =
E mod qZ be the residue in [−2r−1, 2r−1). The total variation distance between
PE and PE′ is upper-bounded as follows.

V (PE ,PE′) =
1

2

∑
e∈Z
|PE(e)− PE′(e)| ≤M · exp

(
− (2r−1 − 1)2

2σ2

)
, (8)

where M = 2/
(

1√
2πσ2

∑
λ∈Z exp

(
− λ2

2σ2

))
.
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Proof.

V (PE ,PE′) = min
∑

L⊂Z/qZ

Pr(L)− Pr(coset leader of L) (9)

=
∑

λ={−2r−1,...,2r−1−1}

Pr(λ+ qZ)− Pr(λ) (10)

=

−∞∑
λ=−2r−1−1

exp(− λ2

2σ2 )∑
λ′∈Z(exp(−

λ′2

2σ2 ))
+

∞∑
λ=2r−1

exp(− λ2

2σ2 )∑
λ′∈Z(exp(−

λ′2

2σ2 ))

(11)

≤ 2

∞∑
λ=2r−1

exp(− λ2

2σ2 )∑
λ′∈Z(exp(−

λ′2

2σ2 ))
(12)

≤ 2

∫∞
2r−1−1 exp(−

t2

2σ2 )dt∑
λ′∈Z(exp(−

λ′2

2σ2 ))
(13)

=M ·Q
(
2r−1 − 1

σ

)
(14)

≤M · exp
(
− (2r−1 − 1)2

2σ2

)
, (15)

where Q(x) = 1−Φ(x) is the Q-function of a standard normal distribution, and

we use Q(x) ≤ exp(−x2

2 ) in the last inequality. ⊓⊔

We now analyze the distribution of quantization noise. Let Y [m] denote m
samples drawn from As. The quantization result or the so-called reconstruction
of Y [m] is denoted by X [m], which is also in Zm

q .

– Consider the first case in which the correlation between Y [m] and X [m] is
due to an i.i.d. discrete Gaussian random vector E[m], i.e., Y i = Xi + Ei

mod qZ for each i ∈ [m], and Ei ∼ DZ,σ. The joint distribution between
X [m] and Y [m] in this case is denoted by PX[m],Y [m] .

– Consider the second case in which the correlation between Y [m] and X [m]

is generated by the polar lattice quantizer, i.e., X [m] = ⌊Y [m]⌉Q. The joint
distribution between X [m] and Y [m] in this case is denoted by QX[m],Y [m] .

We will show the total variation distance V (PX[m],Y [m] ,QX[m],Y [m]) vanishes
sub-exponentially in m through a layer-by-layer manner, which is corresponding
to the multi-level quantization process of polar lattices. Notice that each Xi ∈
Zq, i ∈ [m] can be uniquely represented by a binary sequence Xi

1, ..., X
i
ℓ, ..., X

i
r,

and Xi
ℓ determines the coset of the binary partition 2ℓ−1Z/2ℓZ for 1 ≤ ℓ ≤ r.

Given a source vector Y [m], the (m-dimensional) polar lattice quantizer tries to

find the coset leader X
[m]
1 at the first level; then it decides the coset leader X

[m]
2

at the second level using both X
[m]
1 and Y [m]; the process keeps going at level ℓ,

where X
[m]
ℓ is decoded from Y [m] and X

[m]
1:ℓ−1; the process ends at the final r-th

level, where X
[m]
r is decoded from Y [m] and X

[m]
1:r−1.
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From the perspective of lossy compression in information theory, PY |X is
called the test channel with input (reconstruction) X and output (source) Y . As
can be seen, since Y = X + E mod qZ, the test channel is a discrete additive
white Gaussian noise channel with a modulo qZ operation at the end. Following
the step of Forney et al. [15], the test channel can be partitioned into r 2ℓ−1Z/2ℓZ
binary-input channels with 1 ≤ ℓ ≤ r, which are called binary partition channels.

In fact, the polar lattice consists of the component polar codes designed
for these r partition channels. More explicitly, the first level Z/2Z partition
channel completely determines the joint distribution PX1,Y of X1 and Y , and Y
mod 2Z is a sufficient statistic of Y with respect to X1. The polar code C1 at the
first level is constructed according to the Z/2Z channel, which is equivalently

described by W1 : X1 −→
PY |X1

Y . Let U
[m]
1 = X

[m]
1 Gm be the bits after channel

polarization at level 1. The information set of C1 is defined as I1 ≜ {i ∈ [m] :

Z(U i
1|U1:i−1

1 , Y [m]) ≤ 1 − 2−m
β} for any 0 < β < 0.5, and the frozen set of C1

is the complement set F1 ≜ Ic1. By this definition, the correlation between UF1
1

and Y [m] is negligible. The polar quantizer assigns uniformly random bits that
are independent of Y [m] to UF1

1 , and then determines UI11 from Y [m] and UF1
1

using the SC encoding algorithm. The reconstruction at level 1 is obtained from

the inverse polarization transform X
[m]
1 = U

[m]
1 G−1m = U

[m]
1 Gm.

Lemma 2. Let Q
U

[m]
1 ,Y [m] denote the resulted joint distribution of U

[m]
1 and Y [m]

according to the encoding rules (17) and (18) at the first partition level. Let
P
U

[m]
1 ,Y [m] denote the joint distribution directly generated from PX1,Y , i.e., U

i
1 is

generated according to the encoding rule (17) for all i ∈ [m]. The total variation
distance between P

U
[m]
1 ,Y [m] and Q

U
[m]
1 ,Y [m] is upper-bounded as follows.

V
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
≤ m

√
ln 2 · 2−mβ . (16)

.

U i
1 =

0 w. p. PUi
1|U

1:i−1
1 ,Y [m]

(
0|u1:i−11 , y[m]

)
1 w. p. PUi

1|U
1:i−1
1 ,Y [m]

(
1|u1:i−11 , y[m]

) if i ∈ I1, (17)

U i
1 =


0 w. p.

1

2

1 w. p.
1

2
.
if i ∈ F1, (18)

Proof. See Appendix I.

Remark 1. It seems that the encoding rules (17) and (18) are not deterministic.
We note that the randomized forms in (17) and (18) are just for convenience of
proof. By the symmetry of the Z/2Z channel, it can be shown that any fixed
realization UF1

1 = uF1
1 causes the same total variation distance [17], meaning that
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one can safely choose all-zero frozen bits in practice. Similarly, by the polarization
effect, the bit U i

1 for i ∈ I1 has conditional entropy H(U i
1|U1:i−1

1 , Y [m]) → 0
almost surely as m → ∞. The rule (17) can be replaced with a deterministic
MAP rule.

After finishing the encoding at level 1, the polar lattice quantizer proceeds to
level 2 in a similar manner. The 2Z/4Z partition channel completely determines
the joint distribution PX2,Y |X1

of X2 and Y given the previous quantization
result X1, and Y −X1 mod 4Z is a sufficient statistic of Y with respect to X2.
The polar code C2 at the second level is constructed according to the 2Z/4Z
channel, which is equivalently described byW2 : X2 −→

PY,X1|X2

(Y,X1). Let U
[m]
2 =

X
[m]
2 Gm be the bits after channel polarization at level 2. The information set of

C2 is defined as I2 ≜ {i ∈ [m] : Z(U i
2|U1:i−1

2 , X
[m]
1 , Y [m]) ≤ 1− 2−m

β}, and the
frozen set is defined as F2 ≜ Ic2.

Lemma 3. Let Q
U

[m]
1 ,U

[m]
2 ,Y [m] denote the resulted joint distribution of U

[m]
1 ,

U
[m]
2 and Y [m] according to the encoding rules (17) and (18) at the first par-

tition level, and then rules (20) and (21) at the second partition level. Let
P
U

[m]
1 ,U

[m]
2 ,Y [m] denote the joint distribution directly generated from PX1,X2,Y ,

i.e., U i
1 and U i

2 are generated according to the encoding rule (17) and rule (20)
for all i ∈ [m], respectively. The total variation distance between P

U
[m]
1 ,U

[m]
2 ,Y [m]

and Q
U

[m]
1 ,U

[m]
2 ,Y [m] is upper-bounded as follows.

V
(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
≤ 2m

√
ln 2 · 2−mβ . (19)

.

U i
1 =

0 w. p. P
Ui

2|U
1:i−1
2 ,X

[m]
1 ,Y [m]

(
0|u1:i−12 , x

[m]
1 , y[m]

)
1 w. p. P

Ui
2|U

1:i−1
2 ,X

[m]
1 ,Y [m]

(
1|u1:i−12 , x

[m]
1 , y[m]

) if i ∈ I2, (20)

U i
2 =


0 w. p.

1

2

1 w. p.
1

2
.
if i ∈ F2, (21)

Proof. Assume an auxiliary joint distribution Q′
U

[m]
1 ,U

[m]
2 ,Y [m] resulted from using

the encoding rule (17) for all U i
1 with i ∈ [m] at the first partition level, and

rules (20) and (21) at the second partition. Clearly, Q′
U

[m]
1 ,Y [m] = P

U
[m]
1 ,Y [m] and

Q′
U

[m]
2 |U [m]

1 ,Y [m] = Q
U

[m]
2 |U [m]

1 ,Y [m] . By the triangle inequality,

V
(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
≤ V

(
P
U

[m]
1 ,U

[m]
2 ,Y [m] ,Q

′
U

[m]
1 ,U

[m]
2 ,Y [m]

)
+ V

(
Q′

U
[m]
1 ,U

[m]
2 ,Y [m] ,QU

[m]
1 ,U

[m]
2 ,Y [m]

)
,

(22)
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where the first term in the right hand side can be upper bounded bym
√
ln 2 · 2−mβ

using the same method as in the proof of Lemma 2, and the second term is equal

to V
(
P
U

[m]
1 ,Y [m] ,QU

[m]
1 ,Y [m]

)
. ⊓⊔

After the lattice quantization process with r sequential levels, the joint dis-
tribution produced by the lattice quantizer is denoted by Q

U
[m]
1:r ,Y [m] , and the

joint distribution directly generated from m i.i.d. test channels is denoted by

P
U

[m]
1:r ,Y [m] . By induction, we obtain V

(
P
U

[m]
1:r ,Y [m] ,QU

[m]
1:r ,Y [m]

)
≤ rm

√
ln 2 · 2−mβ .

Combining this result with Lemma 1, we have the following theorem on the dis-
tribution of quantization noise.

Theorem 1. The distribution of quantization noise induced by the polar lattice
can be rendered arbitrarily close to a discrete Gaussian distribution in terms of
the total variation distance, ensuring that

V
(
PX′[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ +M ·m · exp

(
− (2r−1 − 1)2

2σ2

)
.

(23)

Proof. By the inverse polarization transform X
[m]
ℓ = U

[m]
ℓ Gm from ℓ = 1 to r,

we immediately have V
(
PX[m],Y [m] ,QX[m],Y [m]

)
≤ r ·m

√
ln 2 · 2−mβ .

Recall that the test channel X −→
PY |X

Y is given by Y = X + E mod qZ,

where E ∼ DZ,σ. Suppose now PY is fixed, and PX|Y is replaced with PX′|Y by
removing the modulo qZ operation, i.e.,X ′ = Y −E. The total variation distance
V (PX′[m],Y [m] ,PX[m],Y [m]) is equal to V (PE′[m] ,PE[m]) as shown in Lemma 1. By
using the telescoping expansion (54) and the triangle inequality again, the proof
is completed. ⊓⊔

Fig. 1 shows a comparison between the distribution of quantization noise
Y −X achieved by the polar lattice quantizer and the genuine discrete Gaussian
distribution DZ,σ with parameters σ = 3, r = 8 and m = 220.

Remark 2. We note that the validity of polar lattice structure can be easily
guaranteed. Taking the above simulation as an example, when constructing mul-
tilevel polar codes along the binary partition chain Z/2Z/ · · · /2rZ for the ad-
ditive discrete Gaussian test channel (σ = 3), the capacities of the partition
channels from ℓ = 1 to r are given by 0, 3.2732×10−10, 0.0056, 0.3933, 0.9690,
1.0000 and 1.0000, respectively. The size of the information set is chosen as
|Iℓ| = ⌈m · C(Wℓ)⌉, where C(Wℓ) denotes the capacity of the ℓ-th partition
channel. As a result, the component polar codes are consecutively nested by
ensuring Iℓ ⊆ Iℓ+1 for 1 ≤ ℓ ≤ r − 1, and we have an ascertained polar lat-
tice quantizer. Moreover, the constructed polar lattice is roughly sphere-bound
achieving, by the capacity-achieving property of polar codes for all partition
levels.
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Fig. 1. A comparison between the distribution of quantization noise Y−X andDZ,σs=3.

4 Hardness of LWQ

By extending the LWE distribution to a LWR/LWQ distribution, the loss of
security can be quantified by computing the Rényi divergence between the two
distributions.

Definition 8 (Rényi divergence). Rényi divergence of order α between two
discrete distributions X and Y is defined as

Dα(X||Y ) =
1

α− 1
ln

∑
t∈suppX

X(t)

(
X(t)

Y (t)

)α−1

. (24)

For the sake of simplicity, we set α = 2 in the following analysis.

Lemma 4. Let A← Zm×n
q , s← Zn∗

q , qZm ⊂ Λ ⊂ Zm. For any s ∈ Zn∗
q , let Xs

be the distribution of m LWQ samples (A, QΛ(As)), and Ys be the distribution
of m quantized LWE samples (A, QΛ(As+ e)). We have

1. If e ∼ VpΛ (large noise), p ≥ 2, p ∈ Z, then eD2(Xs||Ys) ≤ 1
pm .

2. If e ∼ V 1
pΛ

(small noise), p ≥ 2, p ∈ Z, then eD2(Xs||Ys) ≤
(

p−1
p

)m

+ 1
pm× 1

2m .
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Proof. Since s ∈ Zn∗,As admits a uniform distribution in Zm
q . Let χm

σ mod qZm

be the discrete Gaussian distribution after modulo q. Using the definition of
Rényi divergence, we have

eD2(Xs||Ys) = EXs

Pr(Xs = (A, QΛ(As)))

Pr(Ys = (A, QΛ(As))
(25)

= EA←Zm×n
q

1

Pre(QΛ(As) = QΛ(As+ e) mod qZm)
(26)

= Eu←Zm
q

1

Pre(QΛ(u) = QΛ(u+ e) mod qZm)
(27)

= Eu←VΛ
1

Pre(QΛ(u+ e) = 0 mod qZm)
(28)

≤ Eu∼VΛ
1

Pre(QΛ(u+ e) = 0)
(29)

If e ∼ VpΛ, Pre(QΛ(u+ e) = 0) = |VΛ|
|VpΛ| =

1
pm for any u← VΛ, thus for Case

1 we have

Eu∼VΛ
1

Pre(QΛ(u+ e) = 0)
=

1

Pre(QΛ(e) = 0)
=

1

pm
. (30)

If e ∼ V 1
pΛ

, this Voronoi region can be partitioned into two parts: the first

part that corresponds to QΛ(u+ e) = 0 has probability
(

p−1
p

)m

over u, while

the second part that corresponds to Pre(QΛ(u+ e) = 0) ≥ 1
2m has probability

1
pm over u. Then for Case 2 we have

Eu∼VΛ
1

Pre(QΛ(u+ e) = 0)
≤

(
p− 1

p

)m

+
1

pm
× 1

2m
. (31)

⊓⊔

Lemma 5 ([9]). For any two distributions X and Y, for any event E,

Pr(Y ∈ E) ≥ Pr(X ∈ E)2/eD2(X||Y). (32)

Combining the above lemmas, we arrive at the following theorem. The proof
is straightforward and omitted.

Theorem 2. Let A ← Zm×n
q , s ← Zn∗

q , Zm
q ⊂ Λ ⊂ Zm. For every algorithm

Learn, we have

1. If e ∼ VpΛ, p ≥ 2, p ∈ Z, then

PrA,s,e (Learn(A, QΛ(As+ e)) = s) ≥ pmPrA,s,e (Learn(A, QΛ(As)) = s)
2
.

(33)
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2. If e ∼ V 1
pΛ

, p ≥ 2, p ∈ Z, then

PrA,s,e (Learn(A, QΛ(As+ e)) = s)

≥ 1/

((
p− 1

p

)m

+
1

pm
× 1

2m

)
PrA,s,e (Learn(A, QΛ(As)) = s)

2
. (34)

Remark 3. For general sub-Gaussian e,u, we can prove a lower bound for the
function

f(u, e) = Eu
1

Pre(QΛ(u+ e) = 0)
. (35)

By Jensen’s inequality and the fact that 1
Pre(QΛ(u+e)=0) is strictly convex for

Pre(QΛ(u+ e) = 0) ∈ R+, we obtain

f(u, e) ≥ 1

EuPre(QΛ(u+ e) = 0)
(36)

=
1

Pre,u(QΛ(u+ e) = 0)
. (37)

Since both u and v are sub-Gaussian variables, the result can be proved by
analyzing the error probability of sub-Gaussian.

Remark 4. If Λ = q
pZ

m, and e admits i.i.d. Gaussian of standard deviation σ,

with 1 ≤ B ≤ q
2p , we have

eD2(Xs||Ys) ≤
(

q − 2Bp

q(Φ(B/σ)− Φ(−B/σ))
+

4Bp

q

)m

, (38)

where Φ(x) = 1
2

(
1 + erf

(
x√
2

))
is the cumulative distribution function (CDF) of

a standard normal distribution. Empirically, this function achieves the smallest
value when B = 2σ.

If Λ = q
pZ

m, and e admits i.i.d. symmetric bounded noise in {−B, ..., B},
with 1 ≤ B ≤ q

2p , we have

eD2(Xs||Ys) ≤
(
1 +

2Bp

q

)m

. (39)

5 The Proposed Secure Source Coding Scheme

We propose a novel approach for joint quantization and encryption of a source
vector m ∈ Zm

q . It’s worth noting that for a bounded rational source m̃ ∈ L
q Z

m

(where m̃ ∈ [−L/2, L/2)m), it can be converted to reside in Zm
q by setting

m = q
Lm̃ ∈ Zm

q .
The quancryption scheme LWQm,n,q

Λ , depicted in Figure 2, is parameterized
by the source dimension m, secret dimension n, modulus q, and a quantization
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Fig. 2. The quancryption scheme LWQm,n,q
Λ with m ∈ Zm

q .

lattice Λ, where qZm ⊂ Λ ⊂ Zm. It consists of three components: key generation
(KGen), encryption (Enc), and decryption (Dec).

In the encryption process, let A ← Zm×n
q and s ← Zn∗

q . The ciphertext is
generated as follows:

Encs(m) = (A,b = QΛ(As+m)) ∈ Zm×n
q × (Zm

q ∩ Λ). (40)

The decryption process retrieves an estimate m̂ of the original message m:

m̂ = b−As ∈ Zm
q . (41)

Unlike traditional secret key encryption, m̂ ̸= m in general. However, the pseu-
dorandom signal As serves as a form of dithering, ensuring that m−m̂ becomes
independent of m. The correctness of quancryption is evaluated based on how
closely m̂ approximates m.

Definition 9 (Correctness). The decryption m̂ is considered correct if

QΛ+m(m̂) = 0, (42)

which implies that m− m̂ ∈ VΛ.

The performance of quancryption is assessed using the following metrics:

– Rate of ciphertext:

RC =
1

m
log

qm

detΛ
bits/dimension. (43)

– Source to ciphertext ratio:

rSC =
log qm

log qm − log detΛ
, (44)

which represents the source rate 1
m log qm divided by RC .

– Mean square error (MSE):

MSE =
1

m
E ∥m− m̂∥2 , (45)

where the expectation is taken over the randomness of A.
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Remark 5. If the input message of LWQm,n,q
Λ has already been quantized, i.e.,

m ∈ Zm
q ∩ Λ, the decryption algorithm can be modified as QΛ(Decs(·)). In this

case, we obtain error-free decryption:

QΛ(Decs(Encs(m))) = m. (46)

The source to ciphertext ratio of this scheme is rSC = 1, which surpasses those
in existing literature [25, Table 1]. This improvement is attributed to the use of
the lattice code Zm

q ∩ Λ for both error correction and ciphertext compression.

5.1 Cryptographic Properties

We use the security notion of RND-CPA which is better suited to lattice-based
primitives, as RND-CPA security implies IND-CPA security [25].

Definition 10 (RND-CPA). An encryption scheme (KGen,Enc,Dec) is said
to be pseudorandom under chosen plaintext attack if any efficient (probabilistic
polynomial-time) adversary A can only achieve at most negligible advantage in
the following game, parameterized by a bit b ∈ {0, 1}:

1. sk← KGen(1n),
2. b′ ← AOb(·) where Ob(m) returns either an encryption Encsk(m) of the mes-

sage m under the key sk if b = 0, or a sample from a distribution that has
support {Encsk(m) | sk ∈ supp(KGen(1n)),m ∈M} if b = 1.

The adversary’s advantage is defined as Adv(A) = |Pr(b′ = 1|b = 1) − Pr(b′ =
0|b = 1)|.

Theorem 3. The quancryption scheme LWQm,n,q
Λ is RND-CPA secure if the

decisional LWQ problem is hard.

Proof. In the RND-CPA game of quancryption, the support of is Zm×n
q × (Zm

q ∩
Λ). The hardness of LWQ implies that AOb(m=0) is negligible. For the set of
vectors v0, ...,vi ∈ VΛ ∩ Zm, there is a bijection to

v0 +m mod Λ, ...,vi +m mod Λ ∈ VΛ ∩ Zm (47)

for m ∈ Zm
q . Then the probability distribution of QΛ(As) is the same as that

of QΛ(As + m) for m ∈ Zm
q . Thus AOb(m) = AOb(0) for m ∈ Zm

q , and the
RND-CPA security of quancryption can be built upon decisional-LWQ. ⊓⊔

In 2021, Li and Micciancio [18] introduced a model for the passive security
of incorrect encryption schemes (IND-CPAD). In effect, it allows an adversary
to decrypt honestly generated ciphertexts, so that a scheme that somehow leaks
sensitive information during honest decryption is not seen as secure. In this re-
gard, the proposed quancryption scheme is not IND-CPAD secure. Nevertheless,
a simple solution from the perspective of differential privacy is to add some
noises to perturb the decryption result [19].
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5.2 Source Coding Properties

Let PΛ be a general partition cell of Λ, i.e.,∑
λ∈Λ

(PΛ + λ) = Rm,
∑
λ∈Λ

(PΛ ∩ Zm + λ) = Zm. (48)

It is known that continuous uniform dithers over PΛ can produce uniform vectors
over VΛ. The case of discrete dithers can be proved similarly.

Lemma 6 (Dithered Quantization Error). If u ∼ PΛ∩Zm, then the dither
error u+ v − QΛ(u + v) is uniform over VΛ ∩ Zm, independent of the source
vector v ∈ Zm:

u+ v −QΛ(u+ v) ∼ VΛ ∩ Zm, for any v ∈ Zm.

Proof. The function f(u) = u − QΛ(u) ∈ VΛ ∩ Zm is a measure-preserving
mapping, which implies that for u ∼ PΛ∩Zm, we have f(u) ∼ VΛ∩Zm. For any
v ∈ Zm, PΛ + v also satisfies the general partition cell properties of Eq. (48).
Thus f(u+ v) ∼ VΛ ∩ Zm holds for any v ∈ Zm. ⊓⊔

Theorem 4 (Dithered Quantization Error). The estimation error of quan-
cryption admits a uniform distribution over the Voronoi region VΛ ∩ Zm of the
quantization lattice Λ, i.e.,

m− m̂ ∼ VΛ ∩ Zm.

Proof. In our case, the dither vector u = As, which admits a uniform distri-
bution over the Voronoi region of the sub-lattice qZm, where qZm ⊂ Λ ⊂ Zm.
So our task is to show that dithers from a partition cell of the sub-lattice can
produce uniform error in VΛ ∩ Zm.

Since PqZm =
∑

λ∈qZm∩Λ (PΛ + λ), together with the technique in Lemma 6
showing that each of the PΛ + λ leads to a uniform distribution over VΛ ∩ Zm,
the theorem is proved. ⊓⊔

A direct consequence of the above theorem is that we have

MSE =
1

m
E ∥m− m̂∥2 → σ̃2(Λ), (49)

where the approximation to σ̃2(Λ) is tight based on the high resolution assump-
tion ([35], here the resolution is qm).

By substituting det(Λ) =
(
σ̃2(Λ)/G(Λ)

)m/2
into the definition of RC , we

have

RC = log
(
qG(Λ)1/2

)
− log σ̃ (50)

≥ log
(
q(2πe)−1/2

)
− log σ̃, (51)
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where the equality in Eq. (51) only holds in the asymptotic setting with a
quantization-good lattice. This is ciphertext rate to distortion function of quan-
cryption. With chosen q,m and RC (or σ̃), the query of a small σ̃2(Λ) (or RC)
amounts to minimize the NSM G(Λ).

The integer lattice Z, checker-board lattice D4, Gosset lattice E8, and Leech
lattice Λ24 have the best reported NSMs in their respective dimensions [1]:

0.08333, 0.07660, 0.07168, 0.06577.

However, the following lemma shows that the Cartesian product of these lattices
can not reach smaller NSM in the large dimensional setting.

Lemma 7. Assume that k | m, k ≥ 2. If Λ is constructed from the m/k-fold
Cartesian product of Λ′, i.e., Λ = Zm/k ⊗ Λ′ ⊂ Rm, then the lattices Λ′ and Λ
have the same NSM, i.e., G(Λ) = G(Λ′).

Proof. The volume of Λ satisfies

det(Λ) = det(Λ′)m/k. (52)

As Λ = Zm/k⊗Λ′, a x ∈ Λ can be partitioned intom/k independent components
x1, ...,xm/k, such that x = x1 + · · ·+ xm/k. Then we have

1

m
Ex∼VΛ∥x∥2 =

1

k
Ex1∼VΛ′∥x1∥2. (53)

Thus G(Λ) = G(Λ′) can be verified by substituting (52) and (53) into the defi-
nition of NSM. ⊓⊔

The proposed secure source coding scheme offers versatile applicability across
a spectrum of domains where the confluence of compression and security is
paramount. Several notable examples include:

1. Secure Communication: In contexts necessitating data transmission over
vulnerable channels, such as military communications, IoT (Internet of Things)
networks, or telemedicine, secure source quantization may be useful. By com-
pressing data securely prior to transmission, bandwidth requirements are
reduced, while concurrently safeguarding the confidentiality of transmitted
information.

2. Privacy-Preserving Machine Learning: In scenarios demanding the train-
ing of machine learning models on sensitive data while upholding privacy,
secure source quantization emerges as a salient solution. By securely com-
pressing data before sharing it with third parties or uploading it to the cloud
for training, organizations can harness the power of machine learning while
fortifying data privacy.

3. Biometric Data Compression: Given the sensitivity of biometric data,
such as fingerprints, iris scans, or facial recognition data, stringent security
measures are imperative. Secure source quantization facilitates the secure
compression of biometric data, preserving its confidentiality and integrity
against unauthorized access or tampering.
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6 Conclusions and Future Work

The paper has explored a novel hardness assumption termed LWQ, similar to
the LWR assumption, but is parameterized by an arbitrary lattice Λ (where
setting Λ = q

pZ
m recovers LWR). By choosing Λ to be a close-to-optimal lattice

quantizer, one can recover a variant of LWR where the noise is Gaussian-like,
rather than bounded over an ℓ∞ ball (which is typical for LWR). This can be
used to choose noise of smaller standard deviation at the same security level.

This paper has additionally introduced quancryption, a novel approach that
combines source quantization and ciphertext compression into a single process.
Utilizing a lattice code Zm

q ∩Λ as a quantizer, quancryption achieves both tasks
in a unified manner, streamlining the overall encryption process. By leveraging
the security guarantees offered by LWQ, quancryption facilitates secure dither
quantization and achieves a high source-to-ciphertext ratio for lattice-based se-
cret key encryption.

Moving forward, LWQ presents opportunities for adaptation to various cryp-
tography scenarios where LWR serves as a fundamental building block. For in-
stance, we can envision the development of a PKE scheme akin to Lizard [11]
or Saber [14] based on LWQ or module-LWQ. Following the structure outlined
by Lindner and Peikert [20], such a scheme would incorporate LWE in the key
generation phase and LWQ or module-LWQ in the encryption phase. Given the
reduced quantization noise inherent in LWQ or module-LWQ, compared to LWR
or module-LWR at the same ciphertext rate, we anticipate a lower decryption
failure rate for this proposed scheme compared to existing solutions like Lizard
and Saber.

7 Appendix I

Proof of Lemma 2.

Proof. Using the telescoping expansion

B1:n −A1:n =

n∑
i=1

(Bi −Ai)A1:i−1Bi+1:n, (54)
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where D1(·||·) is the Kullback-Leibler divergence, and the equalities and the
inequalities follow from

(a) Q
(
ui1|u1:i−11 , y[m]

)
= P

(
ui1|u1:i−11 , y[m]

)
for i ∈ I1.

(b) Pinsker’s inequality.
(c) Jensen’s inequality.
(d) Q

(
ui1|u1:i−11

)
= 1

2 for i ∈ F1.
(e) Z(X|Y )2 < H(X|Y ).
(f) Definition of F1.
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