
Real-world Universal zkSNARKs are non-malleable

Antonio Faonio1 , Dario Fiore2 , and Luigi Russo1

1 EURECOM, Sophia Antipolis, France {faonio,russol}@eurecom.fr
2 IMDEA Software Institute, Madrid, Spain dario.fiore@imdea.org

Abstract. Simulation extractability is a strong security notion of zkSNARKs that guarantees that an
attacker who produces a valid proof must know the corresponding witness, even if the attacker had
prior access to proofs generated by other users. Notably, simulation extractability implies that proofs
are non-malleable and is of fundamental importance for applications of zkSNARKs in distributed sys-
tems. In this work, we study sufficient and necessary conditions for constructing simulation-extractable
universal zkSNARKs via the popular design approach based on compiling polynomial interactive oracle
proofs (PIOP). Our main result is the first security proof that popular universal zkSNARKs, such as
PLONK and Marlin, as deployed in the real world, are simulation-extractable. Our result fills a gap
left from previous work (Faonio et al. TCC’23, and Kohlweiss et al. TCC’23) which could only prove
the simulation extractability of the “textbook” versions of these schemes and does not capture their
optimized variants, with all the popular optimization tricks in place, that are eventually implemented
and deployed in software libraries.

1 Introduction

Zero-knowledge proofs [GMR85] allow a prover to convince a verifier that a statement is true without reveal-
ing any information beyond that. A notable class of zero-knowledge proofs are zkSNARKs (zero-knowledge
succinct non-interactive arguments of knowledge) [Mic94,BCCT12] in which, after an initial setup phase,
the prover can generate proofs that are short and easy to verify, without the need of any interaction. The
simultaneous achievement of these properties makes zkSNARKs an unbeatable tool in several applications,
as they enable not only privacy-preserving computation but also scalability.

The fundamental security concept of zkSNARKs is knowledge-soundness, which essentially states that a
prover generating a valid proof must possess the corresponding witness. However, this notion only considers
provers in isolation. In simpler terms, knowledge-soundness fails to address attackers who have access to
proofs for certain statements and may exploit this advantage to create a proof for another statement without
possessing its corresponding witness. This gap in the security definition of zero-knowledge proofs was identi-
fied early on by Sahai [Sah99], who introduced the concept of simulation soundness, subsequently expanded
upon as simulation extractability (SE, for brevity) [DDO+01].

For zkSNARKs, the notion of SE was first studied by Groth and Maller [GM17] who proposed a pairing-
based construction and an application to succinct signatures of knowledge for NP (aka Snarky signatures).
Their scheme, however, is of the “first generation” and requires a trusted setup for a single circuit. In this
work, we focus on the SE of universal zkSNARKs, the emerging generation of zkSNARKs where the initial
setup is reusable for any circuit within a given size bound, a property that makes their practical application
more versatile.

The state of SE-zkSNARKs. While the last decade has seen tremendous progress in zkSNARKs, produc-
ing a multitude of schemes, only a handful of them are known to be simulation extractable. Many schemes
are in an unknown situation as they lack a security proof of SE. It is indeed the typical workflow to first
focus on proving knowledge soundness of new schemes (which may already entail its own challenges) and to
leave SE for future work. The reason is that proving SE is often a challenging task that does not follow via
a straightforward extension of the knowledge-soundness proof.

Several recent results [GOP+22,DG23,GKK+22,FFK+23,KPT23], motivated by this state of affairs,
prove the SE of existing zkSNARKs, such as Bulletproofs [BBB+18], Spartan [DG23], Sonic [MBKM19],

https://orcid.org/0000-0002-7152-6478
https://orcid.org/0000-0001-7274-6600
https://orcid.org/0000-0001-9869-786X

PLONK [GWC19], Marlin [CHM+20], Lunar [CFF+21] and Basilisk [RZ21]. We can divide these results
into two main categories: those such as [GOP+22,DG23,GKK+22] that prove the SE of specific zkSNARKs;
those like [FFK+23,KPT23] that prove the SE of a broad class of zkSNARKs such as those built via the
popular approach combining polynomial interactive oracle proofs (PIOPs) and polynomial commitments.
The works in the latter category are of particular interest as they give an SE recipe that is generic and thus
it can benefit both existing and future schemes.

Given this state of the art, one may therefore ask if there is more to know about the SE of universal
zkSNARKs based on PIOPs. However, a closer look at the recent results reveals two important gaps that
do not allow concluding that the “real world” versions of schemes like PLONK and Marlin are simulation
extractable.

Theory vs. Implementation The first gap lies in that the versions of these schemes that offer the best
performance and are eventually implemented in software libraries3 slightly depart from the ones ob-
tained through the PIOP-to-zkSNARK vanilla compilation. The difference is in the last step. In order to
maximize efficiency, they apply an optimization (that we call linearization trick, also known as Maller’s
optimization) [GWC19,OL] that leverages the homomorphic properties of the KZG polynomial commit-
ment to reduce the number of field elements in the proof. This optimization though changes the zkSNARK
verification algorithm in a way that escapes the SE security analysis in previous work [FFK+23,KPT23].

Delegation phase The second gap is that the aforementioned frameworks of Faonio et al. [FFK+23] and
Kohlweiss et al. [KPT23] capture PIOPs in which some polynomials are evaluated on a random challenge
chosen in the last round. This is however not the case for Marlin and Lunar in which polynomials involving
the witness are evaluated on a challenge chosen before the last round, which is witness-independent
and needed only for verifier’s efficiency (what we call a delegation phase). For this reason, the work
of [FFK+23,KPT23] can only argue the SE of small variants of Marlin and Lunar.

Our Results. In this work, we resolve the two limitations above and we give the first proof of SE of the
“real world” optimized versions of zkSNARKs which include PLONK, Marlin, Lunar, and Basilisk. To achieve
these results, we improve the techniques of [FFK+23] in several ways: (1) we formalize the compilation recipe
based on the linearization trick and we prove that, under a set of minimal constraints, PIOPs can be compiled
to SE-zkSNARKs using the linearization trick optimization; (2) we refine the set of conditions to compile a
PIOP to a zkSNARK, notably removing the artificial one from [FFK+23] that prevented capturing Marlin
and Lunar, and thus we broaden the class of PIOPs that can be compiled in an SE manner; (3) we simplify
and generalize the conditions under which KZG can be proved simulation-extractable.

As a byproduct of (1) and (3), we obtain the first security analysis of the linearization trick optimization.
We show potentially insecure instantiations as well as a characterization of the conditions that make it secure
even in terms of plain knowledge-soundness, in the AGM with oblivious sampling (AGMOS) [LPS23].

Some of our definitions and techniques to prove SE may appear rather convoluted. We would like to note
that this is due to the wish of capturing SE for existing protocols, without introducing any change, which
is a challenging goal. As an example, [FFK+23] gave a simple condition to safely compile a PIOP: that a
witness-dependent polynomial is evaluated on a random challenge chosen in the last round. However, this
condition is not met by some protocols, which in this work we eventually prove to be SE. This required us
to elaborate more complex conditions to explain why this is possible.

Given the technicalities of the aforementioned gaps and the compilation strategy of [FFK+23], we provide
a more comprehensive explanation of our results in the following section.

2 A Technical Overview of Our Results

2.1 Revisiting PIOP-based zkSNARKs

A common approach to design zkSNARKs is to first construct an information-theoretic protocol that achieves
the desired functionality in an idealized model and then remove the idealized component by compiling it into
3 E.g., https://github.com/dusk-network/plonk, https://github.com/arkworks-rs/marlin

2

https://github.com/dusk-network/plonk
https://github.com/arkworks-rs/marlin

a zkSNARK via the use of a computationally-secure primitive [Ish19,Ish20]. The most popular instantiation
of this approach uses PIOP [GWC19,BFS20,CHM+20,Sze20,CFF+21] for the information-theoretic part,
and polynomial commitments [KZG10] for the computational one.

In a PIOP, the prover uses one oracle to commit to polynomials while the verifier calls a second oracle
to query the committed polynomials. In the compiled PIOP, instead, the prover commits to polynomials
with a polynomial commitment, and then computes the results of verifier’s queries and uses the evaluation
opening to vouch for their correctness. Finally, to remove interaction the compiler employs the Fiat-Shamir
transformation to obtain the zkSNARK. The details of the (kind of) verifier’s queries often diverge in different
implementations of this paradigm. Arguably, the simplest form of queries is the evaluation of polynomials,
namely, queries checking that a committed polynomial p at evaluation point x evaluates to y = p(x); this is
the model used in [CHM+20,BFS20]. Other PIOP variants [GWC19,CFF+21] consider more general queries
that state the validity of polynomial equations over (a subset) of the committed polynomials.

Our generalization: R-PIOP. To keep all these different notions of PIOP under the same umbrella,
in our work, we define the notion of R-PIOP where the verifier’s queries are instances belonging to the
oracle relation R. Roughly speaking, an oracle relation is an NP-relation where the instances can refer to
polynomial oracles [CBBZ23]. Under this definition, Marlin uses an Revl-PIOP, where Revl is the relation
that checks that a polynomial oracle evaluates to y at point x, while PLONK [GWC19] and Lunar [CFF+21]
are Rpoly-PIOPs, where Rpoly is the relation that checks polynomial equations over polynomial oracles.

How to compile R-PIOPs? Unfortunately, zkSNARKs obtained (mechanically) applying compilations
from Revl-PIOPs are often sub-optimal proof systems, due to the fact that one should include in the proof
a field element for each evaluation of a polynomial oracle. In particular, such compilations cannot leverage
on the homomorphic property that many polynomial commitments, such as KZG [KZG10], have. Thus,
subsequent optimizations usually accompany, and slightly change, the formally analyzed zkSNARKs. Instead,
zkSNARKs compiled from Rpoly-PIOPs can defer all the optimizations to the richer and more expressive
(sub)-proof systems for Rpoly.4 Yet, in practice, the latter proof systems are often reduced to the former via
a random point evaluation.

One of the most common optimizations, based on homomorphic commitments, is the so-called lineariza-
tion trick, sometimes referred as the Mary Maller’s optmization [GWC19,OL]. This optimization allows
reducing the number of field elements in the final proofs. For example, to prove that A(x)B(x) + C(x) = y
holds for committed polynomials A,B,C, and values x and y, one can prove that B(x) = yb for some yb, the
verifier uses the homomorphism of the polynomial commitment to obtain the commitment to the lineariza-
tion polynomial L(X) := A(X)yb + C(X), and then the prover proves that L(x) = y, saving from naively
evaluating all the polynomials on x.

Building on this idea, PLONK [GWC19] describes a general recipe to compile Rpoly-PIOP to zkSNARK.
The procedure first finds the minimal sub-set of polynomials that one should evaluate in order to generate the
linearization polynomial, and then it (batch) evaluates all the polynomials in this subset and the linearization
polynomial on a fresh random point.5

On the (in)security of the linearization trick. It turns out that this general recipe is not always sound.
In fact, the work of [LPS23] shows a counter-example to the extractability of the linearization trick when using
the KZG polynomial commitment. In particular, assume the adversary does not know the representation
of a group element c (using the lingo of [LPS23], c is an obliviously sampled element), and sets the three
polynomial commitments of the example above as (cA, cB , cC) = (c, [b]1 ,−b · c). According to [LPS23], only
the commitment cB is extractable in the algebraic group model, namely the adversary can give an algebraic
representation (under the basis of the elements of the SRS) only for cB . The linearization commitment
would be equal to cL = cb − bc = [0]1, which is independent of the evaluation point x. The adversary can
clearly provide an evaluation proof at x for cL, in spite of not knowing the polynomials implicitly committed
4 On the downside, PIOPs based on polynomial equations, while at an informal level are easier to describe, tend to

have harder-to-parse full specifications.
5 Such a random point is needed to reduce polynomial identity tests into equations over field elements, through the

Schwartz-Zippel Lemma.

3

in cA and cC . In particular, this counter-example shows that we can only extract the second of the three
polynomials, under the (more realistic) algebraic group model where the adversary gets to see group elements,
besides the SRS, for which it does not know their algebraic representations.

Here we generalize the attack of [LPS23] by considering the general case where, for committed polynomials
(Ai, Bi)i∈[n], we want to prove that

∑
i Ai(x)Bi(x) = y. In particular, we let Rlin be the relation where the

instances are tuples of the form ((ai, bi)i∈[n], x, y) such that for field elements x and y, and any i, ai (resp.
bi) is a commitment to Ai (resp. Bi) for which the equation above holds. What we call (the zkSNARK
for) the linearization trick for KZG is the proof system that proves yi = Ai(x) for any i and then, using
the homomorphic property of KZG, generates the linearization commitment cL =

∑
i yi · bi, and proves

L(x) =
∑

i yiBi(x) = y.
Our generic attack works whenever the polynomials Ai are linearly dependent. The attacker can set, for

example, the commitments for the polynomials Bi to bi = αi · c, for an obliviously sampled group element
c and for carefully chosen values (αi)i such that

∑
i αiAi(X) = 0. It is easy to see that this adversary can

generate a proof for
∑

i Ai(x∗)Bi(x∗) = 0, for any x∗, without knowing all the polynomials Bi.
We do not formalize this attack further in our paper as we use it mainly as a motivation for our construc-

tive results. Indeed, we use the intuition behind this counter-example in order to show that the independence
of the polynomials Ai is the missing piece of the puzzle to prove extractability of (the zkSNARK defined
from) the linearization trick. In particular, the correct recipe for the general compiler proposed by [GWC19]
should look not only for the sub-set that minimizes the number of polynomials to open, but should also
make sure that the polynomials in such a sub-set are linearly independent. Luckily, the linear independence
holds for the subset of polynomials chosen for this optimization in PLONK.6 We obtain a formalization of
this security claim as a corollary of our results on the SE of KZG (see next section).

To summarize, our first set of results deals with proving that the linearization trick for KZG is, under
certain conditions, simulation-extractable. We do this in two main steps. First, we consider the SE of KZG
evaluation proofs in which the commitment is obtained by a linear combination of other commitments (cf.
Sections 2.2 and 5.1). Second, we analyze the sufficient conditions on the Ai polynomials that make the
linearization trick simulation extractable (cf. Sections 2.3 and 5.2).

2.2 Simulation Extractability of KZG for linearized commitments

The work of [FFK+23] introduces the notion of policy-based SE, that, roughly speaking, ensures that a
zkSNARK is simulation-extractable whenever the adversary complies with a pre-defined policy. This gen-
eralized notion of SE is convenient (and necessary) to formalize the simulation-extractable properties of
malleable schemes such as KZG.

We summarize the security game of SE for KZG in the algebraic group model. The adversary obtains a
list of obliviously-sampled commitments c1, . . . , cn where ci ∈ G1 and it has oracle access to a simulation
oracle that, upon input tuples (c, x, y), outputs simulated proofs π = (c − [y]1)(s − x)−1. Additionally,
the adversary has oracle access to a random oracle.7 Eventually, the adversary outputs its forgery π∗ for
an instance (c∗, x∗, y∗). Standard simulation extractability would just require that the instance was never
queried to the simulation oracle. [FFK+23] additionally requires that:

1. The queries of the adversary do not create an algebraic inconsistency in terms of the proved statements.
For example, the adversary cannot require simulated proofs for (c, x, y) and (c, x, y′) with y ̸= y′. This
constraint is strictly necessary to prove SE for KZG.

2. The evaluation points x for the simulation queries belong to an arbitrary, but fixed ahead of time, set
Qx. This property is called semi-adaptive queries.

6 Here we are simplifying: the verification in PLONK uses the linearization trick on a mix of polynomials that comes
both from the prover and the indexer (i.e., polynomials committed in the specialized reference string). Indexer’s
polynomials are trivially extractable as they are part of the statement, thus we can refine the property of linear
independence by focusing on the polynomials that are not coupled with indexer’s ones.

7 This is not strictly necessary, and it could be modeled differently. However, it is a convenient model since the
PIOP-to-zkSNARK compiler uses the Fiat-Shamir transformation.

4

3. The group elements c asked in the simulation queries could not be (algebraically) derived using previously
obtained simulated proofs.

4. The forgery’s evaluation point x∗ must be random and independent of c∗. To enforce this, we check that
x∗ is derived by applying the random oracle to a string that contains an encoding of c∗.

In this paper, we substantially simplify the policy above by removing the second and third constraints. Besides
providing a cleaner and simpler notion of security, removing these constraints has two extra benefits: Remov-
ing the second constraint allows proving the PIOP-to-zkSNARK compiler secure in the non-programmable
random oracle model; removing the third constraint allows extending the PIOP-to-zkSNARK compiler to
work with commit-and-prove relations (namely, the relation proved by the zkSNARK can have commitments
as part of the instance). One limitation of our technique to remove the second constraint is that we need
to make a stronger cryptographic assumption than the q-SDH assumption that we call one-more q-SDH
assumption. This assumption additionally provides an oracle that can be adaptively queried on field element
x and (small) natural number i and returns

[
(s− x)−i

]
1. We show that the one-more q-SDH assumption

holds in the generic group model and that we can reduce a non-adaptive version of the one-more SDH to
the plain q-SDH assumption.

Moreover, we generalize the fourth constraint from [FFK+23]. Specifically, we change the constraint by
allowing c∗ to be a commitment to a linearization polynomial. To do so we check that x∗ is derived from the
random oracle with inputs commitments (bi)i and polynomials8 (Ai)i and that c∗ =

∑
Ai(x∗)bi. Proving

SE using the latter generalization turns out to be the necessary heavy lifting to perform in order to, then,
show that the linearization trick is (policy-based) simulation-extractable, as summarized in the following
theorem.
Informal Statement of Theorem 1. The evaluation proof of KZG polynomial commitment is (policy-
based) simulation-extractable in the algebraic group model under our simplified and generalized policy where
the forgery can contain a commitment to a linearization polynomial.

The obliviously-sampled commitments c1, . . . , cn not only allow to give an interesting notion of SE in
the algebraic group model, they also naturally extend our model to include the algebraic group model with
obliviously-sampled elements, as considered in [LPS23]. For this reason, by proving SE of the linearization
trick for KZG w.r.t. this new set of constraints, we can derive the following Corollary by considering the
subclass of adversaries that do not query the simulation oracle.
Corollary 1. PLONK and Marlin are knowledge-sound in the AGMOS.

2.3 Simulation extractability of the linearization trick

Unfortunately, when the adversary can make simulation oracles, the condition of linear independence, suffi-
cient and necessary to restore the (plain) knowledge extractability of the linearization trick, is not sufficient.
In fact, consider an adversary, holding an obliviously sampled group element c, that asks for a simulated proof
on (c, 0, 0), namely a proof that the polynomial committed in the commitment c evaluates 0 at point 0. Let
π = c/s be the simulated proof. The adversary can generate an instance for Rlin that is not extractable even
if the polynomials Ai are linearly independent. It could set the polynomials A1(X) = 1 and A2(X) = −X,
thus (cA1 , cA2) = ([1]1 , [−s]1), and then sets (cB1 , cB2) = (c, π) as the (un-extractable) commitments to
the polynomials B1 and B2 respectively. Now, for any arbitrary x∗ it can generate a forgery, by setting the
forged proof π∗ to c/s. Its validity follows from the fact that 1 · c − x∗c/s = (s − x∗)c/s. The reason why
this attack works is that KZG proofs and KZG commitments belong to the same domain; thus a proof can
be reinterpreted as a commitment. Through this lens, the simulation oracle allows the adversary to push
down the degree of the un-extractable polynomials. Looking at the counter example from the perspective of
formal polynomials, we have that:∑

i=1,2
Ai(X)Bi(X) = A1(X) · c +A2(X) · c

X = A1(X) · c + A2(X)
X · c = 0.

8 Technically, we threat these latter polynomials as auxiliary information that the adversary must “declare” before
seeing x∗.

5

The problem is that, while A1 and A2 are linearly independent, the polynomials A1(X) and A2(X)/X are
not so.

As our technical contribution, we show that higher-degree linear independence between the polynomials
Ai is necessary and sufficient to obtain SE of the linearization trick for the KZG commitment scheme. In
particular, instead of defining independence of the polynomials Ai as the condition

∑
αiAi ̸= 0 for any

choice of αi ∈ F, we define their independence w.r.t. any of αi ∈ F≤ν [X], for a parameter ν ∈ N.
It remains to understand how to set such a parameter ν. To do so, we define a notion of level for proofs of

proofs that, roughly speaking, indicates how many times the adversary sequentially queried the simulation
oracle on an obliviously sampled group element or elements algebraically derived from it. For example, the
level of an obliviously sampled element is zero, the level of a proof on it is one, and the level of a proof of a
proof could possibly increase to two if we queried twice on the same evaluation point, or remain the same
otherwise9, and so on.
Informal Statement of Theorem 2. The linearization trick for KZG polynomial commitment is (policy-
based) simulation-extractable in the AGM under our simplified and generalized policy and assuming that
the extracted polynomials A1, . . . , An are independent for a parameter ν and the maximum level reached by
simulated proofs queried by the adversary is smaller or equal to ν.

The above theorem completes the set of results that we need to obtain SE when instantiating the PIOP-
to-zkSNARK compiler with KZG. Next, we address the SE requirements at the PIOP level.

2.4 Capturing PIOPs with delegation phase

The work of [FFK+23] showed that only a subset of all the PIOPs can be compiled to SE-zkSNARKs. For
example, if we take a PIOP for the product relation R×R which, internally, sequentially runs two instances
of a PIOP for R, we can incur copy-paste attacks that re-use a simulated proof for the first instance in
R and honestly prove the knowledge for the second instance. To avoid these pathological cases, [FFK+23]
introduced the notion of compilation-safeness that gives a sufficient condition for a PIOP to be compiled
to SE-zkSNARK. In a nutshell, a PIOP is compilation-safe if it has a witness-dependent last round. Here,
by “witness-dependent round”, we mean that the polynomials sent at such a round store information that
depends on the witness and are necessary to extract the full witness at the PIOP level.

However, Marlin [CHM+20] and other proof systems [CFF+21,RZ21] based on Checkable Subspace Sam-
pling Arguments [RZ21] are not compilation-safe. They have a two-phase algorithm for the prover where
the first phase is witness-dependent, while the second phase, which we call delegation phase, is witness-
independent, and in particular is performed to enable succinct verification. For PIOPs with delegation, we
need a more careful compilation strategy. To avoid copy-paste attacks that would copy the witness-dependent
transcript from a simulated proof and compute a fresh witness-independent suffix for the forgery, we need
to make sure that (1) the polynomial oracles sent during the delegation phase are committed using a deter-
ministic commitment and that (2) the delegation phase is unique at the PIOP level, namely, there is only
one possible answer that any malicious prover for the PIOP can send in the delegation phase, once fixed
the messages of all the previous rounds10. With this characterization of PIOPs we can prove the following
theorem:
Informal Statement of Theorem 4. PIOPs with delegation phase can be compiled to simulation-extractable
commit-and-prove zkSNARKs with the linearization trick optimization. Also, security holds in the algebraic
group model with oblivious sampling and in the non-programmable random oracle assuming the one-more
q-SDH assumption.

In the informal theorem above we swept under the rug many details. In particular, the reader may
wonder about the connection of the independence parameter ν for the security of the linearization trick
9 Briefly, the reason why the level does not increase in this case is because the rational function 1/((X−x1)(X−x2))

is in the linear span of (X − x1)−1 and (X − x2)−1.
10 For example, Marlin compiled using hiding KZG, or with FRI-based polynomial commitments, is provably not

strong simulation extractable, while it could still be proved weak simulation extractable.

6

and the requirements for the compilation above. What we show in the proof of the compiler is that the
parameter ν can be kept very low. In fact, the reduction from SE-zkSNARK to the SE of linearization trick
(obliviously) samples fresh commitments for each simulation query made by the adversary and, assuming
that the PIOP is zero-knowledge, the reduction needs to query (linearization trick) simulated proofs only for
this fresh batch of commitments, thus bounding the level of proof of proofs to, at maximum, the number of
evaluations needed by a single execution of the PIOP.

In Section 6.4 we show that PLONK and Marlin have PIOPs fulfilling our requirements. Combining this
with the theorem above, we obtain our main results on the SE of these schemes.

3 Preliminaries

A function f is negligible in λ (we write f ∈ negl(λ)) if it approaches zero faster than the reciprocal of
any polynomial. For an integer n ≥ 1, we use [n] to denote the set {1, 2, . . . , n}. Vectors and matrices are
denoted in boldface. Calligraphic letters denote sets, while set sizes are written as |X |. Lists are represented
as ordered tuples, e.g. L := (Li)i∈[n] is a shortcut for the list of n elements (L1, . . . , Ln). To get a specific
value from a list, we also use the “dot” notation; e.g., we use L.b to access the second element of the list
L = (a, b, c). The difference between lists and vectors is that elements of vectors are of the same type.

Definition 1. Let A = {Ai}i∈[n] be a set of polynomials in F[X] and ν ∈ N. We say that A are ν-independent
polynomials if ∀(αj)j ∈ F≤ν [X]:

∑
j αjAj(X) ̸= 0.

Lemma 1. Let J ∈ N, and let {xj}j∈[J] ⊂ Fq, (νj)j∈[J] ∈ NJ , ν∗ =
∑

j νj and let S := Span({1} ∪{
(X − xj)−k

}
j∈[J],k∈[νj]). Consider the function ϕ with domain S that maps rational functions Ω to poly-

nomials Ω ·
∏

j(X − xj)νj . The function ψ maps is a morphism with image the set F≤ν∗ [X].

Proof. First, notice that any element v ∈ S can be written as a linear combination of the form α +∑
j,k βj,k(X − xj)−k. It holds that ψ carries over the basis since ψ(v) = ψ(α +

∑
j,k βj,k(X − xj)−k) =

αψ(1) +
∑

j,k βj,kψ((X − xj)−k). The only thing left to prove is that ψ(1)∪ψ((X − xj)−k) is indeed a basis
for F≤ν∗ [X]. We notice that of ψ((X − xj)−k) is of the form nj,k(X) := (X − xj)νj−k

∏
j′ ̸=j(X − x′

j)νj′ , and
ψ(1) is simply n(X) :=

∏
j(X − xj)νj . To conclude the proof, we show that these polynomials are linearly

independent. Given the fact that they are ν∗ +1 polynomials of degree at most ν∗, this is equivalent to prove
that they span F≤ν∗ [X].

Let f(X) := αn(X) +
∑

j,k αj,knj,k(X). We need to prove that f(X) ≡ 0 if and only if α = αj,k = 0.
For all j, it must be that f(xj) = 0. We have that for any xj : f(xj) = αn(xj) +

∑
j,k αj,knj,k(xj) =

αj,νj

∏
j′ ̸=j(xj − xj′), which is equal to 0 if and only if αj,νj

= 0. We can rewrite f(X) as:

f(X) = αn(X) +
∑

j,k≤νj

αj,k≤νj
nj,k(X) = f ′(X)

∏
j

(X − xj)

where f ′(X) is equal to:

α
∏

j

(X − xj)νj−1 +
∑
j,k

αj,k(X − xj)νj−k−1
∏
j′

(X − xj′)νj′ −1

Note that if f(X) ≡ 0, also f ′(X) ≡ 0. We can recursively apply the same argument, proving that all the
coefficients αj,k = 0, for all k > 0. In the final step, we can write f(X) as α

∏
j(X − xj) which is equal to 0

iff α = 0. ⊓⊔

Asymmetric Bilinear groups. An asymmetric bilinear group is a tuple (q,G1,G2,GT , e, P1, P2), where
G1,G2 and GT are groups of prime order q, the elements P1, P2 are generators of G1,G2 respectively,
e : G1 × G2 → GT is an efficiently-computable non-degenerate bilinear map, and there is no efficiently

7

computable isomorphism between G1 and G2. Let GroupGen be some probabilistic polynomial-time (PPT)
algorithm which on input 1λ, where λ is the security parameter, returns a description ppG of a bilinear
group. Elements in Gi, i ∈ {1, 2, T}, are denoted in implicit notation as [a]i := aPi, where PT := e(P1, P2).
Every element in Gi can be written as [a]i for some a ∈ Zq, but note that, given [a]i, it is in general hard
to compute a (discrete logarithm problem). Given a, b ∈ Zq we distinguish between [ab]i, namely the group
element whose discrete logarithm base Pi is ab, and [a]i · b, namely the execution of the multiplication of
[a]i and b, and [a]1 · [b]2 = [a · b]T , namely the execution of a pairing e([a]1, [b]2). We do not use the implicit
notation for variables, e.g., c = [a]1 indicates that c is a variable name for the group element whose logarithm
is a.

Exp(n,d)-OMSDH
GroupGen,A(λ)

Qx ← ∅

ppG ←$ GroupGen(1λ)
s←$ Fq

(x∗, y∗)← AOs (ppG,
[
1, s, . . . , sd

]
1

, [1, s]2)

return x∗ ̸∈ Qx ∧ y∗ =
[

1
s−x∗

]
1

Oracle Os(x, i)

if i > n :
return ⊥

Qx ← Qx ∪ {x}

let z ←
[
(s− x)−i

]
1

return z

Fig. 1. The OMSDH experiment.

Definition 2 ((n, d)-OMSDH). Consider the experiment in Fig. 1. The n-one-more d-strong DH assump-
tion holds for a bilinear group generator GroupGen if for every PPT adversary, making at most n oracle
queries, the following advantage is negligible in λ:

Adv(n,d)-OMSDH
GroupGen,A(λ) := Pr

[
Exp(n,d)-OMSDH

GroupGen,A(λ) = 1
]

With the lingo of [BFL20], OMSDH is a special case of an adaptive Uber Assumption for Rational Fractions.
When the set of points Qx is fixed before the experiment starts, the assumption falls back to an Uber
Assumption for Rational Fractions and Flexible Target, as defined in [BFL20], that is reducible to discrete
log in the AGM. We defer the proof to Appendix A.

Definition 3 (Algebraic algorithm, [FKL18]). An algorithm A is algebraic if for all group elements z
that A outputs (either as returned by A or by invoking an oracle), it additionally provides the representation
of z relative to all previously received group elements. That is, if elems is the list of group elements that A
has received so far, then A must also provide a vector r such that z = ⟨r, elems⟩.

Since in our work we mostly focus on algebraic adversaries receiving as input a structured refererence
string of the form (

[
si−1]

1)i∈[d], we parse the first d coefficients of r as an encoding of the polynomial
f(X) := ⟨(ri)i∈[d], (Xi−1)i∈[d].

Finally, we state these assumptions on distributions.

Definition 4 (Witness Samplability, [JR13]). A distribution D is witness samplable if there exists a
PPT algorithm D̃ s.t. for any ppG, the random variables A←$ D(ppG) and

[
Ã
]

1, where Ã←$ D̃(ppG), are
equivalently distributed.

Definition 5 (Dℓ,k-Aff-MDH assumption, [FFK+23]). Given a matrix distribution Dℓ,k, the Affine
Diffie-Hellman Problem is: given A ∈ Gℓ×k

1 , with A ←$ Dℓ,k, find a nonzero vector x ∈ Zℓ
q and a vector

y ∈ Zk
q such that

[
x⊤A

]
1 = [y]1.

8

4 Simulation-Extractable CP-SNARKS in AGM

We define a PT relation R verifying triple (pp,x,w) as in [GKM+18]. We say that w is a witness to the
instance x being in the relation defined by the parameters pp when (pp,x,w) ∈ R (equivalently, we sometimes
write R(pp,x,w) = 1). For example, pp could be the description of a bilinear group or additionally contain
a commitment key or a common reference string. A (non-interactive) proof system for a relation R (and
group generator GroupGen) is a tuple of algorithms Π := (KGen,Prove,Verify) where:

KGen(ppG)→ srs is a probabilistic algorithm that takes as input the group parameters ppG ←$ GroupGen(1λ)
and outputs srs := (ek, vk, pp), where ek is the evaluation key, vk is the verification key, and pp are the
parameters for R.

Prove(ek,x,w)→ π takes an evaluation key ek, a statement x, and a witness w s.t. R(pp,x,w) holds, and
returns a proof.

Verify(vk,x, π)→ b takes a verification key, a statement x, and either accepts (b = 1) or rejects (b = 0) the
proof π.

If the running time of Verify is poly(λ+ |x|+ log |w|) and the proof size is poly(λ+ log |w|), we say that
Π is succinct. Basic notions for a non-interactive proof systems are completeness, (knowledge) soundness
and zero-knowledge. Informally, knowledge soundness means that any PPT prover producing a valid proof
must know the corresponding witness. We omit the formal definition of this property as it is implied by
simulation extractability that we present in the next section.

Zero-Knowledge in the SRS (and RO) model. The zero-knowledge simulator S of a NIZK is a stateful
PPT algorithm that can operate in three modes:

– (srs, stS)← S(0, ppG) takes care of generating the parameters and the simulation trapdoor (if necessary)
– (π, stS)← S(1, stS ,x) simulates the proof for a statement x
– (a, stS)← S(2, stS , s) answers random oracle queries

The state stS is updated after each operation. Similarly to [FKMV12,GOP+22,FFK+23], we define the
following wrappers.

Definition 6 (Wrappers for NIZK Simulator). The following oracles are stateful and share their state
st = (stS , coms,Qsim,QRO,Qsrs,Qaux) where stS is initially set to be the empty string, and Qsim,QRO and
Qaux are initially set to be the empty sets.

– S1(x, aux) returns the first output of S(1, stS ,x, aux).11

– S ′
1(x,w) first checks (pp,x,w) ∈ R where pp is part of srs and then runs (and returns the output of)
S1(x).

– S2(s, aux) first checks if the query s is already present in QRO and in case answers accordingly, otherwise
it returns the first output a of S(2, stS , s). Additionally, the oracle updates the set QRO by adding the
tuple (s, aux, a) to the set. In the case of non-programmable random oracle model, S is notified of the
RO query but cannot control the answer a.

Almost all the oracles in our definitions can take auxiliary information as additional input. We use this aux-
iliary information in a rather liberal form. For example, in the definition above, the auxiliary information for
S1 refers to the (optional) leakage required by the simulator to work in some cases (see more in Definition 8),
while the auxiliary information for S2 can contain, for example, the algebraic representations of the group
elements in s (when we restrict to algebraic adversaries) or other information the security experiments might
need.
11 More often, simulators need only the first three inputs, see Definition 7; abusing notation, we assume that such

simulators simply ignore the auxiliary input aux.

9

Definition 7 (Zero-Knowledge). A NIZK NIZK is (perfect) zero-knowledge if there exists a PPT simu-
lator S such that for all adversaries A:

Pr

 ppG ← GroupGen(1λ)
srs← KGen(ppG)
AProve(ek,·,·),RO(srs) = 1

 ≈ Pr

 ppG ← GroupGen(1λ)
(srs, stS)← S(0, ppG)

AS′
1,S2(srs) = 1


Zero-knowledge is a security property that is only guaranteed for valid statements in the language, hence
the above definition uses S ′

1 as a proof simulation oracle.
As in [CFF+21,FFK+23], we introduce a weaker notion of zero-knowledge. A NIZK is L-leaky zero-

knowledge if its proofs may leak some information, namely a proof leaks L(x,w), where (x,w) ∈ R. This
is formalized by giving the zero-knowledge simulator the value L(x,w) that should be interpreted as a hint
for the simulation of proofs.

Definition 8 (Leaky Zero-Knowledge, [FFK+23]). A NIZK NIZK is L-leaky zero-knowledge if there
exists a PPT simulator S such that for all adversaries A:

Pr

 ppG ← GroupGen(1λ)
srs← KGen(ppG)
AProve(ek,·,·),RO(srs) = 1

 ≈ Pr

 ppG ← GroupGen(1λ)
(srs, stS)← S(0, ppG)

ASL
1 (·,·),S2(srs) = 1


Commitment Schemes. A commitment scheme with message spaceM (and group parameters GroupGen)
is a tuple of algorithms CS := (KGen,Com,VerCom) where:

1. KGen takes as input group parameters ppG ←$ GroupGen(1λ) and outputs a commitment key ck.
2. Com takes the commitment key ck, and a message m ∈M, and outputs a commitment c and an opening
o.

3. VerCom takes as input the commitment key ck, a commitment c, a message m ∈ M and an opening o,
and it accepts (b = 1) or rejects (b = 0).

We consider polynomial commitment schemes where the message space is F≤d[X] for a degree parameter d
given as additional input to KGen. Besides correctness, a scheme CS satisfies two more properties.

Definition 9 (Binding). A commitment scheme CS is (computationally) binding if no PPT adversary can
find, unless with negligible probability, a commitment c, two messages m ̸= m′ and two openings o, o′:

VerCom(ck, c,m, o) = VerCom(ck, c,m′, o′) = 1

Definition 10 (Hiding:). A commitment scheme CS is (statistically) hiding if ∀m,m′, ∀ck:

{c : (c, o)← Com(ck,m)} ≈ {c′ : (c′, o′)← Com(ck,m′)}

CP-SNARKs. Commit-and-Prove SNARKs, or simply CP-SNARKs, are proof systems whose relations
verify predicates over commitments [CFQ19]. We refer to a CP-SNARK for a relation R and a commitment
scheme CS as a tuple of algorithms Π := (KGen,Prove,Verify) where KGen(ck) → srs is an algorithm that
takes as input a commitment key ck for CS and outputs srs := (ek, vk)12; ek is the evaluation key, vk is
the verification key, and pp are the parameters for the relation R (which include the commitment key
ck). Moreover, if we consider the key generation algorithm KGen′ that, upon group parameters ppG, runs
ck←$ CS.KGen(ppG) and srs←$ Π.KGen(ck), and outputs srs; then the tuple (KGen′,Prove,Verify) defines a
SNARK.
12 Often, such an algorithm simply and deterministically (re)-parses ck as (ek, vk), in this case we can omit the

algorithm from the description of the proof system.

10

RO transcript. In our work, we often need to enforce that a point x is random and independent w.r.t. a
bunch of elements. To capture this scenario, we check that x is derived by applying the random oracle (RO)
to a string that either (i) contains an encoding of the elements or (ii) the output of another RO query that
satisfies the first condition, and so on. We use the shortcut (x1, . . . xn; y1, . . . , ym) →RO a to indicate that
there is a list of tuples (s1, aux1), . . . , (sk, auxk) and a list (ai)i∈[k−1] such that

1. ∀i ∈ [k − 1] : RO(si, auxi) = ai, and RO(sk, auxk) = a
2. ∀i ∈ [k − 1] : ai is a substring of si+1
3. ∀j ∈ [n],∃i ∈ [k] : xj is a substring of si

4. ∀j ∈ [m],∃i ∈ [k] : yj is contained in auxi

4.1 Policy-Based Simulation Extractability

We recall the definitional framework of [FFK+23]. A policy is a tuple Φ := (Φ0, Φ1) of PPT algorithms. The
Φ-simulation extractability experiment starts by running the policy algorithm Φ0, which generates public
information ppΦ. The public information may contain parameters that define the constraints later checked by
Φ1. In the case of commit-and-prove proof systems, the public information may contain a list of commitments
coms := (ci)i for which the adversary does not know openings (i.e., obliviously sampled), but on which it can
query simulated proofs. Therefore, we feed ppΦ to the adversary. After receiving a forgery from the adversary,
the security experiment runs the extraction policy Φ1. The policy Φ1 is a predicate that decides whether the
attack is legitimate, e.g., it is not a trivial one such as returning a proof received by the simulation oracle.
To decide this, Φi takes as input: (i) The public parameters ppΦ; (ii) The forged instance and proof (x, π);
(iii) The view view of the experiment that contains the public parameters, the set of simulated instances and
proofs Qsim, and the set QRO of queries and answers to the random oracle13; (iv) Auxiliary information auxΦ

which might come along with the forged instance.14

We extend the definitional framework of [FFK+23] to the F-extractability setting, introduced by [BCKL08],
where the extractor extracts a function of the witness. Notice that the simulation policy may depend on
the function F . Clearly, when F is the identity function, we obtain the policy-based notion of simulation
extractability defined by [FFK+23].

Definition 11 (Φ-Simulation F-extractability). A NIZK Π for a relation R and simulator S is (Φ,F)-
simulation extractable in the SRS model if for every PPT adversary A there exists an efficient extractor E
such that the following advantage is negligible in λ:

Adv(Φ,F)-se
Π,A,S,E (λ) := Pr

[
Exp(Φ,F)-se

Π,A,S,E (λ) = 1
]

Moreover, given a family of policies Φ and a family of functions F , we say that a NIZK Π is (Φ,F)-
simulation-extractable if Π is (Φ,F)-simulation-extractable for any Φ ∈ Φ and F ∈ F . We say that Π is
Φ-simulation-extractable if Π is (Φ, id)-simulation-extractable and id is the identity function.

4.2 Simulation Extractability for KZG-based CP-SNARKs

We specialize the notion introduced in the previous section for CP-SNARKs based on the KZG commitment
scheme. First, we specialize the definition of policy-based SE to the algebraic group model.

Definition 12 (Simulation extractability in the AGM). Let Π be a NIZK for a relation R with a
simulator S. Π is (Φ,F)-simulation-extractable (or simply (Φ,F)-SE) if there exists an efficient extractor E
such that for every PPT algebraic adversary A, the advantage Adv(Φ,F)-se

Π,A,S,E (λ) ∈ negl(λ).
13 As noted in [FFK+23], even if the given NIZK is not in the random oracle it still makes sense to assume the

existence of the set QRO (e.g., to model security for NIZK protocols that eventually are used as sub-protocols in
ROM-based protocols)

14 We recall that the presence of auxΦ is exploited to provide the adversary an interface with the policy, namely, to
provide evidences that the forgery belongs to set of instances for which the SE is guaranteed.

11

Exp(Φ,F)-se
A,S,E (λ)

ppG ←$ GroupGen(1λ)
(srs, stS)← S(0, ppG)
ppΦ ←$ Φ0(ppG)

(x, π, auxE , auxΦ)← AS1,S2 (srs, ppΦ)
wF ← E(srs,x, π, auxE)
view← (srs, ppΦ,Qsim,QRO,Qaux)

if Φ1((x, π), view, auxΦ) ∧ VerifyS2 (srs,x, π)
∧ ∀w s.t. F(w) = wF : (pp,x,w) /∈ R
then return 1

else return 0

S1(x, aux)

π, stS ← S(1, stS ,x, aux)
Qsim ← Qsim ∪ {(x, aux, π)}
return π

S2(s, aux)

if ̸ ∃aux, a : (s, aux, a) ∈ QRO :
a, stS ← S(2, stS , s, aux)
QRO ← QRO ∪ {(s, aux, a)}

return a

Fig. 2. The (Φ,F)-simulation extractability experiments in ROM. The extraction policy Φ takes as input the public
view of the adversary view (namely, all the inputs received and all the queries and answers to its oracles). The set
Qsim is the set of queries and answers to the simulation oracle. The set QRO is the set of queries and answers to
the random oracle. The set Qaux is the set of all the auxiliary information sent by the adversary (depending on the
policy, this set might be empty or not). The wrappers S1 and S2 deal respectively with the simulation queries and
the random oracle queries of A.

KZG commitment scheme. We recall the (non-hiding version of the) commitment scheme of Kate, Za-
verucha and Goldberg [KZG10] that is a fundamental building block of all our CP-SNARKs. KZG is a
polynomial commitment scheme defined over a bilinear group G that consists of the following algorithms:

– KGen(ppG, d) on input the group parameters and a degree bound d ∈ N,outputs ((
[
sj
]

1)j∈[0,d], [1, s]2)
where s←$ Fq.

– Com(ck, f(X)) outputs a commitment c := [f(s)]1.
– VerCom(ck, c, f(X)) outputs 1 iff c = [f(s)]1.

KZG commitment scheme allows for simple and efficient evaluation proofs which, in the framework of [CFQ19],
is a CP-SNARK Πevl for the relation Revl((c, x, y), f) = 1 iff f(x) = y ∧ c = [f(s)]1. We describe such a
CP-SNARK below:

– Proveevl(ek,x = (c, x, y),w = f) outputs π := [π(s)]1, where π(X) is the polynomial such that π(X)(X−
x) ≡ f(X)− y.

– Verifyevl(vk,x = (c, x, y), π) outputs 1 iff e(c− [y]1 , [1]2) = e(π, [s− x]2).

The above CP-SNARK is knowledge extractable in the AGM [CHM+20] and in the AGMOS [LPS23]. The
ZK simulator is S := (S0,S1), where S0 outputs the trapdoor s together with the srs, and S1 simulates proofs
for x := (c, x, y) outputting π := (c− [y]1)(s− x)−1.

KZG-based CP-SNARKs. Informally, we say that a CP-SNARK is KZG-based if it internally calls,
implicitly or explicitly, the CP-SNARK Πevl defined in the previous paragraph. This definition is rather
informal, thus, we give below a formal notion that includes all the KZG-based CP-SNARKs.

Definition 13 (KZG-based CP-SNARK). We say that Π is KZG-based if Π is a CP-SNARK (for some
relation R and) for the KZG commitment scheme, where: the proofs can be parsed as vectors of elements in
G1 and F, and the verification on (x, π) consists of equations of the form:∑

i e(xi, [pi(s)]2) +
∑

i e(qi, [p′
i(s)]2) = [p′′(s)]T

where (xi)i are the G1-elements of the instance x, (qi)i are the G1-elements of the proof π, and the (linear)
polynomials pi, p

′
i and p′′ are functions of the instance x, the proof π, and possibly of the random oracle.

12

Algebraic Consistency. Faonio et al. [FFK+23] defines a necessary property to achieve extractability in the
presence of a simulation oracle for any KZG-based SNARKs. The property is motivated by the generalization
of the simple attack where, for a commitment c, an adversary is given two simulated KZG evaluation proofs
π1, π2 on the same evaluation point x and for two different evaluation values y1 and y2. By the homomorphic
property of KZG, the adversary can forge an evaluation proof on the statement ((α+ β)c, x, αy1 + βy2) by
setting the proof απ1 + βπ2. This attack can be generalized whenever the adversary can leverage algebraic
inconsistencies provided by simulated proofs, as we explain hereafter.

Let A ∈ F[X]m×n, and let b ∈ F[X]m. We have that (A∥b) describes a linear system of polynomial
equations that admits a solution if there exists a vector z ∈ (F[X])n such that A · z = b.

Definition 14 (Algebraic Consistency). Let Π be a KZG-based CP-SNARK. Let view be the view of A
at the end of the SE game Exp(Φ,F)-se

Π,A,S,E for an adversary A. We say that the view view is algebraic consistent
if the linear system S of polynomial equations, that we describe next, admits a solution.

Let coms be the list of simulated commitments in ppΦ, where coms := (ck)k and ∀k : ck ∈ G1, and
proofs be the list of simulated proofs proofs := (πk)k (where πk := (qk,j)j ,yk and ∀k, j : qk,j ∈ G1, yk,j ∈ F)
included in the view view. We assign to each simulated commitment ck in view a formal variable (defining a
polynomial) Zk, similarly we assign to each G1-group element of the simulated proofs qk,j formal variables
(defining polynomials) Qk,j ∈ F≤d[X]. For each simulation query we define new equations derived by the
verification equations of Π and from the algebraic representations of the instances queried to the simulation
oracle. In particular, for the k-th simulation query with instance xk and whose G1-elements are (xk,j)j and
simulated proof πk, we can associate the polynomials of the verification equation pk,i, p

′
k,i and p′′

k and we add
the following equation to the linear system of polynomial equations S:∑

i (fk,i(X) + ⟨ck,i,Z⟩+ ⟨ok,i,Q⟩) pk,i(X) +
∑

i Qk,i · p′
k,i(X) = p′′

k(X)

where Z is the vector of all variables Zj for any j and Q is the vector of all the variables Qi,j for any i, j,
and the algebraic representation of xk,i is (fk,i, ck,i,ok,i) and fk,i(X) =

∑
j(fk,i)jX

j.

As a concrete example, for the KZG-based CP-SNARK Πevl, from the k-th simulation query with instance
(c, x, y) we can derive and add to the linear system of polynomial equations the equation:

(f(X) + ⟨c,Z⟩+ ⟨o,Q⟩)− y −Qk(X − x) = 0,

where c = [f(s)]1 + ⟨c, coms⟩+ ⟨o, proofs⟩.
Notice that once we have computed a solution for S, the linear system of polynomial equations, we can

represent it in a reduced form.

Definition 15 (Reduced solution). Given a solution (z, q) for a linear system S defining the algebraic
consistency of SE experiment (see Definition 14), we say that z is its reduced solution.

Given a reduced solution for S, it is possible to determine the (non-rational) polynomials qi(X). In fact,
once we assign the values for the variables Z to z, the linear system has |proofs| variables and |proofs|
(independent) equations, thus admits one solution.

5 Simulation Extractability of KZG

In [FFK+23], Πevl was proved simulation-extractable under a semi-adaptive policy. The main limits of that
policy are that the adversary can query simulated proofs on instances (cj , xj , yj) where only the evaluation
values yj can be adaptively chosen. Instead, the evaluation points xj must be selectively chosen independently
of the commitment key, and the commitments cj cannot depend on the simulated proofs. In the next section
we generalize the scheme Πevl and prove simulation extractability for two classes of policies. As corollary,
we derive that KZG achieves simulation extractability in AGM and RO:

1. under q-SDH assumption, for a semi-adaptive policy more flexible than the one in [FFK+23]
2. under the OMSDH assumption, for a fully adaptive policy.

13

5.1 Simulation Extractability of batched KZG

We consider a batched version of Πevl described in Section 4.2 that we name Πm-evl. This batched version,
given in the ROM, follows from [GWC19,MBKM19] and relies on the linearity of the polynomials and the
homomorphic properties of KZG.

– Provem-evl(ek,x = (x, (ci∈[n], yi)i∈[n]),w = (fi)i) computes for i ∈ [n] : πi ← Proveevl(ek, (ci, x, yi), fi),
ρ← RO(vk∥x) and returns

∑
i ρ

i−1πi.
– Verifym-evl(vk,x = (x, (ci, yi)i), π) computes c ←

∑
i ρ

i−1ci, y ←
∑

i ρ
i−1yi, ρ ← RO(vk∥x), and returns

Verifyevl(vk, (x, c, y)).

We describe our extraction policy. First, we notice that to prove simulation extractability for the KZG-
based CP-SNARK Πm-evl (and in general for any KZG-based CP-SNARK), we can consider the (stronger)
SE experiment where the simulation oracle returns simulated proofs for Πevl. In fact, we can consider the
reduction that, at any simulation oracle call for Πm-evl from the adversary, would first call the simulation
oracle for Πevl and then assemble a valid simulated proof for Πm-evl.

To enable the adversary to ask simulation proofs for commitments c whose representation depends on
previously obtained simulated proofs (what we call a proof of a proof), we need to introduce the following
definition.

Definition 16 (Nesting level of a proof). Let view be the view of an adversary at the end of the
SE game for a KZG-based CP-SNARK, and let x1, . . . , xn be the list of all the evaluation points in the
simulation queries. For each (single-eval) simulation statement ((c, x, y), π) ∈ Qsim let c (resp. o) be the
coefficients associated with the commitments coms := (cj)j (resp. simulated proofs proofs := (πj)j) in the
algebraic representation of c. Let bk be equal to 1 if x = xk and 0 otherwise. Let bj,k be equal to 1 if x = xk

and cj ̸= 0, and 0 otherwise.
For all j ∈ [|coms|], k ∈ [n], the nesting level νπ(j, k) of the simulated proof π on the simulated commit-

ment cj and the point xk is equal to:

νπ(j, k) := max
i:oi ̸=0∧νπi

(j,k) ̸=0
{νπi

(j, k) + bk} ∪ {bj,k}

We define the maximum nesting level ν̄ := maxj

∑
k maxπi

νπi
(j, k).

Informally, the idea behind the maximum nesting level ν̄ is that each proof of a proof involving at some point
one of the simulated commitments can (possibly but not always) increase the degree of the denominator of
the rational function associated with such a simulated proof. The value ν̄ is the minimal upper bound on the
degree of (the denominators of) the rational functions associated with the simulated proofs (see Lemma 1).
We consider the following constraints, parametrized by a set I ⊆ [n].

Point check: given a set of points Qx ∈ ppΦ, return 1 if ∀x queried to S1, we have that x.x ∈ Qx

Hash check with Linearized Commitment (and parameter I): Parsing the forgery instance x∗ := (x∗,
(c∗

i , y
∗
i)i∈[n]), return 1 if and only if there exist group elements (bi,r)r, polynomials Ai,r(X), a non-

constant polynomial h such that:
– ∀i ∈ [n] : c∗

i =
∑

r Ai,r(x∗)bi,r

– ∀i ∈ I : ((bi,r)r; (Ai,r)r, h)→RO a.
– h(a) = x∗

– ∀i ∈ I : {Ai,r}r are ν̄-independent polynomials, where ν̄ is the maximum nesting level (cf. Defini-
tion 16)

Looking ahead, the point check does require some form of programmability of the RO at SNARK level,
while the hash check (with linearized commitment) essentially consists of checking the hash of the “virtual”
representation of a group element and is weak enough to capture schemes tailored for optimizations, like the
linearization trick [GWC19,OL].

14

[FFK+23] Φs-adpt
m-evl Φadpt

m-evl
Hash check w/ L.C. ✓ ✓

Hash check ✓
Point check ✓ ✓

Commitment check ✓
Assumption (AGM) (Q+d+1)-DL (Q+d+1)-DL (Q, d)-OMSDH

Table 1. Comparison of extraction policies in terms of constraints and security assumptions with related work.

Definition 17. Let Φ
adpt
m-evl,I (resp. Φ

s-adpt
m-evl,I) be the set of policies ΦD = (ΦD

0 , Φ1) for a distribution D where:
1. ΦD

0 on input group parameters ppG outputs ppΦ := coms, where coms is a vector of commitments sampled
from D (resp. additionally it outputs a set Qx ⊆ F). 2. Φ1 is the hash check with parameter I defined above.
(Resp. Φ1 is the logical conjunction of the hash check, with parameter I, and the point check.) 3. D is witness
sampleable and the D-Aff-MDH assumption holds.

In Table 1 we compare our new extraction policies with the extraction policy of [FFK+23]. We stress that
our hash check with linearized commitment is more permissive than their hash check constraint, therefore,
our theorem is stronger. In the table, Q is the number of simulation queries and d is the maximum degree
supported by the scheme.

For any set I ⊆ [n], let us denote with σI the I-projection function, namely the function that takes as
input a list (a1, . . . , an) and returns the list (ai)i∈I .

Theorem 1. ∀I ⊆ [n], Πm-evl is (Φadpt
m-evl,I , σI)-SE under the OMSDH assumption and is (Φs-adpt

m-evl,I , σI)-SE
under the (Qsim + d)-dlog assumption in the AGM.

Proof intuition. We consider an algebraic adversary A whose forgery satisfies the extraction policy. In
particular, the view is algebraic consistent, thus there exists a solution for the polynomial system of lin-
ear equations defined by the view. As the first important step of the proof, we simplify this system of
equations and find alternative representations where each simulated proof depends either from one single
simulated commitment or from one single simulated proof. This simplification allows rewriting the forged
linearized commitment in the more manageable form c∗ = [m0(s)]1 +

∑
[log(ci) ·mi(s)]1 where ci are the

simulated commitments. Here, we can prove that mi(X) ≡ 0 for i > 0. In fact, assume otherwise and
assume the commitments are uniformly random15, then we can break the representation problem finding
log(

∑
mi(x∗)ci) = y∗ −m0(x∗) where the forgery of the adversary is (c∗, x∗, y∗).

We are still not done because m0(X) is a rational function of the form f(X) −
∑
Ai(X)(

∑
j ojqi,j(X))

where f is the polynomial we would like to extract, the qi,j are rational functions whose degree is bounded
by the maximum nesting level ν̄ and the oj are the coefficients in the algebraic representation of c∗ that
depend on the simulated proofs material. If we assume that the forgery is valid then we would obtain
m0(x∗) = y∗, otherwise we could break the OMSDH assumption, moreover, we can show this case happens
when

∑
Ai(x∗)(

∑
j ojqi(x∗)) = 0 but, the extractor would still fail if there exists at least oj ̸= 0. Here

we crucially use our hypothesis on ν̄-independence of the Ai to show that this cannot happen and thus all
oj = 0.

One might wonder if this last step is an artifact of our proof technique, and whether the independence
is necessary. We show the latter is the case with an attack similar to the one presented in Section 2.3. The
attack asks for a simulated proof on (c, 0, 1) for a simulated commitment c and sets the forged linearized
commitment to c∗ = c − x∗π for an arbitrary evaluation point x∗ and y∗ = 1, the attack works because
c∗ − [1]1 = c− x∗c/s− x∗/s+ 1 = π(s− x∗). The formal polynomial associated to c∗ would be of the form
0 − (1 − X · 1

X) + Z(1 − X · 1
X) where Z is the formal variable associated to the simulated commitment,

o1 = 1 and A1(X) = 1 and A2(X) = −X and where the latter polynomials are 1-linearly dependent.
15 In our proof we consider the more general case where the simulated commitments are sampled from an Aff-MDH-

secure distribution.

15

Proof (of Theorem 1). We recall that the set I contains the indexes i such that E needs to extract the
witness polynomials fi committed in c∗

i .
By the definition of algebraic adversary (cf. Definition 3) for each group element output, A additionally

attaches a representation (f, r) of such a group element with respect to all the elements seen during the
experiment (included elements in coms and the simulated proofs). In particular, we assume that for each query
(x, aux) to the oracle S1 we can parse the value aux as ((fi, ri)i, aux′), where (fi, ri) is a valid representation
for x.ci.

The adversary also encodes a polynomial h(X) in auxϕ. The commitments c∗
i of the forgery come along

with representation (Ai,r(X), bi,r)r, stored in auxE ; the adversary also stores (fbi,r
, rbi,r

) to represent the
group element bi,r. Namely, given the commitments coms and all the proofs proofsA output by S1, it holds
that c∗

i =
∑

r Ai,r(x∗)(fbi,r (s) + ⟨rbi,r , coms∥proofsA⟩).
Without loss of generality, we restrict the class of the algebraic adversaries that we consider. Given an

algebraic adversary A we can define a new adversary A′ such that:

– A′ makes (single-eval) simulation queries, i.e., each statement x given as input to S1 can be parsed as
(c, x, y)

– each commitment in x is a linear combination of simulated commitments and proofs, but not of elements
of the SRS

The adversary A′ runs internally A and forwards all its queries and answers to the simulation oracle in the
following way:

– Upon query x := (x, (ci, yi)) to S1, with representation (fi, ri) such that ci = [fi(s)]1+⟨ri, coms∥proofsA⟩,
A′ queries n times the simulation oracle with (ci− [fi(s)]1 , x, yi− fi(x)), receiving the proof πi. Finally,
returns the proof π′ :=

∑
i ρ

i−1(πi + Proveevl(ek, ([fi(s)]1 , x, fi(x)), f)), where ρ← RO(vk∥x)

By the homomorphic properties of Πm-evl, the correctness of the proofs readily holds.
We define our extractor E to be the extractor that returns, for all i ∈ I the polynomial fi(X) :=∑

r Ai,r(x∗)fbi,r (X); this turns out to be equivalent to the canonical extractor in the AGM, because, as we
show, the remaining entries in the representation sum up to zero.

We let H0 be the Exp(Φ,F)-se
A,S,E experiment, and we denote by ϵi := Pr [Hi = 1].

Hybrid H1. We set H1 to be the same experiment but with the alternative adversary A′ defined below:

1. The alternative adversary runs A forwarding all its queries until A sends its forgery. Let x̄ =
(x̄, (c̄i, ȳi)i), π̄ be its forgery. Let Qx be the set of points xj for which the adversary queried S1.

2. If x̄ ∈ Qx, namely when the adversary made a simulation query with evaluation point set to x̄,
then it finds values yi such that x := (x̄, (c̄i, yi)i) is algebraic consistent with the view of the
adversary, and queries the simulation oracle S1 with x

′ receiving back π. (Else it outputs x̄, π̄.)
3. It computes the forgery x

∗ = (c∗, x∗, y∗), π∗, where:

c∗ ← (π̄ − π) π∗ ← π̄ − π
x̄− x∗ y∗ ←

∑
i ρ

i−1(ȳ − y)
x̄− x∗

the forgery point x∗ ← RO(s), and s is a string never queried to the RO by A and containing c∗

as substring, which yields c∗ →RO x∗.
4. It aborts if x∗ ∈ Qx, otherwise it outputs the forgery.

We show that, unless it occurs the bad event that x∗ ∈ Qx, the forgery of the adversary A′ is valid whenever
the forgery of A is valid. First we notice, by the verification equation of KZG, that (π̄ − π)(s − x̄) =∑

i ρ
i−1 [yi − ȳi]1. Thus:

π∗(s− x∗) = π̄−π
x̄−x∗ (s− x∗ + x̄− x̄) = π̄−π

x̄−x∗ (−x∗ + x̄) + π̄−π
x∗−x (s− x̄) = c∗ − [y∗]1 (1)

Moreover, the probability of the bad event is at most QRO+1
q , where QRO is the number of queries of A to

the random oracle. We have that ϵ1 ≤ ϵ0 + QRO+1
q

16

Hybrid H2. Recall that D is witness sampleable, thus according to Definition 4 there exists a PPT algorithm
D̃ associated with the sampler D. The hybrid H2 is identical to the previous one, but the group elements in
coms are sampled “at the exponent”, i.e., we use D̃ to generate the field elements γ, and we let coms← [γ]1.
By the witness sampleability of D, H1 ≡ H2, thus ϵ2 = ϵ1.

Hybrid H3. In this hybrid we add some more entries to the list of simulated proofs Qsim.
The experiment runs A until completion. Since the view of the adversary is algebraic consistent, we can

define a set of polynomial equations that admits solutions derived from the simulation queries of A. Let
(zi(X))i∈[Qsim] be a reduced solution (Definition 15) for this set of polynomial equations. The experiment
submits additional queries to S1 as follows. First, for all j, k, define the value ν̄j,k := maxπ νπ(j, k).

Then ∀j, k such that ν̄j,k ̸= 0, does the following. It queries S1 with (comsj , xk, zj(xk)), and let π̄j,k,1 be
the output of S1 on each of these queries; then, for l ∈ [ν̄j,k − 1], obtains the proof π̄j,k,l+1 on the state-
ment (π̄j,k,l, xk, qj,k,l(xk)), where: qj,k,1(X) := zj(X) and ∀l > 0 the polynomial qj,k,l+1(X) := (qj,k,l(X) −
qj,k,l(xk))(X − xk)−1. We notice all these additional proofs are of the form:

π̄j,k,l =
[
γj −

∑
l′∈[l](s− xk)l′−1qj,k,l′(xk)

(s− xk)l

]
1

(2)

We call them “core” proofs, as they will play an important role in the next hybrid, and we denote with proofs
the vector of all the core proofs, to distinguish them from the adversary’s proofs proofsA, namely the set
of simulated proofs requested by the adversary. These additional simulation queries are algebraic consistent
w.r.t. the view of A: in particular, ∀j, k each proof π̄j,k,1 is an evaluation proof for the commitment comsj

on the point xk and the evaluation value zj(xk), which by definition of the polynomials zj(X) is algebraic
consistent. For all l > 1 the proof π̄j,k,l is a proof on the point xk for a commitment that is a quotient
derived from zj(X), and the evaluation value is chosen to be consistent with it. The change introduced in
this hybrid does not alter the winning probability of A, hence ϵ3 = ϵ2.

Hybrid H4. In this hybrid we change the representation of the forgery of A. In particular, once A has
submitted the (successful) forgery (x∗, π∗), attaching its representation, we replace it with new coefficients
that only depend on coms, and proofs, but not on the adversary’s proofs proofsA.

The change introduced in this hybrid is only syntactical and does not alter the winning probability of A,
as we show hereafter.

Lemma 2. ϵ4 = ϵ3

Proof. We give a recursive procedure that rewrites the algebraic representations of all the Qsim adversary’s
proofs proofsA in the base defined by proofs. We prove by induction on the number of simulation queries
made by the adverary the correctness of the procedure.
Base. Let π be the first proof computed by S1, for an instance (c, xk∗ , y), where the commitment c =∑

j cj [γj]1. We have that, by the correctness of the proof, π(s − xk∗) =
∑

j cj [γj]1 − y. By algebraic
consistency, we have that there exists an equation of the form

∑
j(cjYj(xk∗)) = y with variables (the

coefficients of) the polynomials Yj , and the list of polynomials (zj(X))j is a reduced solution by the change
introduced in H3. We derive that π is equal to:[∑

j
cj(γj−zj(xk∗))

s−xk∗

]
1

=
[∑

j
cj(γj−qj,k∗,1(xk∗))

s−xk∗

]
1

=
∑

j

cj π̄j,k∗,1

Inductive Step. Let now assume that all the first t proofs can be expressed as linear combination of elements
of proofs. We show that also the (t+ 1)-th proof can be written in the same way.

Let (c, xk∗ , y) be the (t + 1)-th (valid) query submitted to S1, where c =
∑

j cj [γj]1 +
∑

j≤t ojπj and
proofsA = (πj)j∈[Qsim]. By induction, there exist coefficients o′

j,k,l such that: c =
∑

j cj [γj]1+
∑

j,k,l o
′
j,k,lπ̄j,k,l.

The proof π computed by S1 (we set πt+1 := π) is such that π(s − xk∗) = c − [y]1. Let π = [p]1, then we

17

have that:

p = 1
s−xk∗

∑
j

cjγj +
∑
j,k,l

o′
j,k,l

γj−
∑

l′∈[l]
(s−xk)l′−1qj,k,l′ (xk)
(s−xk)l − y


Also, y =

∑
j cjzj(xk∗) +

∑
j,k,l o

′
j,k,lqj,k,l(xk∗) by algebraic consistency, and it can be expanded as:

∑
j

cjzj(xk∗) +

ȳ︷ ︸︸ ︷∑
j,k ̸=k∗,l

o′
j,k,l

zj(xk∗)−
∑

l′∈[l]
(xk∗ −xk)l′−1qj,k,l′ (xk)

(xk∗ −xk)l

+
∑
j,l

o′
j,k∗,lqj,k∗,l(xk∗)

We first notice that, by plugging the equation above, we can rewrite p as:

∑
j

cj
γj−zj(xk∗)

s−xk∗ + r +
∑
j,l

o′
j,k∗,l

γj−
∑

l′∈[l+1]
(s−xk∗)l′−1qj,k∗,l′ (x∗

k)
(s−xk∗)l+1

where r = 1
s−xk∗

(∑
j,k ̸=k∗,l o

′
j,k,l

γj−qj,k,l(xk)
s−xk

− ȳ
)

. Note that the first and the third addends of [p]1 are
linear combination of elements in proofs. The only thing left to prove is that [r]1 can be written as linear
combination of elements of proofs.

Let Nj,k,l := γj −
∑

l′∈[l](s− xk)l′−1qj,k,l′(xk). For all j, k, l, we have that:

π̄j,k,l

s− xk∗
=

[Nj,k,l]1
(s− xk)l(s− xk∗)

= [Nj,k,l]1


l−1∑
ℓ=0

(−1)ℓ (xk − xk∗)−(ℓ+1)

(s− xk)l−ℓ︸ ︷︷ ︸
αj,k,l,ℓ

+ (−1)l (xk − xk∗)−l

(s− xk∗)︸ ︷︷ ︸
βj,k,l


Also, for all ℓ ∈ [0, l − 1], we have that [Nj,k,l]1 αℓ is equal to:

(−1)ℓπ̄j,k,l−ℓ + (−1)ℓ+1(x− xk∗)ℓ−1
∑

l′∈[ℓ]

[qj,k,l′(xk)]1 (s− xk)l′−1

Also, we have that [Nj,k,l]1 β is equal to:

(−1)lπ̄j,k∗,l + (−1)l+1

[
zj(xk∗)−

∑
l′∈[l](s− xk)l′−1qj,k,l′(xk)
s− xk∗

]
1

=

(−1)lπ̄j,k∗,l +
[
zj(xk∗)−

∑
l′∈[l](xk − xk∗)l′−1qj,k,l′(xk)

(s− xk∗)(x∗
k − xk)l

]
1

=

+
l−1∑
ℓ=0

(−1)ℓ(x− xk∗)ℓ−1
∑

l′∈[ℓ]

[qj,k,l′(xk)]1 (s− xk)l′−1

18

Using the above equations, we can write [r]1 as:

∑
j,k ̸=k∗,l

o′
j,k,l

[Nj,k,l]1
(s− xk)k(s− xk∗) −

[ȳ]1
s− xk∗

=

∑
j,k ̸=k∗,l

o′
j,k,l [Nj,k,l]1

(
l−1∑
ℓ=0

αj,k,l,ℓ + βj,k,l

)
−

[ȳ]1
s− xk∗

=

∑
j,k ̸=k∗,l

o′
j,k,l

(
l−1∑
ℓ=0

(−1)ℓπ̄j,k,l−ℓ + (−1)lπ̄j,k∗,l

)
+

[ȳ]1
s− x∗

k

−
[ȳ]1

s− xk∗
=

∑
j,k ̸=k∗,l

o′
j,k,l

(
l−1∑
ℓ=0

(−1)ℓπ̄j,k,l−ℓ + (−1)lπ̄j,k∗,l

)

⊓⊔

Before moving to the next hybrid, we set some notation. First, ∀i, r, let parse rbi,r = ci,r∥oi,r. From the
definition of H4, we have that c∗

i = [fi(s)]1 +
∑

r Ai,r(x∗)(⟨ci,r, coms⟩+ ⟨oi,r, proofs⟩)
From the change introduced in H3, S1 outputs “core” proofs π̄j,k,l(s, coms) ∈ proofs, where π̄j,k,l(X,Y) :=

(Yj −
∑

l′∈[l](X − xk)l′−1qj,k,l′(xk))(X − xk)−l.
By the guarantees of the AGM, for all i ∈ [n] we can write c∗

i = [c∗
i (s, coms)]1, where c∗

i (X,Y) is equal
to: ∑

r

Ai,r(x∗)fbi,r (X) +
∑

r

Ai,r(x∗)
∑

j

(ci,r,jYj +
∑
k,l

oi,r,j,k,lπj,k,l(X,Y))︸ ︷︷ ︸
Bi,r(X,Y)

(3)

and, if the verification equation is satisfied, we have that:

v(s) = π∗(s− x∗)

where v(X) :=
∑

i ρ
i−1(c∗

i (X, coms)− y∗
i).

Hybrid H5. This hybrid is equal to H4 but it returns 0 if there exists i ∈ [n] such that c∗
i (x∗, coms) ̸= y∗

i .

Lemma 3. ϵ5 ≤ ϵ4 + ϵOMSDH + n/q

Proof. If there exists i ∈ [n] such that c∗
i (x∗, coms) ̸= y∗

i , with overwhelming probability 1 − n/q, we have
that v(x∗) ̸= 0 because, by the hash ckeck, ρ is chosen uniformly at random after the polynomials c∗

i (X,Y)
are determined. Then, we can make a forgery to the OMSDH16 assumption as follows.

The reduction gives the adversary the same SRS generated by the OMSDH challenger. The oracle Os

allows the reduction to compute the proofs for any statement x := (c, x, y), where c is a linear combination
of elements of the SRS, coms and previously seen simulated proofs. As shown in the previous hybrid, a proof
for x can be computed using group elements of the form [s− xk]−l

1 (that can be retrieved using Os), the
coefficients γj and the algebraic representation of c, which is all known to the reduction. Let q(X), r be such
that v(X) = q(x) + r(X − x∗). The reduction submits the forgery (x∗, y∗), where y∗ := r−1(π∗ − [q(s)]1).
This is a valid forgery because y∗ is equal to

[
(s− x∗)−1]

1 and x∗ was never queried to O by the change
introduced in H1. ⊓⊔

Hybrid H6. Let H6 return 0 if there is an index i ∈ I such that fi extracted by E is not a valid witness.

Lemma 4. ϵ6 ≤ ϵ5 + |I|ϵAff-MDH + deg(h)(
∑

i∈I maxr deg(Ai,r) + ν̄)/q
16 When the policy is semi-adaptive, we can reduce to dlog because of Theorem 5.

19

Proof. We prove it through a series of n hybrids. Let H6,0 ≡ H5, and let H6,i be the same as H6,i−1 and if
i ∈ I it additionally returns 1 if fi is not a valid witness. Clearly, for i ̸∈ I, it holds that ϵ6,i = ϵ6,i−1.

For i ∈ I, let Ei be the event that
∑

r Ai,r(x∗)Bi,r(X) ≡ 0.

Case 1. We show that Pr [H6,i = 1 ∧ Ei] = 0. We recall that the extractor E returns the polynomial
fi(X) :=

∑
r Ai,r(x∗)fbi,r (X). Conditioning on Ei, we have that c∗

i (X,Y) = fi(X), and c∗
i = [fi(s)]1. E

returns a valid witness if fi(x∗) = y∗
i , which is enforced by the check introduced in H5.

Case 2. We show that Pr [H6,i = 1 ∧ ¬Ei] ≤ ϵAff-MDH +deg(h)(ν̄+maxr deg(Ai,r))/q. First, it must be that
there exist indexes r∗, j∗, k∗, l∗ such that either ci,r∗,j∗ ̸= 0 or oi,r∗,j∗,k∗,l∗ ̸= 0, as otherwise Bi,r ≡ 0,∀r.

Let ĉi(X,Y) := m0(X) +
∑
mj(X)Yj be a multi-linear polynomial with coefficient in F≤q(X) where:

m0(X) = fi(X)−
∑

r

Ai,r(X)
∑
j,k,l

oi,r,j,k,l

∑
l′∈[l]

(X−xk)l′−1qj,k,l′ (xk)
(X−xk)l

mj(X) =
∑

r

Ai,r(X)(ci,r,j +
∑
k,l

oi,r,j,k,l

(X−xk)l︸ ︷︷ ︸
mj,r(X)

), ∀j > 0

Notice that by definition we have that: ĉi(x∗,Y) = c∗
i (x∗,Y).

∀j let pj(X) :=
∏

k(X − xk)ν̄j,k , and notice that the set {pj(x)} ∪ { pj(x)
(X−xk)l }k,l is an independent set of

polynomials w.r.t F and mj,k(X) · pj(X) is in the span of such a set of polynomials, thus, because of the
condition of Case 2, mj∗,r∗(X) ̸= 0.

Let ν∗
j :=

∑
k ν̄j,k. By definition, ν∗

j ≤ ν̄ that we recall is equal to maxj

∑
k ν̄j,k. Because of the Hash

check, we have that {Ai,r}r are ν̄-independent polynomials; moreover, by Lemma 1 there is a morphism
between the span of the set {1} ∪

{
(X − xk)−l

}
k,l∈ν̄j,k

and F≤ν∗
j
[X]. Thus we conclude that mj∗(X) ̸= 0.

Since c∗
i (x∗, coms) = [y∗]1 by the check introduced in H5, and c∗

i (x∗, coms) = ĉi(x∗, coms) by definition,
we can reduce to Aff-MDH as follows. The reduction generates the SRS and simulates using the trapdoor s,
while the commitments coms are received by the Aff-MDH challenger17. The reduction outputs ((µj)j , ŷ),
where the coefficients µj ← mj(x∗) and ŷ = y∗ −m0(x∗).

Given that the Hash check is satisfied, ((bi,r)r; (Ai,r)r;h) →RO a, and h(a) = x∗, which implies that c∗
i

is a function of the coefficients ci,r,j , oi,r,j,k,l and the polynomials Ai,r that are fixed before a (and hence x∗)
is computed. By Schwartz-Zippel, we derive that the coefficient µj∗ = mj∗(x∗) is null only with negligible
probability deg(h)(ν̄ + maxr deg(Ai,r))/q. ⊓⊔

Finally, we notice that in H6, E successfully extracts all the witness polynomials fi, for i ∈ I. Then we
conclude that ϵ6 = 0. ⊓⊔

5.2 Simulation Extractability of the Linearization Trick

In this section we formalize the linearization trick for KZG commitments [GWC19,OL] as a CP-SNARK for
the relation Rlin that upon instance:

x := ((cj)j∈[m], (bi)i∈[n], (Gi)i∈[n], x, y),

whose witness w = (Cj)j∈[m], (Bi)i∈[n] are polynomials committed in the instance, and that outputs 1 if and
only if

n∑
i=1

Ai(x)Bi(x) = y,

and where Ai(X) := Gi((Cj(X))j , X) with Gi ∈ F[X1, . . . , Xm, X].
17 In particular, this means that the commitments are sampled from D, which is identically distributed to D̃, as

argued in H2.

20

We call the polynomials Cj (resp. commitments cj) the core polynomials (resp. commitments); more-
over, we call the polynomials Ai and Bi (resp. the commitments bi) the left and right polynomials (resp.
commitments).

We define Πlin that uses Πm-evl as inner scheme:

Provelin(ek,x,w): compute πm-evl ← Provem-evl(xm-evl, ((Cj)j , R)), where R(X) :=
∑

i Ai(x)Bi(X), r :=∑
i Ai(x)bi, and xm-evl := (x, (cj , Cj(x))j , (r, y)). Output π := (πm-evl, (Cj(x))j)

Verifylin(vk,x, π): parse π as (πm-evl, (yj)j), compute r as
∑

i Gi((yj)j , x)bi. Output Verifym-evl(vk,xm-evl, πm-evl),
where xm-evl := (x, ((cj , yj)j , (r, y)))

This scheme is not zero-knowledge as the proofs leak some information on the witness, that are the values
yj = Cj(x). Formally, it achieves Llin-leaky zero-knowledge where Llin(x,w) := (w.Cj(x.x))j . We define
the simulator S := (S0,S1), where S0 outputs the trapdoor information s together with the srs, and S1
simulates proofs for x := ((cj)j∈[m], (bi)i∈[n], (Gi)i∈[n], x, y) and leakage (yj)j∈[m] computing πm-evl := (s −
x)−1(

∑
j ρ

i−1(cj − [yj]1) + ρm(r− y)), where ρ := RO(vk∥x, (cj , Cj(x))j , (r, y)), r :=
∑

i Ai(x)bi and outputs
the proof π := (πm-evl, (yj)j).

The extraction policy. Let ΦJ ,ν
lin be the policy parametrized by ν ∈ N and J ⊆ [n], for n ∈ N, described

below:

Hash Check (for the linearization trick): parse the forged instance x
∗ := ((c∗

j)j , (b∗
i)i, (G∗

i)i, x
∗, y∗),

return 1 if and only if there exists a polynomial h such that:
– ((c∗

j)j , (b∗
i)i; (G∗

i)i, h)→RO a and h(a) = x∗;
– ∀j : ν >

∑
k maxπ∈proofs νπ(j, k) where proofs is the list of simulated proofs.

Partial-Extraction Check: parse auxE , find polynomials (B∗
i)i∈J and return 1 iff b∗

i commits to B∗
i ,

∀i ∈ J .

Definition 18. Let ΦJ ,ν
lin be the set of policies ΦD = (ΦD

0 , Φ
J ,ν
lin) for a distribution D where:

– ΦD
0 on input group parameters ppG outputs ppΦ := coms, where coms is a vector of commitments sampled

from D.
– D is witness sampleable and the D-Aff-MDH assumption holds.

The Partial-Extraction Check allows to define the concept of partial extractability (see [BCF+21,CFH+22])
within the framework of Φ-simulation extractability. The definition of partial extractability allows the ad-
versary to provide to the extractability experiment one part of the witness, while the extractor must find the
remaining part. Looking ahead, this check allows to define more flexible notions of extractability, for exam-
ple, PLONK’s verifier needs to check two linearization trick instances on a non-disjunct set of polynomials,
thus we can partition the polynomials to extract between the two instances and, in doing so, we can loosen
the independence requirements from the two instances. We give more details in Section 6.4.

To formalize the extractability of the linearization trick we crucially rely on the framework of F-
extractability. In particular, we consider the function FJ ,ν(w), for parameters J ⊆ [n] and ν ∈ N, that
parses w as (Cj)j , (Bi)i, computes for all i the polynomial Ai(X) := Gi((Cj(X))j , X), and outputs w if
(Ai)i̸∈J are ν-independent, otherwise outputs only (C∗

j)j .
The FJ ,ν-extractability and the Hash Check go hand in hand, the former specifies the condition under

which extraction of the right polynomials can happen while the latter sets the rules, for the adversary, so
that such condition holds.

Theorem 2. For any n, ν ∈ N,J ⊆ [n], Πlin is (ΦJ ,ν
lin ,FJ ,ν)-simulation-extractable in the AGM under the

OMSDH assumption.

Proof Intuition. Thanks to the heavy lifting of Theorem 1 the proof of Theorem 2 is not much different than
a proof of (standard) extractability in the AGMOS [LPS23] would be. In fact, the proof can be summarized
as two direct reductions to the SE of Πm-evl. In the first reduction, which is almost straight-forward, we show

21

how to extract the core polynomials. On the other hand, the second reduction needs a careful analysis as,
in fact, the extractor of Πm-evl extracts R(X) =

∑
Ai(x∗)Bi(X) while we need to show how to extracts the

polynomials (Bi(X))i. For simplicity, assume that the adversary obtains an obliviously sampled element c,
thus we can write bi = [Bi(s)]1 + B̄i(s) · c. We need to show that B̄i ≡ 0, and we can assume, thanks to
the SE of Πm-evl, that

∑
Ai(x∗)B̄i(X) ≡ 0. In proving knowledge extractability, we can just rely on the

linear independence of the polynomials Ai and the Schwartz-Zippel lemma, for simulation extractability we
additionally use the ν-independence and the second item of the Hash Check property.

Proof. We define our extractor EJ ,ν to be the extractor that, by looking at the algebraic representations,
returns the polynomials Cj(X) := fcj

(X) for all j ∈ [m], computes the polynomials Ai(X), and if {Ai}i ̸∈J
are ν-independent, it additionally returns Bi(X) := fbi(X) for all i ∈ [n].

We let H0 be the ExpΦJ ,ν
lin -se

A,S,E experiment, and we denote by ϵi := Pr [Hi = 1].

Hybrid H1. This hybrid is the same as H0 and it returns 0 if there exists j ∈ [m] such that cj ̸= [Cj(s)]1
or Cj(x∗) ̸= y∗

j .

Lemma 5. ϵ1 ≤ ϵ0 + ϵm-evl

Proof. Recall that σI is the I-projection function. We reduce to the (Φadpt
m-evl, σ[m])-simulation extractability

of Πm-evl. We recall that the extractor of the experiment does only guarantee (if the policy is satisfied) to
extract the first m polynomials.

The reduction B takes as input the SRS and the commitments coms from the challenger and forwards
them to A. It trivially answers the queries of A:

– RO-query: Proxy the query to S2.
– SIM-query: On input an instance xlin, and leakage (yj)j∈[m] define the multi-eval instance xm-evl as the

honest prover would do, and query S1 on it.

Upon forgery (x∗, π∗) from A, where x∗ = (x∗, (cj)j , (bi)i, y
∗), and π∗ = (π∗

m-evl, (y∗
j)j), B returns a multi-eval

forgery (x∗
m-evl, π

∗
m-evl) where the statement is x∗

m-evl = (x∗, ((cj)j , r), ((y∗
j)j , y

∗)), with r =
∑

i Gi((yj)j , x)bi,
and π∗

m-evl is the proof in π∗.
Notice that this forgery passes the Hash check predicate for Πm-evl when the forgery of A passes the Hash

check for Πlin: in particular, for some polynomial h we have that, for all j ∈ [m], (cj ;h)→RO a, and h(a) = x∗.
We have that the (canonical) extractor for Πm-evl would succesfully extract, unless with probability ϵm-evl,
all the witness polynomials Cj(X) associated with the commitments cj and such that Cj(x∗) = y∗

j . ⊓⊔

Hybrid H2. This hybrid is the same as H1, except it returns 0 if {Ai}i ̸∈J are ν-independent polynomials
and:

–
∑

i∈[n] Ai(x∗)Bi(x∗) ̸= y∗

– or there exists i ∈ [n] such that bi ̸= [Bi(s)]1

Lemma 6. ϵ2 ≤ ϵ1 + ϵAff-MDH + ϵm-evl + deg(h)(maxi deg(Ai)+ν̄)
q

Proof. Notice that for all i ∈ J , bi = [Bi(s)]1, where the polynomials (Bi)i∈J are output by the adversary
itself, by definition of the Partial-Extraction Check in the extraction policy. If the distinghuishing event
occurs, namely {Ai}i ̸∈J are ν-independent and

∑
i∈[n] Ai(x∗)Bi(x∗) ̸= y∗ or bi ̸= [Bi(s)]1 for i /∈ J , we can

reduce to the simulation extractability of Πm-evl as follows.
The reduction B simulates the experiment for A as in the reduction described in Lemma 5. Then, upon

forgery (x∗, π∗) from A, where x
∗ = ((cj)j , (bi)i, (G∗

i)i, x
∗, y∗), and π∗ = (π∗

m-evl, (y∗
j)j), B computes the

values:

qj :=
[
(Cj(s)− Cj(x∗))(s− x∗)−1]

1 ,∀j ∈ [m]

qm+1 :=
∑
i∈J

[
(Ai(s)Bi(s)−Ai(x∗)Bi(x∗))(s− x∗)−1]

1 .

22

The adversary B sets as forgery the statement x′
m-evl := (x∗, r′, y′) and proof π′

m-evl, where:

r′ ←
∑
i∈[n]

Ai(x∗)bi −
∑
i∈J

[Ai(s)Bi(s)]1

y′ ← y∗ −
∑
i∈J

Ai(x∗)Bi(x∗)

π′
m-evl ← ρ−m(π∗

m-evl −
∑

j∈[m+1]

ρj−1qj)

and ρ← RO(vk∥x∗
m-evl). Notice that the above forgery is for a multi-eval of size 1, namely it is a single-eval

forgery, and thus the batch coefficient ρ′ ← RO(vk∥x′
m-evl) is actually never used by the verifier to check the

proof: this is why it passes the verification equation when the forgery of A satisfies the verification equation.
Differently from the reduction in Lemma 5, the extractor of Πm-evl can extract only one witness, i.e., the

polynomial committed in r′.
If the Hash check for Πlin is satisfied, so does the Hash check for Πm-evl: in particular, by definition of the

distinguishing event, the polynomials (Ai(X))i ̸∈J are ν-independent. We have that, unless with probability
ϵm-evl, the canonical extractor of Πm-evl would extract from r′ :=

∑
i/∈J Ai(x∗)bi the polynomial

R′(X) :=
∑
i ̸∈J

Ai(x∗)Bi(X)

such that R′(x∗) = y′.
Similarly to the proof of Theorem 1 (just before Hybrid H5), for all i /∈ J we can associate the commit-

ment bi with a polynomial equal to Bi(X) + B̃i,0(X) +
∑

j YjB̃i,j(X), where B̃i,0(X) depends only on the
simulated proofs, while B̃i,j(X) depends on the simulated proofs and simulated commitment cj , and we can
associate the commitment r′ with a polynomial R′(X,Y) such that r′ = R′(s, coms) and R′(X,Y) is equal
to M0(X) +

∑
j Mj(X)Yj , where:

M0(X) =
∑
i/∈J

Ai(x∗)Bi(X) +
∑
i/∈J

B̃i,0(X),

Mj(X) =
∑
i/∈J

Ai(x∗)B̃i,j(X), ∀j > 0,

and it holds that:

1. B̃i,0(X) ≡ 0 if for all j > 0 : B̃i,j ≡ 0.
2. For all i, j, B̃i,j is an element of a space isomorphic to F≤ν [X].
3. R′(x∗, coms) = [y′]1.

To see Item 1, notice that a simulated proof for (c, x, y) is equal to c/(s− x) + [−y/(s− x)]1. The rational
function B̃i,0(X) accounts the second addends −y/(X − x) from all the simulated proofs while the B̃i,j

for j > 0 take care of the remaining addends. If the latter rational functions are 0 then it means that the
adversary did not query the simulation oracle and therefore also the B̃i,0 are 0 polynomials.

When the Hash Check holds the polynomials B̃i,j are fixed before x∗ is computed by the RO, similarly
to the proof of Theorem 1, these polynomials are fixed by the algebraic representation of the commitment r.
If r→RO x∗, then the claim holds.

First, we notice that if for all i /∈ J and for all j, the polynomial B̃i,j ≡ 0, then R′(X,Y) = R′(X). We
derive that ∑

i∈[n]

Ai(x∗)Bi(x∗) =
∑
i∈J

Ai(x∗)Bi(x∗) +R′(x∗) = y∗

We now bound the probability that there exist indexes i, j such that B̃i,j ̸≡ 0. Assume, to reach a
contradiction, that there exist i∗, j∗ such that B̃i∗,j∗ ̸≡ 0. First, we notice that, by Item 1, we can assume

23

j∗ > 0. Second, we notice that Mj∗ ̸≡ 0 because {Ai}i/∈J are ν-independent by definition, and, by Item 2,
for all i, j B̃i,j is an element of a space isomorphic to F≤ν [X]. More in detail, let M̂j∗(X) =

∑
i Ai(X)Bi(X),

because of the ν-independence and the bound on the degree of the B̃i,j we have that M̂j∗(X) ̸≡ 0. Now
assume Mj∗(X) ≡ 0, then Mj∗(x∗) = 0 and thus M̂j∗(x∗) = 0. However notice that M̂j∗ is defined by the
forged instance and therefore before x∗ is sampled, which means that applying the Schwartz-Zippel lemma
Mj∗(X) ≡ 0 only with probability:

deg(Mj∗ ◦ h)/q = deg(h)(max
i

deg(Ai) + ν̄)/q.

When Mj∗ ̸≡ 0, we can reduce to Aff-MDH. The reduction generates the SRS and simulates using the
trapdoor s, while the commitments coms are received by the Aff-MDH challenger. The reduction to Aff-MDH
outputs ((µj)j , ŷ), where the coefficients µj ← mj(x∗) and ŷ = y′ −m0(x∗). Item 3 implies the correctness
of the forgery of the reduction to Aff-MDH.

Putting together, the distinghuishing event implies either a forgery for Πm-evl or a forgery for the Aff-
MDH assumptions, therefore the statement of the lemma follows. ⊓⊔

Finally, we notice that ϵ2 = 0 because the extractor returns the witness polynomials Cj , for all j ∈ [m], by
the change introduced in H1. Also, if {Ai}i/∈J are ν-independent, then it also extracts valid witnesses Bi,
for all i ∈ [n], because of the change introduced in H2. ⊓⊔

Removing the Hash Check. ΦJ ,ν
lin is a sufficient ingredient of our compiler to prove the simulation ex-

tractability of zkSNARKs such as PLONK or Marlin: as we explain in Section 6, in these two protocols the
verifier checks that the polynomials sent by the prover satisfy some predicate on some random points, which
allows us to reuse the proofs of an adversary to the SNARKs in the reduction to the simulation extractability
of Πlin since they match the Hash check. Looking ahead, we call these checks focal as they play an important
role in our compilation strategy.

However, there may be other protocols that involve also checking equations over some fixed, or not
sufficiently random, points. In this paragraph, we show that we can prove Πlin simulation extractable even
when the Hash Check is not satisfied, as long as the adversary is able to produce a proof algebraic inconsistent
w.r.t. view. This allows us to enlarge the class of protocols that our compiler to zkSNARKs captures. A similar
result was proved for the scheme Πm-evl in [FFK+23]. Let Φlin+ be the policy that performs the following
check:

– Algebraic Check: let x := ((cj)j , (bi)i, (Gi)i, x, y) and π := (π̂, (yj)j), returns 1 if and only if there
exists a tuple (x′ = ((cj)j , (bi)i, (Gi)i, x, y

′), π′ = π̂′, (y′
j)j) in Qsim such that

y′ ̸= y ∨ ∃j : yj ̸= y′
j (4)

Theorem 3. Πlin is (Φlin+, id)-simulation-extractable in the AGM under the OMSDH assumption.

Proof. We show a reduction B to the (Φ∅,0
lin , id)-simulation extractability of Πlin. For the simulation, the

reduction simply proxies all the queries back and forth between the adversary and the challenger. At forgery
time, B finds the commitments (cj)j∈[m], (bi)i∈[n] in the forgery instance x, and derives the linearization
commitment r as the verifier would do when verifying the forgery proof π, namely using Gi, x and the field
elements yj contained in it and the commitments bi. Also, let ρ be the batch coefficient used by the verifier in
this step, and let y′

j be the field elements contained in the simulated proof π′ that is not algebraic consistent
with π: if the adversary complies with the extraction policy, this proof exists; this means that, for all j, B
can find in π′ the values y′

j such that the pairs (cj , y
′
j) are algebraic consistent with the current view view;

B can also find y′
r such that (r, y′

r) is algebraic consistent with view. Then B queries S1 to get (single-eval)
proofs π̄j and π̄r associated with the pairs defined above, and defines

π̄ :=
∑

j

ρj−1π̄j + ρmπ̄r

24

If π̄ = π, B aborts. Otherwise, B submits the instance forgery x
∗ := ((c∗, [0]1), x∗, 0) and the proof π∗ :=

(π̂∗, y∗) where:

c∗ ← (π̄ − π)
π̂∗ ← (π̄ − π)(x− x∗)−1

y∗ ← (
∑

j

ρj−1(y′
j − yj) + ρm(y′

r − y))(x− x∗)−1

the forgery point x∗ ← RO(s), and s is a string never queried to the RO and containing c∗ as substring that
yields c∗ →RO x∗.

First, we show that the probability that B aborts when the adversary complies with the policy and
submits a successful forgery is only negligible. Let πj := (cj − yj)(s− x∗)−1, and let πr := (r− y)(s− x∗)−1.
We have that the proof π =

∑
j ρ

j−1πj + ρmπr. Also, by definition of Eq. (4), and because the KZG (single-
eval) proofs π̄j and π̄r are unique, either πr ̸= π̄r or there exist j such that π̄j ̸= πj . Since the coefficient ρ is
chosen uniformly at random after the proofs of the adversary are fixed, and is also independent of the proofs
π̄j , π̄r of the reduction, we conclude by Schwarz-Zippel that π = π̄ with probability at most equal to m

q .
Second, we observe that B complies with the policy in the extractability experiment: the Hash Check

is satisfied because we define the point x∗ as the output of a RO query including the commitment c∗, and
moreover the Partial-Extraction Check is trivially satisfied because the reduction does not have to add any
polynomial in auxE .

Finally, the forgery (x∗, π∗) satisfies the verification equation. In the verification procedure, the lineariza-
tion commitment is set to be y∗ ·[0]1 = [0]1. Because of the homomorphic properties of KZG, then, the verifier
has only to check that π̂∗ is a valid proof for the (single-eval) statement (c∗, x∗, y∗), whose correctness follows
from Eq. (1) ⊓⊔

6 Generalizing Polynomial Interactive Oracle Proofs

We generalize PIOPs by allowing the verifier’s queries to be (arbitrary) predicates over the prover’s oracles.
To this end, we use the formalism of oracle relations introduced in [CBBZ23]. Roughly speaking, an oracle
relation could be seen as the oracle-world counterpart of commit-and-prove relation. In particular, as we use
them in the next definition, oracle relations are a useful abstraction which allows to define predicates over
the oracles sent by the prover in the execution of a PIOP.

Definition 19 (Oracle Relations, [CBBZ23]). An oracle (indexed) relation R is an (indexed) relation
when the instances x of R contain pointers to oracle polynomials over some field F. The actual polynomials
corresponding to the oracles are contained in the witness. We denote the pointer to the oracle polynomial
f by JfK, let (x,w) ∈ R we denote with oracles(x) = {Jf1K, Jf2K, . . . , JfkK} for some k the pointers to the
polynomial oracles in x and w = (f1, f2, . . . , fk).

Definition 20 ((Holographic) R̂-PIOP). Let F be a family of finite fields, let R be an oracle indexed
relation and R̂ be an oracle relation. A (public-coin non-adaptive) Holographic Polynomial R̂-PIOP over
F for R is a tuple IP := (r, n,m,D, I,P,V) where r, n,m,D : {0, 1}∗ → N are polynomial-time computable
functions, and I,P,V are three algorithms for the indexer, prover and verifier respectively, that work as
follows.
Offline phase: The indexer I(F, i) is executed on input a field F ∈ F and a relation description i, and it

returns n(0) polynomials {p0,j}j∈[n(0)] encoding the relation i.
Online phase: The prover P(F, i,x,w) and the verifier VI(F,i)(F,x) are executed for r(|i|) rounds; the prover

has a tuple (F, i,x,w) ∈ R and the verifier has an instance x and oracle access to the polynomials
encoding i.
In the i-th round, P sends m(i) messages {πi,j ∈ F}j∈[m(i)], and n(i) oracle polynomials {Jpi,jK : pi,j ∈
F[X]}j∈[n(i)] of degree at most D := D(|i|), while V replies (except for the last round) with a uniformly
random message ρi ∈ F.

25

Decision phase: Let r := r(|i|), n :=
∑r

k=0 n(k), m :=
∑r

k=1 m(k). After the r-th round, let the verifier
VI(F,i)(F,x,π,ρ), on input the description of the field F, the verifier messages ρ := (ρ1, . . . , ρr−1), the
messages of the prover π := (π1, . . . , πm) outputs the instance x̂ whith oracles(x̂) ⊆ {Jp1K, . . . , JpnK}. The
verifier accepts if x̂ ∈ LR̂.

We simply say that IP is an r-rounds PIOP if the number of rounds is constant and independent of
the size of the index. We give some additional notation. In the following, we will use two different ways to
index (the pointers to) the oracle polynomials in a PIOP protocol’s execution. We will refer to the oracle
polynomials sent by the prover and by the indexer either as Jpi,jK, with double indexes, or as the JpkK, with
a single index, where k =

∑
i′=1,...,i−1 n(i′) + j. We define the oracle index index(JfK) as the index in the

transcript associated with (the pointer to) the polynomial oracle JfK. Similarly to the set oracles(x̂), we
define the set indexes(x̂) := {index(JfK) : JfK ∈ oracles(x̂)} the indexes in the transcript associated with (the
pointers to) the polynomial oracles involved in x̂.

Security Properties for PIOPs. A list L = {(i1, y1), . . . } is (b, C)-bounded where b ∈ Nn and C is a PT
algorithm if ∀i ∈ [n] : |{(i, y) : (i, y) ∈ L}| ≤ bi and ∀(i, y) ∈ L : C(i, y) = 1.

Definition 21 (b-bounded Zero-Knowledge). A PIOP IP is b-Zero-Knowledge if there exists a checker
C such that Pr [C(i, x) = 0] ≤ negl(|F|) over random x such that for every index i, and (pp, i,x,w) ∈ R,
and every (b, C)-bounded list L, the following random variables are within ϵ statistical distance:(

view
(
P(F, i,x,w),VI(F,i)(F,x)

)
, (pi(y))(i,y)∈L

)
≈ϵ S(F, i,x,L)

where p1, . . . , pn are the polynomials returned by the prover P and S is a PPT simulator. Moreover, IP is
independent leakage if S can be divided in two algorithms (S0,S1) where S0 outputs the simulated transcript,
and S1 the leakage, i.e., for all randomness r′ we have S(F, i,x,L; r′) = S0(F, i,x; r′),S1(F, i,x,L; r′).

Hereafter, we introduce the notion of a simulation-friendly polynomial oracles to abstract how our com-
piler generates instance-independent commitments for the oracles sent during a PIOP protocol’s execution.

Definition 22 (PIOP with simulation-friendly polynomial oracles). A PIOP IP has simulation-
friendly polynomial oracles if for every F and (i,x,w) ∈ R the distribution (Com(ck, pi))i is computationally
indistinguishable from the uniform distribution over Cn where C is the commitment space and where (pi)i

are the oracles sent by the prover P(F, i,x,w) in the interaction with V(F,x).

If the commitment scheme is hiding then this property is trivially true. For the case of non-hiding
commitments, one may rely on Decisional Uber Assumption [Boy08] that reduces to discrete log for algebraic
adversaries [RS20].

State-restoration. In a state-restoration setting [BCS16,FFK+23] the malicious prover engages in a game
with the honest verifier and has the additional ability to roll back the interaction with the verifier to a
previous state. At some point, the interaction may reach a final state, and the prover is considered successful
if is able to produce an accepting transcript (consisting of oracle polynomials), while the extractor fails to
produce a valid witness given the transcript.

Definition 23 (State-restoration (straight-line) proof of knowledge). Let Expsr
P̃,IP,E(F) be the exper-

iment in Fig. 3. A PIOP IP is state-restoration (straight-line) proof of knowledge if there exists an extractor
E such that for any P̃ and any F:

Pr
[
Expsr

P̃,IP,E(F) = 1
]
≤ negl(|F|)

Verifier Checks. It is often the case that the relation R̂, for an R̂-PIOP, is the logical conjunction of a
(sub)relation. In this case, we consider x̂ := (x̂k)k and the verifier returns 1 when all the checks x̂i are
satisfied. When looking at concrete examples of PIOPs, in the rest of this section, we will assume that this

26

Expsr
P̃,IP,E(F)

1. The challenger initializes the list SeenStates to be empty.
2. Repeat the following until the challenger halts:

(a) P̃ either (1) chooses a complete verifier state cvs in SeenStates or (2) sends a fresh tuple
(i,x, {π1,j}j , {p1,j}j) to the challenger.

(b) If (1) the challenger sets the verifier to cvs:
i. if cvs = (i,x, {π1,j}j , {p1,j}j∥ρ1∥ . . . ∥{πi,j}j , {pi,j}j) and i < r(x): P̃ outputs {πi−1,j}j , {pi−1,j}j ;

V samples ρi and sends it to P̃; the game appends cvs′ := (cvs∥{πi−1,j}j∥{pi−1,j}j∥ρi) to the list
SeenStates;

ii. if cvs = (i,x, {π1, j}j , {p1, j}j∥ρ1∥ . . . ∥ρr−1): P̃ outputs {πr,j}j and {pr,j}j ; the challenger runs
I(F, i) and V performs the decision phase of the PIOP. The challenger sets cvs to be the final cvs,
sets the decision bit d as the output of the verifier V and halts.

(c) If (2) the verifier samples ρ1 and sends it to P̃; the game appends the state cvs′ := (i,x, {π1,j}j , {p1,j}j∥ρ1)
to the list SeenStates.

3. The game computes the extraction bit b
def= (i,x, E(i,x, p1, . . . , pn)) ∈ R where the instance x and the

polynomials p1, . . . , pn are the ones generated by I and the ones included in the final cvs. The game returns
(d ∧ ¬b), i.e., the malicious prover convinces the verifier but the extractor fails.

Fig. 3. The Expsr
P̃,IP,E(F) experiment.

natural approach is used by the verifier: for sake of simplicity, we extend Definition 20 of an R̂-PIOP and
allow the verifier to output ne checks (x̂k)k, and the verifier accepts iff x̂k ∈ LR̂ for all k ∈ [ne].

PIOPs with Delegation. There are cases in which the PIOP can be thought of as a two-phase protocol,
sharing the same indexer I where: (i) in the first phase of the protocol, the prover P1 takes as input the field
F, the index i, the instance x and the witness w, and interacts for a certain number of rounds with the
verifier, while (ii) in the second phase, the prover P2 that, crucially, does not take as input the witness w,
interacts with the verifier for only two rounds.18 Since we require the output of P2 to be uniquely determined
by its input (which is also computable by an “inefficient” verifier), we call this last (witness-independent)
phase a delegation phase.

The reason to add this new definition is to enlarge the class of PIOPs for which the technical condition
in [FFK+23] (sufficient to prove Simulation Extractability of the compiled SNARK) holds.

Definition 24 (Delegation Phase for a PIOP). Let IP be an r + 1-rounds R̂-PIOP over F for R.
We say that IP is R̂-PIOP with delegation phase if we can parse P (resp. V) as P1 and P2 (resp. as V1
and V2) such that there exists a verifier Ṽ taking as additional input the index i where (1) IP1 = (P1, Ṽ)
is a (r − 1)-rounds R̂-PIOP over F for R and the queries of Ṽ and V1 are identical for any inputs, (2)
IP2 = (P2,V2) is a 2-rounds R̂-PIOP over F for the (P-)language of strings (F, i, (x, (πj)j∈[r], (ρj)j∈[r−1]))
where Ṽ(F, i,x, (πj)j∈[r], (ρj)j∈[r−1])) = 1 assuming that the Ṽ’s queries to R̂ are answered positively.

Uniqueness of delegation phase. Moreover, we have that for all F, i,x, (πj)j∈[r], (ρj)j∈[r−1] the probability,
taken over the V2’s message ρr

$← F, that V2 on input (F,x, (πj)j∈[r], (ρj)j∈[r−1]) accepts on two transcripts,
that are different in the first tuple of messages and polynomials, is negligible in log |F|.

In the following, we simply refer to an r-rounds R̂-PIOP with a Delegation Phase, denoting it as IP1∥IP2,
as the (r + 1)-rounds R̂-PIOP in which the prover P first runs P1 and interacts with the verifier V1 for r
rounds, then runs P2 in the last phase, while the verifier outputs the checks of V1 and V2, and accepts if

18 We could consider a more general setting with multiple delegation rounds; however, all the optimized constructions
we are aware of only require two.

27

and only if all the checks are satisfied.19 Note, we say that a PIOP with delegation has simulation-friendly
polynomial oracles if so does IP1.

6.1 Polynomial R̂lin-PIOP

Similarly to Section 5.2, let R̂lin be the oracle indexed relation that upon an instance

x̂ := ((JcjK)j∈[m], (JbiK)i∈[n], (Gi)i∈[n], x, y),

outputs 1 if and only if
∑

i ai(x)bi(x) = y, where for all i, we have that ai(X) := Gi(c1(X), . . . , cm(X), X).
We refer to the polynomial oracles (JcjK)j as the core polynomial oracles, while the polynomial oracles (JaiK)i

and (JbiK)i as the left and right polynomial oracles respectively. We use the shorthand x̂.ai to refer to the ai

defined above.
Below we formalize a class of R̂lin-PIOPs in which each evaluation point x chosen by the verifier for a R̂lin

query is a function x = ṽ(ρ) of its random coins, where ṽ is a polynomial that can be defined by the verifier
depending only on the index i and the instance x. The R̂lin checks relying on a ṽ which is non-constant in
the r − 1-th random coin are called “focal”, as they have a focal role to ensure extractability.

Definition 25 (Structured R̂lin-PIOP and focal checks). An r-rounds R̂lin-PIOP IP is structured if
there exists a deterministic PT algorithm Ṽ such that for all i, x, π, ρ, k ∈ [ne] we have that:

ṽk(ρ) = x̂k.x

where (ṽk)k ← Ṽ(F, i,x) and (x̂k)k ← VI(F,i)(F,x,π,ρ).
If degr−1(ṽk) ≥ 1 we say that the check x̂k is focal. We denote by Kf the set of all indexes k such that

x̂k is focal.

Finally, we introduce the notion of compilation-safeness for R̂lin-PIOPs. The idea of the definition below
is that focal checks can be ordered in such a way that we can incrementally extract all the polynomials,
starting from the trivially extractable polynomials, namely the index polynomials, and using the partial
extractability property derived from Definition 18.

Definition 26 (Compiler-safe R̂lin-PIOP). An r-rounds R̂lin-PIOP IP is compiler-safe if for any i and
x, for any π and any ρ there are not polynomial oracles in the last message of the prover and there is an
ordering of the focal checks (x̂k)k∈Kf

such that (1) for any k ∈ Kf we have {x̂k.ai : x̂k.bi /∈ Jk−1} are
ν-independent and (2) we have Jne

is the set of all the polynomials including index polynomials sent by the
prover, where:

– J0 is the set of n(0) index polynomials
– for all k ̸∈ Kf , Jk := Jk−1
– for all k ∈ Kf , Jk := Jk−1 ∪ {x̂k.cj : j ∈ [m]} ∪ {x̂k.bi : i ∈ [n]}
– ν is the maximum number of distinct points for which the verifier evaluates a non-index polynomial, i.e.,

ν := max
i>n(0)

|{x̂k : JpiK ∈ oracles(xk), k ∈ [ne]}|

Moreover, an R̂lin-PIOP with a delegation phase IP1∥IP2 is structured (resp. compiler-safe) if IP1 and IP2
are both structured (resp. compiler-safe).
19 The prover can sends all the messages of the first round of IP2 on the r-th round of IP1, thus yelding an r + 1

(rather than r + 2) rounds protocol.

28

6.2 Polynomial R̂poly-PIOP

As mentioned in Section 1, when designing a new scheme, it is easier to describe the PIOP by specifying a list
of polynomial equations between the polynomial oracles as, for example, in [GWC19,CFF+21,RZ21,FFK+23].
In this section we formalize this class of PIOPs using the oracle relation R̂poly that upon the instance
xpoly := ((JpjK)j∈[n], F, (vj)j∈[n]), outputs 1 if and only if:

F (p1(v1(X)), . . . , pn(vn(X)), X) ≡ 0

where vj ∈ F[X],∀j and F ∈ F[X1, . . . , Xn, X].
We consider R̂poly-PIOPs that are structured as described below.

Definition 27 (Structured R̂poly-PIOP). An r-rounds R̂poly-PIOP IP is structured if there exists a
deterministic PT algorithm Ṽ such that for any i and x, for any π and for any ρ, j ∈ [n],k ∈ [ne] we have
that:

ṽj,k((ρi)i∈[r−2], X) = xk.vj(X)

where (ṽj,k)j,k ← Ṽ(F, i,x) and {x̂k}k ← VI(F,i)(F,x,π,ρ).
Moreover, an R̂poly-PIOP with a delegation phase IP1∥IP2 is structured if IP1 and IP2 are both structured.

We extend the compiler-safe definition of [FFK+23] to capture R̂poly-PIOPs with delegation phase. We
require that for each polynomial sent by the prover in the first r− 1 rounds there must be an equation that
involves evaluating it on a (non-constant function of) the last random coin sent by the verifier. Crucially,
we require that the prover does not send any polynomial in the last round. We do not make any restriction
on the index polynomials. Our notion of compiler-safe is more inclusive than in [FFK+23], as it holds for
PIOPs such like Marlin [CHM+20] and Lunar [CFF+21] without any changes.

Definition 28 (Compiler-safe R̂poly-PIOP). An r-rounds R̂poly-PIOP IP is compiler-safe if for any i

and any x, ∀π, n(r) = 0 and:

∀j ∈ [n] \ [n(0)] : ∃k s.t degXr−1
(ṽj,k) ≥ 1

where (ṽj,k)j,k ← Ṽ(F, i,x).
Moreover an R̂poly-PIOP with a delegation IP1∥IP2 is compiler-safe if IP1 and IP2 are both compiler-safe.

6.3 From R̂poly-PIOP to R̂lin-PIOP

Arguably, the notion of compiler safe for R̂poly-PIOP is very easy to check. In particular, it is much easier
to check than the same notion for R̂lin-PIOP. In this section, we show that we can transform a compiler-safe
R̂poly-PIOP into a compiler-safe R̂lin-PIOP. We believe this can give an easy-to-follow recipe when designing
new KZG-based SE-zkSNARKs from PIOPs because the cryptographer needs only to focus on designing
compiler-safe R̂poly-PIOP.

Our transformation is similar to the general strategy proposed by [GWC19], but it explicitly makes sure
that the derived checks result into a compiler-safe R̂lin-PIOP. We start by giving the transform for the case
in which there is one20 polynomial check G and all the (vi)i∈[n] are equal to some non-constant polynomial
v. Let J0 be the set of the index polynomials, we need to find a subset I ⊂ [n] of minimal size m < n, and
polynomials (Gi)i∈Ī , where Ī = [n] \ I, such that:

– F (X1, . . . , Xn, X) =
∑

i∈Ī Gi((Xj)j∈I , X) ·Xi,
– (Gi((pj(v(X)))j∈I , X))i/∈J0 are 1-independent.

20 When there are multiple checks with the same non-constant v we can simply batch together the equations in one
single equation.

29

We define the instance x̂lin := ((JpiK)i∈I , (JpiK)i∈Ī , (Gi)i∈Ī , v(ρ), 0). This transform minimizes the number of
core polynomial oracles, which results in minimizing the size of the proof of Πlin.

When there are distinct polynomials vi the optimization problem gets more complex. In this case, assume
that the number of distinct polynomials vi is equal to ν, then the transformation needs to find sets I1 and
I2 and minimizes the size of I = I1 ∪ I2, such that it can decompose F into ν − 1 instances for batch-
evaluation21 that check pi(vi(ρ)) = yi for all i ∈ I1 and for values yi that are sent as part of the last message
of the R̂lin-PIOP prover, and one polynomial F ′((Xi)i∈Ī1

, X) = F ((yi)i∈I1 , (Xi)i∈Ī1
, X) where, similar to

the previous case, F ′ can be decomposed as:

– F ′((Xi)i∈Ī1
, X) =

∑
i∈I2

Gi((Xj)j∈Ī , X) ·Xi,
– (Gi((pj(vj(X)))j∈Ī , X))i/∈J0∪I are ν-independent.

Finally, when the PIOP has a delegation phase, we can just apply the transform both to IP1 and IP2, this
works because the checks involve two disjoint sets of polynomial oracles (excluding the index polynomials,
that however are shared among the two phases).

6.4 Notable PIOPs

In what follows, we show how to express in R̂lin form the PIOPs underlying PLONK and Marlin (with all
optimizations); it is easy to extend this analysis to Lunar and Basilisk that are very similar to Marlin and
PLONK, respectively. PLONK. We show in Fig. 4 how PLONK [GWC19] can be written as a 4-rounds

R̂lin-PIOP in which the verifier outputs two checks. The maximum number of distinct points for which the
verifier evaluates a non-index polynomial is 2 since the oracle polynomial JzK is evaluated on z and zω. In x̂1
the verifier tests that z(zω) equals the field element z̄ω sent in the last round by the prover. Moreover, all
but JtloK, JtmidK, JthiK of the right oracle polynomials of x̂2 are part of the index or are extracted from x̂1.
However, the corresponding left oracle polynomials, that we highlight in the figure, are linearly independent
w.r.t. F≤2[X], which results in a compiler-safe PIOP according to Definition 26.

Marlin. We show in Fig. 5 how Marlin [CHM+20,ark21] can be written as a 3-rounds R̂lin-PIOP with a
Delegation Phase.

7 Revisiting the PIOP-to-zkSNARK compiler

We show how to turn compiler-safe R̂lin-PIOPs into simulation-extractable zkSNARKs. We stress that,
although the formalism we adopt differs from previous work, the resulting compiler’s construction is the
usual one with the linearization trick optimization.

Definition 29. We say that Π is strong simulation-extractable in the algebraic group model with oblivious
sampling if and only if Π is Φsse-simulation-extractable where for any (Φ0, Φ1) in the family of policies
Φsse we have that Φ0 outputs group elements coms = (ci)i from an Aff-MDH secure and witness sampleable
distribution and Φ1 checks that the forgery (x∗, π∗) ̸∈ Qsim.

Theorem 4. Let Πlin be the CP-SNARK for Rlin defined in Section 5.2. Let IP be a compiler-safe R̂lin-PIOP
for relation R that is state-restoration straightline extractable, bounded zero-knowledge, and with simulation-
friendly polynomial oracles. Let Π be the zkSNARK compiled from IP using the compiler in Fig. 6. Then
Π is zero-knowledge and strong simulation-extractable in the AGM. Furthermore, if R is an oracle relation,
then Π is a CP-SNARK.
21 We notice that a R̂lin-instance can be trivially reduced to a batch-evaluation by having an empty set of right

polynomial oracles.

30

P JqMK, JqLK, JqRK, JqOK, JSσ1K, JSσ2K, JSσ3K, JP IK V

JaK, JbK, JcK

β, γ

JzK

α

JtloK, JtmidK, JthiK

z

z̄ω := z(zω)

x̂1 checks: z(zω) = z̄ω

x̂2 checks:
// Below, the right polynomials are index polynomials:

a(z)b(z)qM(z) + a(z)qL(z) + b(z)qR(z) + c(z)qO(z) + qC(z)− α2L1(z)
+ P I(z)− αβz̄ω(a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)Sσ3(z)
− αz̄ω(a(z) + βSσ1(z) + γ)(b(z) + βSσ2(z) + γ)(c(z) + γ)

// Below, the right polynomial z is extracted from x̂1:

+α
(
(a(z)+βz+γ)(b(z)+βk1z+γ)(c(z)+βk2z+γ)+αL1(z)

)
z(z)

// Below, right polynomials extracted thanks to independence of left polynomials:
+ ZH(z)tlo(z) + ZH(z)zntmid(z) + ZH(z)z2nthi(z) = 0

Fig. 4. The R̂lin-PIOP PLONK. For x̂2, we highlight the core polynomials, the left polynomials that are linearly
independent, and the right polynomials.

Proof. In what follows, we assume that IP is in fact an R̂lin-PIOP with a delegation phase, i.e., the prover
interacts with the verifier for r + 1 rounds.

Zero-Knowledge. We start showing the zero-knowledge simulator for Π and an adversary submitting Q
queries. The simulator is in Fig. 7. We define the bounded (leakage) list Leakx̂ as the list of all tuples (i, x̂.x)
such that i ∈ indexes(x̂) and JpiK is a left oracle polynomial of x̂. We recall that indexes(x̂) is the list of
indexes of the polynomial oracles sent by the prover that are involved in the instance x̂.

The zero-knowledge guarantees of the simulator come from the simulation-friendly polynomial oracles
of IP (see Definition 22), the bounded zero-knowledge property of the IP, and the Llin-leaky zero-knowledge
property of Πlin, where Llin(x,w) := (w.Cj(x.x))j (cf. Section 5.2).

We can show this with a simple hybrid argument. Let G0 be the real-world experiment where A interacts
with a real prover and the random oracle.

– The first hybrid G1 is the same as G0 but where, at every call to the prover, we additionally compute the
bounded (leakage) list Leak computed by the real prover. This hybrid is obliviously identically distributed
to the previous one.

– The second hybrid G2 is the same as G1 but where the SRS is generated using Πlin.S0 and the proofs
of Rlin for the instances in K1 are generated using the simulator Πlin.S1. Notice that, since Πlin is only
leaky-zero-knowledge, to generate such proofs, the simulator additionally needs the leakage which we
can compute using the bounded list Leakx̂ over the polynomials computed by the prover. The proof of

31

P J ˆrowK, JĉolK, J ˆrowcolK, Jv̂alAK, Jv̂alBK, Jv̂alCK V

JŵK, JẑAK, JẑBK, JŝK

ηA, ηB , ηC , α

JtK, Jg1K, Jh1K

β

vt := t(β), Jg2K, Jh2K

γ

x̂1 checks: uH(α, β)(ηA + ηC ẑB(β))ẑA(β) + ŝ(β)
− vH(β)h1(β) + uH(α, β)ηB ẑB(β)− vtx̂(β)− βg1(β)
− vX(β)t(β)ŵ(β) = 0

x̂2 checks: (a(γ)− b(γ)(γg2(γ) + vt
|K|)− vK(γ))h2(γ) = 0

Fig. 5. The R̂lin-PIOP Marlin, where: vH (resp. vK , vX) denotes the vanishing polynomial of the subgroup H (resp.
K, X) of F; uH is the formal derivative of vH ; the polynomials a and b are computed using the index polynomials
and the coins α and β. We highlight the delegation phase, the core and right polynomials of x̂1.

indistinguishability between the two hybrids follows easily from the leaky zero-knowledge property of
Πlin.

– The third hybrid G3 is the same as G2 but where, at every call to the prover, we sample the commitments
as uniformly random G1-group elements. For this step we use that IP (or IP1, if IP = IP1∥IP2 has a
delegation phase) has simulation-friendly polynomial oracles (cf. Definition 22).

– The last hybrid G4 is the same a G3 but where (1) we finally switch to use the zero-knowledge of the
R̂lin-PIOP and (2) we use the leakage using the simulator. In particular, we need to use the simulator
for an (honest) verifier that samples its messages by computing the random oracle on the transcript
so far22. This allows showing that the simulator is in the non-programmable random oracle. The last
hybrid is identically distributed to the ideal-world experiment where A interacts with the simulator and
the random oracle.

Finally, we show that, independently of the strategy of the adversary A, the view at the end of the simulation
extractability experiment for the compiled zkSNARK and with the simulator described in Fig. 7 is algebraic
consistent.

When the relationR is not an oracle relation, namely when the instances do not contain any commitment,
we can easily show that the view is algebraic consistent by noticing that the simulator, at the q-th query,
produces ne simulated proofs on the commitments coms(q), moreover, since the PIOP prover can only prove
algebraic consistent statements then also the simulator can only compute algebraic consistent statements,
otherwise we would have a distinguisher for the zero-knowledge of the PIOP.

We need a more careful analysis when the relationR is an oracle relation, in which caseΠ is a CP-SNARK.
In fact, assume that, at the q-th simulation query, the adversary includes a simulated commitment c̃ in the
queried instance x, namely either c̃ ∈ coms(j) for j < q or c̃ ∈ coms′. We observe that the simulator trivially
preserves the algebraic consistency across multiple proofs for focal checks since they involve evaluation on
22 Technically, we can hardcode the full description of the random oracle inside the verifier and rely on the statistical

zero-knowledge property.

32

Π.Derive(srs, i) :

p0 ← I(F, i);
for j ∈ [n(0)] do : cj ← [p0,j(s)]1
eki ← p0, vk

i
← (cj)i∈[n(0)]

return (eki, vk
i
)

Π.Verify(vk
i
,x, πΠ) :

derive (π̄1, . . . , π̄r)
for i ∈ [r(|i|)− 1] do : // Fiat-Shamir transform

ρi ← RO(vk
i
,x, π̄1, . . . , π̄i)

{x̂k}k ← V(F,x, π, ρ)

return
∧

k∈[ne]

Verifylin(srs,xk, πk)

Π.Prove(srs, eki,x,w) :

for i ∈ [r(|i|)] do :
// Get messages from PIOP prover(
pi, πi

)
← P(F, i,x,w, ρ1, . . . , ρi−1)

t←
∑

j∈[i−1] n(j)

for j ∈ [n(i)] do : ct+j ← [pi,j(s)]1
// Fiat-Shamir commitments and messages of this round

π̄i := (ct+1, . . . , ct+n(i), πi)
if i < r : ρi ← RO(vk

i
,x, π̄1, . . . , π̄i)

{x̂k}k ← VI(F,i)(F,x, π, ρ)
for k ∈ [ne] : πk←Provelin (srs,xk, (pi : i ∈ indexes(x̂k)))
return (c, π, (πk)k)

Fig. 6. The compiler based from R̂lin-PIOPs and KZG commitment scheme to Universal zkSNARKs. We associate to
the instance x̂k for the oracle relation R̂lin the instance xk for the commit-and-prove relation Rlin, the latter instance
is identical to x̂k but where any oracle JpK ∈ oracles(x̂k) is substituted with the commitment [p(s)]1.

random coins, thus on evaluation points that were not queried before. As for non-focal checks, notice that,
because of the b-bounded zero-knowledge of the PIOP we have that c̃ (or better say the oracle associated to
it) must be a right polynomial oracle in all the R̂lin instances where it appears. Otherwise, the PIOP would
not be able to support leakage on this oracle. Moreover, in all the non-focal instances where it appears as a
left polynomial either the instance contains another left polynomial that is sent by the prover or the instance
evaluates to a constant value y, again, because of the bounded zero-knowledge property of the PIOP. Notice,
in the first case the algebraic consistency holds because c̃ is evaluated together with a simulated commitment
from coms(q). In the second case, algebraic consistency holds because c̃ is evaluated on an evaluation point
and to a constant value, thus consistently with the previous simulated proofs.

Simulation-Extractability. We define the extractor for Π for a given adversary AΠ . We make some
simplifying assumptions on the behavior of AΠ : (1) the adversary always queries first the RO on a string
that can be parsed as (i,x) before querying the simulation oracle on the same string, (2) the auxiliary string
auxE output by AΠ can be parsed as a list of strings (si, auxi, sti)i and a string aux′

E where for any i we
have (si, auxi, sti) string is identical to the auxiliary input output at the i-th query of the adversary. These
assumptions are w.l.g.. In fact, given an adversary AΠ that does not respect these rules we can always define
another adversary that runs internally AΠ , collects all the necessary information to comply with (2) and
moreover follows the rule (1).

Finally, we emphasize that in our proof strategy we need to extract the witness polynomials from the
proofs according to some order, thus we would first need to sort the proofs of the adversary and then proceed.
However, w.l.o.g., we assume that the focal checks output by the verifier are already sorted so to match the
compilation-safeness property (Definition 26), and such that all the “delegation checks”, namely (x̂k)k∈K2 ,
come before the others: notice that it is always possible to define such sorting since the non-delegation
checks and the delegation checks involve two disjoint sets of polynomials (excluding the index polynomials
that however are already in J0).

Before proceeding, we set some notation:

– Let oraclesb(x̂) and oraclesc(x̂) be respectively the right and the core oracles of x̂. Similarly, let indexesb(x̂)
and indexesc(x̂) be respectively the indexes of the right and the core oracles of x̂.

33

S(0, ppG)

srs, stΠ ←$ Πlin.S(0, ppG)
µ← 0 // S1 queries counter

for j ∈ [Q] do :
coms(j) ←$ Gn−n(r)

1

coms′ $← Φ0(ppG)
stS←(stΠ , µ, (coms(j))j , coms′)
return srs, stS

S(2, stS , s, aux)

if (s, aux, a) ∈ QRO :
return a, stS

a←$ F
QRO ← QRO ∪ (s, aux, a)
return a, stS

S(1, stS , srs, (i,x))

stS ← (stΠ , µ, (coms(j))j , coms′)

c1, . . . cn−n(r) ← coms(µ)

for i ∈ [r − 1] do :
πi ← IP.S0(F, i,x, ρ1, . . . , ρi−1)
t←

∑
j∈[i−1]n(j)

π̄i = (ct, . . . , ct+n(i), πi)
ρi ← RO(vk

i
,x, π̄1, . . . , π̄i)

(pr,πr)← P2(F, i,x, π, ρ1, . . . , ρr−1)∥IP.S0(F, i,x, ρ1, . . . , ρr−1)
(cn−n(r)+1, . . . , cn)← ([pr,j(s)]1)j∈[n(r)]

π̄r = (cn−n(r)+1, . . . , cn, πr)
ρr ← RO(vk

i
,x, π̄1, . . . , π̄r)

πr+1 ← P2(F, i,x, π, ρ)

{x̂k}k∈K1
, {x̂k}k∈K2

← VI(F,i)(F,x, π, ρ)

for k ∈ K1 :
leak← IP.S1(F, i, x̂k, Leakx̂k)
πk←Πlin.S1(stΠ ,xk, leak)

for k ∈ K2 :
πk←Π.Prove (srs,xk, (pi : i ∈ indexes(x̂k)))

π ← (c, π, (πk)k)

stS ← (stΠ , µ + 1, (coms(j))j , coms′)
return π, stS

Fig. 7. The simulator S for a Π compiled from an r-rounds R̂lin-PIOP with a delegation phase. We highlight the
parts needed only for the delegation setting.

– For all k, let CI(x̂k) := oraclesb(x̂k)∩Jk be the compiler-safe index set, namely the set of the indexes of
the polynomials sent by the prover that are either part of the index or may be extracted from x̂k′ , for
k′ < k.

– For all k, we define {γj,k}j
:= indexesc(x̂k) and {βi,k}i

:= indexesb(x̂k). Whenever it is clear from the
context, we may omit the index k.

– Let Pi be the indexes of the polynomials sent at the i-th round by the prover.
– Given a proof π for Π we define the RO-queries of π the list of strings ((vk

i
,x), . . . , (vk

i
,x, π̄1, . . . , π̄r)).

– We say that the adversary copied up to round i (the transcript of) its proof πΠ from a simulated proof
π′

Π if the first i+ 1 entries of their RO-queries are equal.
– We say that a proof πΠ uses a simulated element if there is a non-zero coefficient depending on the

simulated elements provided by S in the algebraic representation of any of the commitments in πΠ .
– We say that a coin is fresh if it does not appear in any of the simulated transcripts of the proofs output

by S.
– We use K1 and K2 to denote the indexes of the checks output in IP1 and IP2 respectively, where IP :=

IP1∥IP2
– We let ECom be the canonical AGM extractor of the KZG polynomial commitment, namely the one that

parses the algebraic representation of a commitment c as (f, r) and returns the polynomial f(X). Notice
the extractor fails when r ̸= 0.

The extractor EΠ(xΠ , πΠ , auxE):

34

1. Parse auxE as the concatenation of a list (si, auxi, sti)i and aux′
E , where (si, auxi, sti) is the output

of AΠ at the i-th query to the ROM and aux′
E the remaining auxiliary information given by the

adversary (namely, the auxiliary information associated with its last output).
2. Take the commitments (ci)i∈[n] in both xΠ (if it is a commit-and-prove relation) and πΠ ; from
πΠ derive the messages π̄1, . . . , π̄r and find the indexes qi such that sqi = (vk

i
,x, π̄1, . . . , π̄i).

3. Return ⊥ if πΠ uses a simulated element of one of the proofs.
4. For i ∈ [n], let pi ← ECom(ci).
5. Return ⊥ if for some i, ∃j ∈ Pi : cj ̸= [pi(s)]1.
6. Let x̂k = ((cγj

)j∈[m], (cβi
)i∈[n], (Gi)i∈[n], x, y). If ∃k:

∑
i Gi(pγ1(x), . . . , pγm

(x), x)pβi
(x) ̸= y,

return ⊥.
7. Return EPIOP(i,xΠ , (pj)j)

To analyze the success of the extractor we define a series of hybrid games. We start from the first hybrid
that is the Expsr

AIP,IP(F) experiment for IP (see Definition 23) for an adversary AIP that we define next.

The adversary AIP:
1. Run simulator srs, stS ← S(0, ppG) and set QRO,Qsim empty sets.
2. Run AΠ(srs) and answer all the simulation queries of AΠ with S1.
3. Upon i-th query (si, auxi) from AΠ to S2:

(a) if si is in the RO-queries of a simulated proof in Qsim then run S2 on input si.
(b) Else parse si as a (partial) transcript trns = (vk

i
,x, π̄1, . . . , π̄r′); parse π̄j as (cj ,πj); find

the witness polynomials w := (fr′,j)j that are the algebraic representation (depending on
ck) of cr′ ; find in SeenStates the state cvs = (i,x,π1, {p1,i}i∥ρ1∥ . . . ∥πr′−1, {pr′−1,i}i∥ρr′−1),
set the verifier state to cvs, and send the message (w,πr′) to the PIOP verifier. Receive the
challenge ρr′ from the verifier. Finally, program the random oracle adding (si, auxi, ρr′) to
QRO.

4. Eventually the adversary outputs a valid forgery (xΠ , πΠ). From πΠ derive the (full) PIOP
transcript trns := (i,x, π̄1, ρ1, . . . , π̄r). Let i be the index of RO query of the partial transcript
(i,x, π̄1, ρ1, . . . , π̄r−1); as described in the previous step, find the cvs in SeenStates associated
with si, set the verifier state to cvs, extract the (last) witness polynomials w and send (w,πr)
to the verifier. The state cvs and the last messages (w,πr) define a full transcript: this would
trigger the verifier to perform the decision phase of the PIOP and set the decision bit d of the
game.

Let H0 be the Expsr
AIP,IP(F). By the state-restoration knowledge extractability of IP:

Pr [H0] ∈ negl(|F|)

Consider H1 that additionally returns 1 if the adversary AΠ copies a simulated transcript up to and
including the last round from a simulated proof π′

Π .

Lemma 7. Pr [H1] ≤ Pr [H0] + ϵlin

Proof. We have that the forged proof πΠ and a simulated proof π′
Π share the same commitments c, the same

messages π, and therefore the same set of instances (x̂k)k∈[ne].
We parse πΠ = (c,π, (πk)k∈[ne]) and the simulated proof as π′

Π = (c,π, (π′
k)k∈[ne]), if the two hybrids

diverge then there must be an index k ∈ [ne] such that the proof πk ̸= π′
k, where, depending on the index

k,π′
k was either honestly generated (for k ∈ K1) or was simulated using Πlin.S1 (for k ∈ K0).
Let πk = (π̄, (yj)j) and π′

k = (π̄′, (y′
j)j), by case analysis, either ∃j : yj ̸= y′

j or ∀j : yj = y′
j and π̄ ̸= π̄′.

The latter case cannot happen by the uniqueness of KZG proofs, notice the uniqueness of KZG proofs
holds even when the trapdoor is known by the adversary. The former case is covered by the ΦJ ,ν

lin+-simulation
extractability of Πlin. We describe below a reduction.

Reduction B(srs, ppΦlin
)

35

1. Run AΠ(srs).
2. Upon query ((i,x), aux) to the simulation oracle, run the same strategy of S1 defined in Fig. 7,

namely using Πlin.S1.
3. Given the forgery ((i,xΠ), πΠ) output by AΠ , find the instance x̂k and the corresponding proof
πk; submit the forgery (x̂k, πk)

We recall that the policy ΦJ ,ν
lin+, since the instance for πk and π′

k is the same, holds when ∃j : yj ̸= y′
j . Thus,

by the Theorem 3, we bound the probability that the B wins to ϵlin.

Consider the hybrid H2 that, for all i ∈ [n], computes pi ← ECom(ci) and, additionally, returns 1 if

∃k ∈ K2 :
∑

i

Gi(pγ1(x), . . . pγm
(x), x) · pβi

(x) ̸= y ∨

∃j ∈ Pr : cj ̸= [pj(s)]1

where x̂k =
(
(cγj

)j , (cβi
)i, (Gi)i, x, y)

)
.

Lemma 8. Pr [H2] ≤ Pr [H1] + |K2| · ϵlin

Proof. Notice that, because of the winning condition added in H1, we can focus on the case in which the
adversary AΠ does not copy a simulated transcript (up to and including the last round) from a simulated
proof π′

Π . We also notice that, by our simplifying assumption on the order of the verifier’s queries, we have
K2 = {1, . . . , |K2|}, namely, the indexes in K2 are consecutive numbers.

We prove this lemma through a series of hybrids. Let H1,0 ≡ H1. For any k > 1, let H1,k be the same as
H1,k but that additionally returns 1 if:∑

i

Gi(pγ1(x), . . . , pγm(x), x)pβi(x) ̸= y ∨

∃i : cβi ̸= [pβi(s)]1 ∨ ∃j : cγj ̸=
[
pγj (s)

]
1

where x̂k =
(
(cγj)j , (cβi)i, (Gi)i, x, y)

)
. Finally, we have that H2 ≡ H1,|K2|.

Let I := CI(x̂k) be the compiler-safe index set of x̂k (namely, the set of polynomials that the PIOP’s
specification guarantees we can extract from the instance x̂k, see Section 7). We reduce to the (ΦI,ν

lin ,FI,ν)-
simulation extractability of Πlin. We define the reduction Blin,k.

Reduction Blin,k(srs, ppΦlin
)

1. Run AΠ(srs).
2. Upon query ((i,x), aux) to the simulation oracle, run the same strategy of S1 defined in Fig. 7

and use oracle access to Πlin.S1.
3. Upon query to S2:

(a) If it can be parsed as a partial transcript trns = (vk
i
,x, π̄1, . . . , π̄r), derive the list of single-

variable polynomials (ṽk′)k′ ← Ṽ2(F, i,x) and forward the query to Πlin.S2 adding the poly-
nomial (ṽk(X)) to the auxiliary information.

(b) Otherwise, simply forward the query to the simulator
4. Given the forgery ((i,xΠ), πΠ) output by AΠ , define the instance x̂k and the corresponding

proof π̂k.
5. For i ∈ indexes(Jk−1), run pi ← ECom(ci)
6. Return the forgery (x̂k, π̂k) and set the auxiliary input auxE as the adversary AΠ does and

include the polynomials (pi)i extracted at the previous step.

By inspection, if the forgery of AΠ passes the verification equation, then the forgery of Blin,k passes the
verification equation too.

Since the adversary AΠ has not fully copied the transcript from any simulated proof, the random coin
ρr computed by the verifier to verify the proof πΠ is, with overwhelming probability, a fresh coin, which

36

implies that the simulator has never output a proof on it. Moreover, since the check x̂k is focal, the point
x̂k.x is equal to ṽk(ρr) and degX(ṽ) ≥ 1. The forgery of the reduction satisfies the Hash Check of Φlin because
the reduction adds ṽk(X) to the auxiliary information of the RO query including all the commitments of
x̂k at Item 3a. Moreover, when the distinguishing event between the two consecutive hybrids happens, the
Partial-Extraction Check of the policy is satisfied:

– For k = 1 since, by definition, the index polynomials (pi)i∈n(0) are honestly generated and therefore
equal to what ECom extracts.

– For k > 1, because of the changes introduced in the hybrids H1,1, . . .H1,k−1, the list of polynomials
extracted in Item 5 are correctly extracted and included in the auxiliary information.

Finally, because of the compilation-safeness property, the linear independence check between the left poly-
nomials of x̂k allows us to conclude that the forgery of Blin,k matches the policy, while the distinguishing
event asserts that the extractor fails. This bounds the probability of the distinguishing event to be at most
ϵlin. ⊓⊔

Consider H3 that additionally returns 1 if the adversary AΠ copies a simulated transcript up to r-th round
from a simulated proof π′

Π .
Lemma 9. Pr [H3] ≤ Pr [H2] + ϵdel

Proof. In this case, we have that πΠ and π′
Π use the same commitments c, the same messages π in the first r

rounds, and there must be at least one commitment or a message in the last round that is different. Because
of the change introduced in the previous hybrid, the distinguishing event focuses on the case in which the
commitments sent in the last round can be extracted using ECom, and moreover they satisfy the focal checks
xk, for k ∈ K2.

However, by the uniqueness of PIOP with delegation phase property (see Definition 24), we have that
the probability of the distinguishing event, which implies two different IP2-transcripts for the same instance
that differ on the first prover message (and polynomials) is ϵdel ∈ negl(log |F|). ⊓⊔

Consider H4 that (similarly to H2) additionally returns 1 if

∃k ∈ K1 :
∑

i

Gi(pγ1(x), . . . pγm
(x), x) · pβi

(x) ̸= y ∨

∃j : cj ̸= [pj(s)]1
where x̂k =

(
(cγj

)j , (cβi
)i, (Gi)i, x, y)

)
.

Lemma 10. Pr [H4] ≤ Pr [H3] + |K1| · ϵlin
Proof. The proof of this lemma proceeds almost identically to Lemma 7. The main difference is that, by
the definition of compilation-safeness, a focal check x̂k with k ∈ K1 queries the polynomials at point x =
ṽk(ρ1, . . . , ρr−1) where degXr−1

(ṽk) ≥ 1, thus we need to use the change introduced in H3 to make sure that
the challenge ρr−1 is different than in all the simulation proofs, and thus the evaluation point x is fresh,
namely that the simulator of Πlin has never simulated a proof with x as evaluation point.

For completeness, we give the full proof of lemma.
We start noticing that, by our simplifying assumption on the order of the verifier’s queries, we have that

the indexes in K1 are consecutive numbers, in particular K1 := {|K2|+ 1, . . . , |K2|+ |K1|}.
We prove this lemma through a series of hybrids. Let H3,|K2| ≡ H3. For any k > |K2|, let H3,k be the

same as H3,k but that additionally returns 1 if:∑
i

Gi(pγ1(x), . . . , pγm(x), x)pβi(x) ̸= y ∨

∃i : cβi
̸= [pβi

(s)]1 ∨ ∃j : cγj
̸=
[
pγj

(s)
]

1

where x̂k =
(
(cγj

)j , (cβi
)i, (Gi)i, x, y

)
. Finally, we have that H4 ≡ H3,|K2|+|K1|.

Let I := CI(x̂k) be the compiler-safe index set of xk. We reduce to the (ΦI,ν
lin ,FI,ν)-simulation ex-

tractability of Πlin. We make use of a reduction similar to the one used in the proof of Lemma 7.

37

Reduction Blin,k(srs, ppΦlin
)

1. Run AΠ(srs).
2. Upon query ((i,x), aux) to the simulation oracle, run the same strategy of S1 defined in Fig. 7,

namely using Πlin.S1.
3. Upon query to S2:

(a) If it can be parsed as a partial transcript trns = (vk
i
,x, π̄1, . . . , π̄r−1). derive the list

(ṽk′)k′ ← Ṽ2(F, i,x). Forward the query to Πlin.S2 adding the single-variable polynomial
(ṽk(ρ1, . . . , ρr−2, X))j to the auxiliary information.

(b) Otherwise, simply forward the query to the simulator
4. Given the forgery ((i,xΠ), πΠ) output by AΠ , define the instance x̂k and the corresponding

proof π̂k.
5. For i ∈ indexes(Jk−1), run pi ← ECom(ci)
6. Return the forgery (x̂k, π̂k) and set the auxiliary input auxE as the adversary AΠ does and

include the polynomials (pi)i extracted at the previous step.

Since the adversary AΠ has not copied, up to the r-th round, the transcript from any simulated proof, the last
random coin ρr−1 computed by the verifier to verify the proof πΠ is, with overwhelming probability, a fresh
coin. Moreover, since the check x̂k is focal, the point x̂k.x is equal to ṽk(ρ1, . . . ρr−1) and degXr−1

(ṽk) ≥ 1.
The forgery of the reduction satisfies the Hash Check of Φlin because the polynomial ṽk(ρ1, . . . , ρr−2, X) is
added to the auxiliary information of the RO query including all the commitments of x̂k. Similarly to the
proof of Lemma 7, the Partial-Extraction Check of the policy is also satisfied.

Finally, because of the compilation-safeness property, the linear independence check between the left poly-
nomials of x̂k allows us to conclude that the extractor would also extract its core and the right polynomials.
By inspection, the list of polynomials extracted by EΠlin is equal to (pi)i at the step 5 of the reduction. ⊓⊔

Consider H5 that additionally returns 1 if

∃k ∈ [ne] :
∑

i

Gi(pγ1(x), . . . pγm(x), x) · pβi(x) ̸= y ∨

∃j : cj ̸= [pj(s)]1
where x̂k =

(
(cγj

)j , (cβi
)i, (Gi)i, x, y

)
. Namely, if the polynomials extracted above do not satisy the non-focal

checks of V.
Lemma 11. Pr [H5] ≤ Pr [H4] + (ne − |Kf |) · ϵlin
Proof. We can show a reduction to the Φlin+-simulation extractability of Πlin. Similarly to the proof of
Lemma 7, the reduction isolates the pair (x̂k, πk) such that the distinguish event happens. Using the poly-
nomials pi ← ECom(ci) that are a valid witness for the focal checks because of the change introduced before,
the reduction can create an algebraic inconsistent proof: given the result of Theorem 3, we can be bound the
probability of such an event to ϵlin. ⊓⊔

Finally, we prove that the probability that AIP wins in H5 is equal to the probability that AΠ wins the
strong simulation-extractibility experiment.
Lemma 12. Pr [H5] = AdvΦSE-se

AΠ ,S,EΠ
(λ)

Proof. We now show that the probability that H5 outputs 1 is equal to the probability that the adversary
AΠ wins the ΦSE-se experiment against EΠ . First, we notice that srs is generated by S(0, ppG) in both
experiments. Because of the checks introduced in H2, H4 and H5, upon a valid forgery ((i,xΠ), πΠ), we
have that:

– The proof πΠ cannot contain a simulated element (see Item 3 of AIP). In fact, because of H4, all the
polynomials can be extracted, and therefore cannot be simulated. Thus, all the RO queries of AΠ that
constitute πΠ (namely the queries q1, . . . , qr) are forwarded to the challenger in Item 3b of AIP (in
particular, any of the queries is already answered by the programming of the RO by the simulator S1).
This implies that the complete transcript sent by AIP is in the list SeenStates.

38

– The extractor EΠ does not abort neither at Item 5 nor at Item 6 because the polynomials (pi)i extracted
by ECom satisfy the linearized checks x̂k, for all k ∈ [ne]. This implies that the extractor EIP in the
Expsr

AIP,IP in H5 is fed with the same polynomials extracted by EΠ .

Thus, the decision bit in the state-restoration game is 1. ⊓⊔

Having bound ϵ5 along the hybrids concludes the proof.

Acknowledgements This work has received funding from the MESRI-BMBF French-German joint project
named PROPOLIS (ANR-20-CYAL-0004-01), the CHIST-ERA project PATTERN (ANR-23-CHR4-0008),
the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
program under project PICOCRYPT (grant agreement No. 101001283), and from the Spanish Govern-
ment under projects PRODIGY (TED2021-132464B-I00) funded by MCIN/AEI/10.13039/501100011033/
and the European Union NextGenerationEU/PRTR, and ESPADA (PID2022-142290OB-I00) funded by
MCIN/AEI/10.13039/501100011033/ FEDER, UE.

References

ark21. arkworks. Diagram of marlin’s prover and verifier, including optimizations, 2021. https://github.com/
arkworks-rs/marlin/blob/master/diagram/diagram.pdf.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bul-
letproofs: Short proofs for confidential transactions and more. In 2018 IEEE Symposium on Security and
Privacy, pages 315–334. IEEE Computer Society Press, May 2018.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision resistance
to succinct non-interactive arguments of knowledge, and back again. In Shafi Goldwasser, editor, ITCS
2012, pages 326–349. ACM, January 2012.

BCF+21. Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolonelos. Zero-knowledge
proofs for set membership: Efficient, succinct, modular. In Nikita Borisov and Claudia Díaz, editors, FC
2021, Part I, volume 12674 of LNCS, pages 393–414. Springer, Heidelberg, March 2021.

BCKL08. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 356–374. Springer,
Heidelberg, March 2008.

BCS16. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 31–60. Springer, Heidelberg,
October / November 2016.

BFHK23. Balthazar Bauer, Pooya Farshim, Patrick Harasser, and Markulf Kohlweiss. The uber-knowledge assump-
tion: A bridge to the AGM. Cryptology ePrint Archive, Paper 2023/1601, 2023. https://eprint.iacr.
org/2023/1601.

BFL20. Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of computational assumptions in the
algebraic group model. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 121–151. Springer, Heidelberg, August 2020.

BFS20. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706.
Springer, Heidelberg, May 2020.

Boy08. Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and Kenneth G.
Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 39–56. Springer, Heidelberg, September
2008.

CBBZ23. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with linear-time prover
and high-degree custom gates. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part II,
volume 14005 of LNCS, pages 499–530. Springer, Heidelberg, April 2023.

CFF+21. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and Hadrián Rodríguez. Lunar: A
toolbox for more efficient universal and updatable zkSNARKs and commit-and-prove extensions. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume 13092 of LNCS,
pages 3–33. Springer, Heidelberg, December 2021.

39

https://github.com/arkworks-rs/marlin/blob/master/diagram/diagram.pdf
https://github.com/arkworks-rs/marlin/blob/master/diagram/diagram.pdf
https://eprint.iacr.org/2023/1601
https://eprint.iacr.org/2023/1601

CFH+22. Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and Hyunok Oh. Succinct
zero-knowledge batch proofs for set accumulators. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM CCS 2022, pages 455–469. ACM Press, November 2022.

CFQ19. Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modular design and composition of
succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward. Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

DDO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. Robust
non-interactive zero knowledge. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
566–598. Springer, Heidelberg, August 2001.

DG23. Quang Dao and Paul Grubbs. Spartan and bulletproofs are simulation-extractable (for free!). In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 531–562.
Springer, Heidelberg, April 2023.

FFK+23. Antonio Faonio, Dario Fiore, Markulf Kohlweiss, Luigi Russo, and Michal Zajac. From polynomial
IOP and commitments to non-malleable zkSNARKs. In Guy N. Rothblum and Hoeteck Wee, editors,
TCC 2023, Part III, volume 14371 of LNCS, pages 455–485. Springer, Heidelberg, November / December
2023.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62.
Springer, Heidelberg, August 2018.

FKMV12. Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-
malleability of the Fiat-Shamir transform. In Steven D. Galbraith and Mridul Nandi, editors, IN-
DOCRYPT 2012, volume 7668 of LNCS, pages 60–79. Springer, Heidelberg, December 2012.

GKK+22. Chaya Ganesh, Hamidreza Khoshakhlagh, Markulf Kohlweiss, Anca Nitulescu, and Michal Zajac. What
makes fiat-shamir zksnarks (updatable SRS) simulation extractable? In Clemente Galdi and Stanislaw
Jarecki, editors, Security and Cryptography for Networks, SCN 2022, volume 13409 of Lecture Notes in
Computer Science, pages 735–760. Springer, 2022.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and universal
common reference strings with applications to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer, Heidelberg, August
2018.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge from simulation-
extractable SNARKs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 581–612. Springer, Heidelberg, August 2017.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-
systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May 1985.

GOP+22. Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel Tschudi. Fiat-shamir
bulletproofs are non-malleable (in the algebraic group model). In Orr Dunkelman and Stefan Dziem-
bowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 397–426. Springer, Heidel-
berg, May / June 2022.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://eprint.iacr.org/2019/953.

Ish19. Yuval Ishai. Efficient zero-knowledge proofs: A modular approach. https://simons.berkeley.edu/
talks/tbd-79. Also see https://zkproof.org/2020/08/12/information-theoretic-proof-systems/,
2019.

Ish20. Yuval Ishai. Zero-Knowledge Proofs from Information-Theoretic Proof Systems - Part
I. ZKProof.org, Blog entry, August 2020. Also see https://zkproof.org/2020/08/12/
information-theoretic-proof-systems/.

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer,
Heidelberg, December 2013.

KPT23. Markulf Kohlweiss, Mahak Pancholi, and Akira Takahashi. How to compile polynomial IOP into
simulation-extractable SNARKs: A modular approach. In Guy N. Rothblum and Hoeteck Wee, editors,

40

https://eprint.iacr.org/2019/953
https://simons.berkeley.edu/talks/tbd-79
https://simons.berkeley.edu/talks/tbd-79
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/

TCC 2023, Part III, volume 14371 of LNCS, pages 486–512. Springer, Heidelberg, November / December
2023.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and
their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194.
Springer, Heidelberg, December 2010.

LPS23. Helger Lipmaa, Roberto Parisella, and Janno Siim. Algebraic group model with oblivious sampling. In
Guy N. Rothblum and Hoeteck Wee, editors, TCC 2023, Part IV, volume 14372 of LNCS, pages 363–392.
Springer, Heidelberg, November / December 2023.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P. Smart,
editor, 10th IMA International Conference on Cryptography and Coding, volume 3796 of LNCS, pages
1–12. Springer, Heidelberg, December 2005.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge SNARKs
from linear-size universal and updatable structured reference strings. In Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128. ACM Press,
November 2019.

Mic94. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer Society
Press, November 1994.

OL. O1-Labs. Maller’s Optimization to Reduce Proof Size - Mina Book. https://o1-labs.github.io/
proof-systems/plonk/maller.html.

RS20. Lior Rotem and Gil Segev. Algebraic distinguishers: From discrete logarithms to decisional uber assump-
tions. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages
366–389. Springer, Heidelberg, November 2020.

RZ21. Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and updatable SNARKs. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–804, Virtual
Event, August 2021. Springer, Heidelberg.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999.

Sze20. Alan Szepieniec. Polynomial IOPs for linear algebra relations. Cryptology ePrint Archive, Report
2020/1022, 2020. https://eprint.iacr.org/2020/1022.

TZ23. Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In Carmit Hazay and Martijn Stam,
editors, EUROCRYPT 2023, Part V, volume 14008 of LNCS, pages 691–721. Springer, Heidelberg, April
2023.

Zha22. Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part III, volume 13509 of LNCS, pages 66–96. Springer, Heidelberg, August
2022.

ZZ21. Mark Zhandry and Cong Zhang. The relationship between idealized models under computationally
bounded adversaries. Cryptology ePrint Archive, Report 2021/240, 2021. https://eprint.iacr.org/
2021/240.

41

https://o1-labs.github.io/proof-systems/plonk/maller.html
https://o1-labs.github.io/proof-systems/plonk/maller.html
https://eprint.iacr.org/2020/1022
https://eprint.iacr.org/2021/240
https://eprint.iacr.org/2021/240

A The OMSDH Assumption

Definition 30. The non-adaptive n-one-more d-strong DH assumption holds for a bilinear group generator
GroupGen if for any set Qx of cardinality less or equal to n, and for every PPT adversary whose queried
points belongs to Qx, namely, for the class of adversaries whose query points are chosen independently of
the randomness of the experiment, the advantage Adv(n,d)-OMSDH

GroupGen,A(λ) is negligible.

The following theorem shows that the non-adaptive OMSDH assumption is equivalent to the SDH assump-
tion.

Theorem 5. For any GroupGen, any n, d ∈ N and a bound L, for any Qx ⊂ F of cardinality poly(λ) and
for any PPT adversary A there exists a PPT adversary B such that:

Adv(n,d)-OMSDH
GroupGen,A(λ) = Adv(n2+d+1)-SDH

GroupGen,B (λ).

Moreover, let QA the query made by an adversary A. For any m ∈ N, for any PPT A such that max{i :
(x, i) ∈ QA} ≤ m:

Adv(n,d)-OMSDH
GroupGen,A(λ) = Adv(nm+d+1)-SDH

GroupGen,B (λ).

In the proof, we define a reduction to the SDH assumption and whose simulation strategy works, similarly
to [FFK+23,TZ23], only for queries on the points Qx.

Proof. Let m be (an upper bound to) the maximum power i queried to Os and let q′ := nm+ d+ 1, notice
that the worst case is m = n. We show a reduction B to the q′-SDH assumption.
B takes as input srs′ ← (

[
(si)i∈[0,q′]

]
1 , [1, s]2) and defines the new SRS srs ← (

[
(p(s)si)i∈[0,d]

]
1 , [1, s]2),

where p(X) := (X − xr)
∏

x∈Qx
(X − x)n and xr is a random point. In particular, the group generator [1]1

given to the adversary is randomized (and equal to [p(s)]1 in the basis of the reduction).
The reduction can easily answer, for any xj ∈ Qx and any i ≤ m, when the adversary queries the oracle

Os with (xj , i): it just computes z ←
[
p(s)(s− xj)−i

]
1, that is a valid output since e(z, [s− xj]i2) = [1]T .

Finally, notice that the forgery for A is [p(s)/(s− x∗)]1. If we compute the euclidean division between
polynomials we obtain q(X) and r such that:

p(X)
(X−x∗) = q(X) + r

X−x∗ .

Noticing that x∗ ̸∈ Qx implies, by construction of p(X), that x∗ does not divide p(X), then r ̸= 0. Therefore
the forgery of the reduction B is set to (y − [q(s)]1)r−1. ⊓⊔

Hereafter, we show that the OMSDH assumption holds in the generic bilinear Maurer’s version of the
GGM [Mau05,ZZ21], in which an adversary can access elements from the groups G1, G2 and GT only via
abstract handles. These are maintained by the challenger in lists L1, L2, and LT , which correspond to
the three groups. Similarly to [BFHK23], we consider the variant proposed by Zhandry [Zha22], where the
adversary cannot choose the handle where the result is stored nor access handles not explicitly given as an
oracle reply.

One-more d-SDH in the Maurer’s GGM. The list L1 initially contains the handles to the elements
1, Z, . . . , Zd, and the list L2 contains the handle to the elements 1, Z. The challenger samples z ←$ Fq as
the solution: the goal is to prove that z remains information-theoretically hidden from the adversary. Since
the OMSDH assumption is interactive, we also give the adversary access to the oracle Os, and the handles
returned by this oracle are stored in the list Ls.

The adversary is granted access to three types of oracles:

Group Oracles: for i ∈ {1, 2, T}, the oracle Oi takes as input two handles h1, h2 ∈ Li for polynomials
P1(Z), P2(Z) and outputs a handle h for the polynomial P1(Z) +P2(Z); Li is accordingly updated with
the handle h.

42

Paring Oracle: the oracle Oe on input two handles h1 ∈ L1 and h2 ∈ L2 for P1(Z) and P2(Z), outputs
the handle hT to the element P1(Z) · P2(Z) and updates LT accordingly.

SDH Oracle: The oracle Os takes as input a pair (x, i) and returns and handle hs for (Z − x)−i, updating
Ls accordingly.

Following the standard argument in the GGM, we need to bound the probability that the so-called
collision event E occurs, namely that there exist two handles h1, h2 that point to two distinct polynomials
P1(Z) and P2(Z) and such that P1(Z) ̸= P2(Z), but P1(z) = P2(z).

Definition 31. We say that the n-one-more d-SDH assumption is secure in the Maurer’s bilinear GGM if
for any no-uniform PT adversary A with oracle interfaces described above triggers the collision event with
almost negligible probability in λ.

Theorem 6. The n-one-more d-SDH assumption is secure in the Maurer’s bilinear GGM.

Proof. We notice that any no-uniform PT adversary for the OMSDH assumption in the GGM is inherently
non-adaptive. In fact, if we run twice A then it would output the same queries to its SDH oracle, unless in
one of the executions the collision event happens, in that case, the set of queries made by A in one execution
is a subset of the set of queries made by A in the other execution.

Finally, by the composition lemma of the AGM [FKL18, Lemma 2.2], by Theorem 5 and since the SDH
assumption holds in the Maurer’s GGM, the theorem follows. ⊓⊔

43

	Real-world Universal zkSNARKs are non-malleable
	1 Introduction
	2 A Technical Overview of Our Results
	2.1 Revisiting PIOP-based zkSNARKs
	2.2 Simulation Extractability of KZG for linearized commitments
	2.3 Simulation extractability of the linearization trick
	2.4 Capturing PIOPs with delegation phase

	3 Preliminaries
	4 Simulation-Extractable CP-SNARKS in AGM
	4.1 Policy-Based Simulation Extractability
	4.2 Simulation Extractability for KZG-based CP-SNARKs

	5 Simulation Extractability of KZG
	5.1 Simulation Extractability of batched KZG
	5.2 Simulation Extractability of the Linearization Trick

	6 Generalizing Polynomial Interactive Oracle Proofs
	6.1 Rlin-PIOP
	6.2 Rpoly-PIOP
	6.3 From Rpoly-PIOP to Rlin-PIOP
	6.4 Notable PIOPs

	7 Revisiting the PIOP-to-zkSNARK compiler
	A The OMSDH Assumption

