
Mutable Batch Arguments and Applications

Rishab Goyal
UW-Madison∗

Abstract

Non-interactive batch arguments (BARGs) let a prover compute a single proof π proving
validity of a ‘batch’ of k NP statements x1, . . . , xk. The two central features of BARGs are
succinctness and soundness. Succinctness states that proof size, |π| does not grow with k; while
soundness states a polytime cheating prover cannot create an accepting proof for any invalid
batch of statements.

In this work, we put forth a new concept of mutability for batch arguments, called mutable
batch arguments. Our goal is to re-envision how we think about and use BARGs. Traditionally,
a BARG proof string π is an immutable encoding of k NP witness ω1, . . . , ωk. In a mutable
BARG system, each proof string π is a mutable encoding of original witnesses. Thus, a mutable
BARG captures and enables computations over a batch proof π. We also study new privacy
notions for mutable BARGs, guaranteeing that a mutated proof hides all non-trivial information.
Such mutable BARGs are a naturally good fit for many privacy sensitive applications.

Our main contributions can be summarized as introducing the general concept of muta-
ble BARGs, identifying new non-trivial classes of feasible mutations over BARGs, designing
new constructions for mutable BARGs satisfying mutation privacy for these classes from stan-
dard cryptographic assumptions, and developing applications of mutable BARGs to advanced
signatures such as homomorphic signatures, redactable signatures, and aggregate signatures.
Our results improve state-of-the-art known for many such signature systems either in terms of
functionality, efficiency, security, or versatility (in terms of cryptographic assumptions).

1 Introduction

Batch arguments (BARGs) enable a prover to compute a succinct proof certifying validity of k NP
statements x1, . . . , xk ∈ L. Succinctness requires the proof size to be poly(λ, log k), thus independent
of batch size as k ≤ 2λ (but could grow with the size of a single witness). The standard soundness
notion states that no polynomial-time cheating prover can compute an accepting proof π for any
batch of statements containing at least one invalid instance with non-negligible probability. To
avoid trivial complexity-theoretic barriers, BARGs are usually defined in the common reference
string (CRS) model.

Over the last few years, BARGs have emerged as a powerful tool in the study and applications of
succinct proofs. They have led to a significant swell-up in current cryptographic capabilities leading
to important progress on major longstanding open problems (see the non-exhaustive list [RRR16,
BHK17, KPY19, CJJ21b, CJJ21a, KVZ21, WW22, HJKS22, DGKV22, PP22, KLVW23, GSWW22,

∗Email: rishab@cs.wisc.edu. Support for this research was provided by OVCRGE at UW–Madison with funding
from the Wisconsin Alumni Research Foundation.

1

CGJ+22, KLV22] and references therein). One of the reasons behind the success of BARGs is: un-
like (general-purpose) succinct non-interactive arguments (SNARGs) [Kil92, Mic94], BARGs do
not suffer from strong non-black-box proof barriers [GW11] that hinder SNARGs. Today, we have
efficient standard model BARGs from a variety of standard falsifiable assumptions such as LWE, or
DLIN, or sub-exponential DDH (and QR) [CJJ21b, CJJ21a, KVZ21, WW22, HJKS22, DGKV22,
PP22, CGJ+22, KLV22, KLVW23].

This work. We put forth a new framework for batch arguments, called mutable batch arguments.
Our goal is to re-envision how we think about succinct proof systems.

Traditionally, a succinct proof system is viewed as a cryptographic operation that encodes an
NP witness ω into a short (proof) string π. Here proof π serves as a short, sound, and verifiable
substitute for the actual witness ω. Unfortunately, such a cryptographic encoding operation (called
the prover’s algorithm) creates immutable encodings π. That is, they are frozen in time and do not
support general mutation operations that an actual witness does. As a simple illustrative example,
consider you have a witness ω for statement x. Given ω, you can use a portion of it (or even
combine it with another witness ω′ for statement x′) to create a witness ω̂ for a new statement x̂.
Such operations are not natively supported over succinct proofs. In words, once we encode an NP
witness ω into a succinct proof π, we can no longer compute on it. Because π does not contain
enough information about ω due to the succinctness property.

Speaking more generally, we study a very natural question towards advancing succinct proofs–
“Can we compute over succinctly proven data?” We introduce a new framework, called mutable
BARGs, for capturing computations over batch arguments. We provide multiple constructions for
mutable BARGs with differing capabilities from a variety of standard falsifiable assumptions such as
LWE, DLIN, QR, DDH. Mutable BARGs turn out to be more useful cryptographic tools enabling a
variety of new applications. To illustrate this, we design new constructions for redactable, aggregate,
and homomorphic signatures [JMSW02, SBZ01, BGLS03, AB09, BFKW09, BF11, GVW15, GV22]
with improved efficiency and additional features from mutable BARGs.

Our results. We introduce the concept of general mutability in BARGs, and formally define
a new framework to capture mutable BARGs. We study three overlapping classes of mutation
functions – identity mutations, subset mutations, monotone policy batchNP mutations. For all these
classes, we provide new constructions of mutable BARGs and use them to enable new applications.
We also study new privacy notions for mutable BARGs, which states that a mutated proof does
not reveal any non-trivial information about the original batch proofs or the instances.

In the next section, we provide a technical explanation of mutability in BARGs, and expand
on these mutation classes. Briefly, identity mutations enable a user to generate a ‘pseudo-witness’,
for any instance in a batch, given just the corresponding batch proof π. Subset mutations enable a
user to combine two or more batch proofs π1, π2, . . . for any (possibly non-overlapping) batches of
instances {x1,i}i, {x2,i}i, . . . to create a new batch proof for any subset of the underlying instances.
And, monotone policy batchNP mutations further generalize subset mutations by enabling a user
to compute a succinct proof for any monotone circuit satisfiability language over the underlying
instances. In summary, we show the following results in this work.

Informal theorem 1. Assuming LWE, or DLIN, or sub-exponential DDH (and QR), there exists
mutable BARGs for subset mutation functions satisyfing succinctness, soundness, and privacy.

2

(As we explain next, subset mutation functions contain identity mutation functions. Thus,
the above captures mutable BARGs for identity mutation functions.)

Informal theorem 2. Assuming LWE, there exists mutable BARGs for monotone-policy batchNP
mutation functions satisyfing succinctness, soundness, and privacy.

Application 1. Assuming mutable BARGs for identity mutations with mutation privacy, there
exists locally verifiable aggregate signatures with full privacy.

Application 2. Assuming mutable BARGs for subset mutations with mutation privacy, there
exists redactable aggregate signatures with full deletion privacy.

Application 3. Assuming mutable BARGs for monotone-policy batchNP mutations with mutation
privacy, there exists homomorphic signatures for all polynomial-sized boolean formuale (i.e.,
log-depth circuits) with context hiding.

Application 4. Assuming mutable BARGs for monotone-policy batchNP mutations with mutation
privacy, there exists homomorphic signatures for all polynomial-sized monotone circuits with
context hiding.

Related work. We add that computing over cryptographically proven data is a well-studied
research topic. In early 90s, De Santis and Yung [DSY91] proposed proofs that enabled certain
basic computations over proofs, and there has been a long line of follow-up works [BDI+99, Val08,
BCC+09, DHLAW10, CT10, AN11, BSW12, DSY12, BCCT13, AGP14, ADKL19] studying numer-
ous generalizations. A major drawback of these generalizations is that they lack proof succinctness1.

We know how to design non-interactive proof systems that support homomorphic computa-
tions [ADKL19], when succinctness is not a desiderata. Our focus is to study and enable admissible
computations over succinct proofs. As we discuss next, succinct mutable proofs that enable arbi-
trary computations are impossible. Therefore, we view succinct mutable proofs and non-succinct
homomorphic proofs as related concepts, but non-overlapping research topics due to diverging
techniques and desiderata.

2 Technical overview

In this section, we provide a detailed overview of mutable BARGs, our constructions, technical
ideas, and new applications. We begin by recalling the standard syntax for BARGs, and follow it
up by our framework for defining mutability in BARGs.

Reviewing BARGs. Let us recall BARGs as defined in the common reference string (CRS)
model. Let L be any fixed NP language. A trusted party samples crs which is available to all users
(provers and verifiers). Given crs, a prover P generates a short proof π, for a sequence of k satisfying
instance-witness pairs (x1, ω1), . . . , (xk, ωk), such that a verifier V can check {xi ∈ L}i by inspecting
a single proof π. Succinctness states that the CRS and proof sizes |crs|, |π| ≤ poly(λ, log k). They

1While there has been research on ‘succinct metaproofs’ [Val08, BSW12, CT10, BCCT13] (or recursive succinct
proofs), they do not think mutation/computation as generally. Their goal is to purely design a ‘succinct proof that
there is a succinct proof and so on’.

3

can grow with the size of a single witness, but not with the batch size. Soundness states that no
polynomial time cheating prover can create an accepting proof π∗ for some x1, . . . , xk such that
xi /∈ L for some i. Many recent works have also defined and achieved a stronger extractability
property called ‘somewhere extractability’ [CJJ21a]. It states that for any index i∗, we can sample
crs with a trapdoor such that one can efficiently extract a witness ωi∗ for the i∗th statement xi∗

from any accepting proof π. Moreover, such a crs does not leak any information about extraction
index i∗.

It has been used implicitly [CJJ21a] and observed explicitly in prior works [DGKV22, KLVW23]
that somewhere extractability can be generically achieved by combining BARGs with any some-
where extractable hash (SEH) function [HW15, OPWW15]. For completeness, we show this generic
transformation formally in Appendix B. BARGs with somewhere extractability are commonly re-
ferred as seBARGs, and these will be a central tool that we generalize and use. Next, we introduce
the concept of mutable BARGs.

Mutable BARGs. Intuitively, a mutable BARG is just a regular BARG system with one special
feature. It supports a set of pre-defined mutation operations on top of batch proofs (without
knowing the original witnesses). A mutable BARG is associated with a class of mutation functions
P`, where each function P ∈ P` takes ` instances x1, . . . , x` as an input, and it outputs a mutated
instance xP . Let L denote the NP language for the BARG. We use LP to denote the NP language
associated with the mutation function P . We call LP as the mutated language, and highlight that
LP could be different for different function choices P ∈ P`.

In addition to the standard prover/verifier algorithms, a mutable BARG system has a proof
mutation algorithm that takes a (mutation) function P ∈ P` as an input along with an `-length
sequence of tuples, where each tuple contains an index, a list of instances, and a corresponding
batch proof. That is, the inputs are P , {(ji, Xi, πi)}i≤`, where each instance list Xi contains k
instances (xi,1, . . . , xi,k) and πi is supposed to be a valid batch proof for instances in Xi. The
algorithm outputs a mutated proof π̂. Intuitively, the property we desire from mutable BARGs is
that the proof π̂ should be a valid succinct proof for the mutated instance xP = P (x1,j1 , . . . , x`,j`)
as per language LP . To capture this last part, we consider an additional verifier algorithm. It takes
a mutation function P , mutated instance xP , and a mutated proof π̂ as inputs, and checks whether
xP ∈ LP given proof π̂.

As in any typical succinct proof system, a mutable BARG must satisfy succinctness, complete-
ness, and soundness. Succinctness and completeness can be naturally defined for mutated proofs.
And, soundness states that it should be computational infeasible for any cheating prover to create
an accepting mutated proof π̂ for any invalid mutation instance xP /∈ LP for any mutation function
P ∈ P`. As a natural extension, we can also define a knowledge soundness property for mutable
proofs. However, we avoid discussing it here for simplicity. Later, for certain specific choices of mu-
tation classes, we consider and achieve mutable BARGs with varying levels of knowledge soundness.
In addition to the above, we also study a privacy property for mutated proofs. The goal behind
privacy is to ensure a mutated proof hides all non-trivial information about the input batch proofs
and instances. That is, a mutated proof π̂ for any function-instance pair (P, xP) does not reveal
any information about the input proofs and instances, {(ji, Xi, πi)}i, except whatever is revealed
by (P, xP). As we elaborate later, mutable BARGs satisfying privacy are a naturally good fit for
many privacy sensitive applications.

Summary and plan. In this work, we formally define the above framework for mutable BARGs as

4

an anchoring point. We study mutable BARGs for natural classes of mutation functions with two
goals in mind– (1) we can design mutable BARGs for that particular class while proving security
under standard falsifiable assumptions, (2) they are useful for new applications. In the remaining
overview, we incrementally raise the complexity of class of mutation functions that we can support,
and show how to design mutable BARGs for that class from standard falsifiable assumptions.
Along the way, we also discuss new applications enabled by each mutable BARG system. Lastly,
we discuss a broad feasibility result for mutable BARGs supporting general functions from idealized
assumptions (such as SNARKs).

Feasibility and boundaries. We briefly remark that one cannot hope to design mutable proofs for all
efficiently computable functions. Intuitively, this can be understood as follows– we can only build
mutable proofs for a function class if one could efficiently decide membership of a mutated instance
xP in LP , given just the function P and sequence of index-instances-proof tuples {(ji, Xi, πi)}i≤`.
If membership of xP in language LP cannot be efficiently decided, given the instance lists and
their proofs, then mutable BARGs for such a function class will be impossible to design due to
appropriate complexity-theoretic separations. In other words, a batch proof πi cannot contain
non-trivial information about every input witness due to succinctness of πi. Thus, if any valid
witness of a mutated instance xP must contain (or non-trivially depends on) the witness for the
jthi instance in list Xi, then it would be impossible to design mutable BARGs for such mutation
functions. We elaborate on this later in Remark 4.4, and next, let us dive into our main results for
mutable BARGs and their applications.

2.1 Identity Mutations

We start by identifying a core fundamental class of mutation functions for BARGs that we call
identity mutations. Later we show that mutable BARGs for identity mutations can be used as a
core component to design mutable BARGs for more complex function classes.

Defining the mutation class. The identity mutation class, denoted as P local, contains a single
‘identity’ program P = I, where the function is defined over a single index-instances-proof tuple
(j,X, π) (thus ` = 1, that is mutation function acts on a single batch proof). Further, the associated
language is the same NP language, LP = L. Thus, for P local, the mutated proof π̂ can be viewed
as a ‘pseudo-witness’ for xj ∈ L (the jth instance in instance list X). We routinely refer to mutable
BARGs for identity mutations as locally verifiable BARGs (lv-BARGs).

For an easier exposition, we use a specialized syntax for lv-BARGs. We call the mutation
algorithm to be the local proof opening algorithm LOpen. It reads k instances {xi}i, target index
j, and a proof π. It outputs a mutated proof which is parsed as two separate components (for
technical reasons discussed later)— opening information auxj and a mutated batch proof π′. Next,
we call the mutated proof verification algorithm to be the local verification algorithm LVfy. It takes
a single instance x, index j, a mutated batch proof π′, and opening information aux, and outputs
a bit. In the main body, we discuss multiple notions of security for such lv-BARGs ranging from
soundness of locally opened proofs, (somewhere) extractability w.r.t. mutated proofs, as well as a
strong notion of full privacy (which says a mutated batch proof π and opening information aux)
reveal nothing about original instance list or corresponding witnesses. For the purposes of this
overview, it is sufficient to consider just the regular soundness property as discussed for mutable
BARGs. We highlight that above changes are purely syntactic simplifications.

With the above formalism, we take a step-by-step approach to build lv-BARGs. First, we

5

provide a basic construction for lv-BARGs that does not achieve mutation privacy, and later we
upgrade them to satisfy mutation privacy, while preserving many interesting features.

Local verifiability via Merkle Trees. Let us start by restating the desiderata. A mutable BARG for
identity mutations should allow taking a batch proof π, for some k instances x1, . . . , xk, and turning
it into a ‘pseudo-witness’ for any instance xj in that batch. While one could simply set the mutated
proof as π along with the k instances {xi}i as such a pseudo-witness, this is not succinct. We want
a mutated proof to be succinct, thus we cannot give out the full batch of instances as part of the
proof.

Our idea to solve this succinctness issue is to use the folklore commit-and-prove approach,
where Merkle tree based hashing is used to ensure succinctness is no longer violated. Recall that
in a Merkle tree based hash function, one can create a short digest for a large database as well as
generate short proofs of membership for any data block in the original database. These proofs of
membership are much smaller than the original database, and an attacker cannot create fake proofs
of membership. That is, they provide short local openings (proofs of membership) of any specific
data block w.r.t. its digest, and these short local openings can be verified succinctly w.r.t. its digest.

Getting back to our main idea, the prover simply commits the batch of instances using Merkle
tree hashing and uses local openings for each instance xi as an additional witness. Concretely, the
prover hashes the instance list X = (x1, . . . , xk) to create a digest hx = H(hk, X). It creates a short
opening opi for each instance xi w.r.t. hx. Here opi proves that xi is the ith instance block in hx.
Next, it creates a batch proof for slightly expanded language L̂ where each instance now contains
the digest hx and an index i. Here it uses the actual instance xi, its witness ωi, and the opening
opi as the new witness. In words, membership for language L̂ checks:

— ωi is a valid witness for xi (w.r.t. language L), and

— opi is a valid opening of xi (w.r.t. hx).

The new batch proof only contains the underlying batch proof. This is because the global verifier
can re-compute the digest hx at verification time from the batch of instances. Now to create efficient
local openings for batch proofs (i.e., pseudo-witnesses), the local opening algorithm LOpen creates
the digest hx from the entire batch of instances, and generates an opening opj for target instance
xj . It sets the auxiliary opening information as auxj = (hx, opj). The local verifier then simply
checks:

— opj is a valid opening for xj w.r.t. hx (i.e., xj was hashed down to create hx), and

— π is a valid BARG proof for instances (hx, 1), . . . , (hx, k).

Crucially, the local verifier just needs auxj for verification, and not the full list of instances. Thus,
the mutated proof no longer needs to grow with the full batch size. We also highlight that this
construction satisfies a rather interesting property of ‘proof-independent openings’. That is, the
opening algorithm does not need batch proof π to generate auxiliary opening information auxj , and
only the batch of instances is sufficient. Coincidentally, the same approach was used in the [CJJ21a]
BARG construction, but rather for proving an online-offline verification property. As we explain
above, we can re-purpose it as an interesting local verifiability property, which simply corresponds
to a fundamental mutation class of identity mutations.

6

In order to prove stronger security properties, we use a somewhere extractable hash (SEH)
function [HW15, OPWW15] instead of plain Merkle trees in the main body. We provide further
details in Section 6.

Identity mutations with full privacy. Our next goal is to upgrade our mutable BARGs for identity
mutations (i.e., lv-BARGs) to satisfy privacy. Here by privacy, we mean that the mutated proof
(along with the opening information) does not reveal any non-trivial information about the batch
of instances that were not opened. In other words, any two mutated proofs for the same instance
should look indistinguishable, even when they are created by mutating two distinguishable batch
proofs.

Our strategy to achieve privacy is to ensure– (a) that a batch proof hides all information about
the original witnesses, and (b) information about original instances can be efficiently hidden during
mutation. Clearly, if we can ensure both of these properties, then mutation privacy should follow.
Suppose that the BARG is already witness hiding (that is, it satisfies the first property), then
we show that we can use it to hide any non-trivial information about instances resulting in full
mutation privacy. The idea is to commit each instance individually to hide the instance, and use
the commitment opening as part of the witness. As long as the commitment opening is hidden, the
instance will be hidden by hiding property of commitments. The question becomes whether this is
enough. While it seems yes, unfortunately this kills succinctness. We elaborate below.

Suppose the prover creates a fresh commitment to hide each instance xi as ci ← Com(xi), and
then use the batch of commitments {ci}i as the batch of instances while using (ωi, xi, opi) as the
corresponding witness. (Here opi denotes the opening of xi w.r.t. ci, and ωi is its witness.) Namely,
an instance is a commitment of the actual instance, while the witness contains the commitment
opening and the actual witness. Observe the membership check can simply be:

— ωi is a valid witness for xi, AND

— opi is a valid opening of xi (w.r.t. ci).

At first glance, this seems to work as a cheating verifier cannot learn xj from a commitment cj ,
and batch proof π hides the rest. However, the problem is – where does the verifier get these
commitments from? A verifier needs the instances which are the commitments in this case. So,
either we must add the commitments to the proof, or make them deterministic. The first solution
takes away succinctness, while the second takes away privacy. In our previous construction, we
used a deterministic Merkle tree hash, thus it was not private.

While it seems we are back to square one, we have actually made progress. Recall that the
local opening (proof mutation) algorithm receives the entire list of original instances {xi}i. Thus,
the opening algorithm can re-compute the commitments and create a Merkle tree style opening of
the commitments along with the commitment opening for just the target instance. Now we could
reveal the random coins (i.e., openings) used for generating commitments as part of the original
batch proof π, but that again makes it non-succinct. What we need is a succinct representation of
all the randomness used in commitments while arguing that the resulting commitments still hide
the instances.

This requirement coincidentally is what pseudorandom functions (PRFs) precisely provide. A
succinct representation, in the form of a PRF key, of a long list of random values. PRFs exactly
fit what we need. Namely, the short description of the commitment openings can be a PRF key.
Formally, prover runs as:

7

1. Sample a PRF key K, and commit instance xi using randomness generated by K.

(e.g., ci = Com(xi;FK(i)))

2. Create a batch proof π using {ci}i as instances, and {(ωi, xi, opi = FK(i))}i as the witnesses.

3. The new batch proof contains the above batch proof π and the PRF key K.

Clearly, the batch proof verifier can re-compute all the k commitments given the PRF key K, thus
correctness is unaffected. Moreover, a local verifier can also verify the batch proof π as long as it
receives a local opened batch proof for the underlying BARG scheme (defined w.r.t. commitments
as instances) as well as the opening randomness to the target commitment cj .

Concretely, the new local opening algorithm, LOpen, creates the local opening using the un-
derlying BARG scheme with {ci}i as the instances2, and sets the opening information to be the
underlying BARG local opening along with the commitment opening opj = FK(j) corresponding
to xj . That is, it omits the PRF key K from the batch proof, and instead adds the PRF evaluation
as the opening for the target instance in the auxiliary information (along with opening information
for the lv-BARG). The local verifier first verifies the validity of the commitment, and then runs
the local verifier for the underlying BARG scheme. The intuition behind privacy is that we could
replace the PRF with a truly random function (by a hybrid argument since a mutated proof only
contains a PRF evaluation on a single point, not the full PRF key), and then using witness hiding
property we can hide the commitment openings for unopened instances, and eventually replace all
the unopened commitments to random values. There are some technical subtleties that have to be
handled, but the above idea is sufficient for proving mutation privacy. More details provided later
in Section 7.

Finally, to finish up our strategy for mutation privacy, we need to hide witnesses within BARGs.
We show a rather simple approach for that3. The idea is to simply replace each witness with a
non-interactive zero-knowledge (NIZK) proof [GMR89]. That is, a prover proceeds as follows:

1. Create a NIZK τi for each instance-witness pair (xi, ωi),

2. Create the batch proof π using the NIZK proofs {τi}i as witnesses instead of the actual
witnesses {ωi}i.

The witness hiding property follows directly from the zero-knowledge property. That is, each τi
hides the witness ωi. Soundness follows by relying on somewhere extractability of BARGs, and
moreover, we can prove somewhere extractability of the above scheme if the NIZK scheme also has
an extractor4. One might wonder if there are alternate approaches to achieve mutation privacy for
lv-BARGs. While we also studied alternate strategies (as we discuss in detail later in Section 2.4),
they are quite limited. Alternate strategies do not satisfy many interesting properties and features
that our current approach provides. We briefly discuss them next.

Complementary mutations (or all-but-one opening). So far we discussed a rather simple, yet funda-
mental, class of mutation operations called identity mutations. Consider its complementary class

2Note that since the local opening algorithm gets access to the full batch of instances {xi}i and also has access to
key K from the proof, thus it can easily compute the batch of committed instances.

3Prior works [CW23] did provide alternate strategies for getting witness hiding, but our solution is simpler and does
not make any additional structural assumption about the BARG scheme

4In the CRS model, a knowledge extractor exists for a non-succinct proof system by using the FLS paradigm [FLS99]
via any perfectly correct public-key encryption scheme for instance.

8

where the goal is to succinctly mutate a batch proof into a mutated proof that proves validity of
all-but-one instances from the original batch. That is, the mutation algorithm takes the same set
of input as for lv-BARGs, which is k instances {xi}i, target index j, and a proof π. But the output
proof (auxj , π

′) is viewed as a batch proof for instances {xi}i 6=j , that is all instances except the jth

instance xj . We refer to this as mutable BARGs with complementary mutations as they provide
the complementary functionality to lv-BARGs (identity mutable BARGs).

Our design approach for lv-BARGs can be easily generalized to design mutable BARGs for
complementary mutations. Moreover, it still satisfies mutation privacy. The core observation is
that we currently reveal the PRF evaluation for a single instance where we want to locally open
the proof. Now if we replace this with a “punctured” PRF key K{j} = Puncture(K, j) [BW13,
BGI14, KPTZ13], then a verifier could re-compute the commitment ci for every instances xi for
i 6= j. This is due to correctness of puncturable PRFs which state that Eval(K{j}, i) = FK(i) for all
i 6= j. Thus, a mutated proof for all-but-one openings contains the punctured PRF key K{j} and
commitment cj . A verifier simply re-computes all other commitments and uses those to verify the
mutated batch proof. And, since the commitment cj is hiding, thus mutation privacy of the above
construction follows similar to the mutation privacy for lv-BARGs. The main difference is that
we rely on punctured PRF security instead of regular pseudorandomness security. This highlights
a distinct advantage of our design approach of starting with witness hiding BARGs. In the next
section, we design mutable BARGs for more general mutation classes, thus we do not provide the
above construction in the main body.

Fast (witness-independent) proof mutation. Additionally, we highlight that our mutable BARG
schemes (both for identity and complementary mutations) have a special feature that the run-
ning time of their respective mutation algorithms does not depend on the size of original witnesses.
Thus, the mutation operation is extremely efficient in our constructions. This is because to mutate a
batch proof, we simply compute a hash function (and a hash opening) and re-compute commitments
of instances and evaluate a PRF. All these operations do not operate on any witness-dependent
proof component, thus are independent of the time needed to even read a single witness or check
its validity. While designing mutable BARGs with optimal proof mutation complexity are not a
focus of this work, we believe our techniques will be useful for future works interested in resolving
such questions.

Next, we provide a natural application of mutable BARGs supporting identity mutations to
design aggregate signatures with fast local verification [GV22].

Application 1: locally verifiable aggregate signatures. An aggregate signature [BGLS03]
scheme allow public aggregation of a sequence of verification-key-message-signature tuples {(vki,mi, σi)}i
into a single short aggregated signature σ̂. Such signatures prove possession of signatures for mi

under key vki (for all i) by just providing σ̂. In a recent work [GV22], Goyal and Vaikuntanthan
extended the concept of aggregate signatures to a new local verifiability model. Their goal was to
enable fast verification of an aggregate signature, where a local verifier can check signature validity
for a single message in time and space independent of the number of signatures aggregated. To
avoid trivial impossibility, they defined an additional algorithm referred to as the hint generator
that creates a short hint for an aggregated signature. Given such a short hint, a verifier can lo-
cally and efficiently inspect whether a signature for a particular message was aggregated inside the
aggregated signature without reading the full sequence of verification-key-message pairs.

As an application of mutable BARGs supporting identity mutations, we obtain the first locally

9

verifiable multi-signer aggregate signature satisfying message privacy under adversarial openings
from standard assumptions. Prior works on aggregate signatures with local verifiability did not
achieve such properties. Either they worked in the single-signer model [GV22], or they relied on
general purpose SNARGs.

Our starting point are the recent works [WW22, DGKV22] which made an observation that
BARGs can be used generically to obtain aggregate signature. The key intuition was that the
aggregation procedure can be implemented as a BARG prover where the sequence of key-message
pairs {(vki,mi)}i can be used as the instance, and their corresponding signatures {σi}i as the
witnesses. We show that this core idea can be naturally extended to the local verifiability model.
We show that by replacing the underlying BARG with a mutable BARG for identity mutations,
the resulting aggregate signature scheme also satisfies desired local verifiability property.

At a high level, the main observation is that one could use the mutation algorithm to create a
local opening for an aggregate signature since an aggregate signature is simply a batch proof. Now
we can also show that unforgeability of this scheme follows from an appropriate notion of somewhere
extractability for mutable BARGs that our constructions satisfy. Moreover, the resulting signatures
satisfy a strong notion of message hiding which was not known previously. Briefly, message privacy
for such aggregate signatures state that a local verifier cannot learn anything beyond the message
that it is trying to verify. This directly follows from the mutation privacy of our mutable BARGs.
We refer to Section 12 for more details.

2.2 Subset Mutations

The next class of mutation functions that we consider is the subset mutation class. The subset
mutation class, denoted as Pdel, is a generalization of the identity class. In a few words, it is a
generalized family of ‘identity’ functions. Each function P` = I` (for every ` ∈ N) in this class works
on a tuple of instances rather than a single instance (as in P local). Basically, P` takes as input (i.e.,
mutates) an `-sequence of index-instances-proof tuples (j1, X1, π1), . . . , (j`, X`, π`) (where ` ∈ N
denotes the arity of the function), and it computes a proof for a subset of instances corresponding
to indices j1, . . . , j`. The associated language is also a batch language, LP` = L⊗`. That is,
(x1,j1 , . . . , x`,j`) ∈ LP` iff xi,ji ∈ L for all i. It is straightforward to check that P local ⊂ Pdel as P local

is just the function P1 = I1.
We routinely refer to mutable BARGs for subset mutations as deletable BARGs (de-BARGs).

For an easier exposition, we again provide a specialized syntax for de-BARGs. We call the mutation
algorithm to be the proof deletion algorithm Delete. It reads k instances {xi}i, deletion set S, and
a proof π. It outputs a deleted/redacted proof πred. In this case, the mutated proof verification
algorithm is really defined to be the same algorithm as for non-mutated proof verification. In the
main body, we discuss multiple notions of security for such de-BARGs ranging from soundness
of deleted proofs, (somewhere) extractability w.r.t. deleted proofs, as well as multiple notions of
deletion privacy. We want to point out that our formulation for de-BARGs slightly deviates from
the subset mutation class as described above. The main difference is that, in our formulation, we
consider the input tuples (j1, X1, π1), . . . , (j`, X`, π`) to have the additional property that all ` Xi’s
and πi’s are identical. This seems to more naturally capture the intuition of subset mutations, and
contains the same technical ideas as what we require for a more general class of subset mutations.

Deletable BARGs via batching identity mutations. At first glance, it might appear that
designing mutable BARGs for subset mutations could be more challenging than designing it for

10

identity mutations. Interestingly, we show this is not the case, and identity mutations is certainly
a central and fundamental class of mutation operations.

Our main observation is that a locally verifiable BARG is really a deletable BARG, where the
deletion operation only supports deletion of all-but-one instances. That is, if the goal is to delete
all but the jth instance, then we could simply run the LOpen algorithm on the batch proof π for
instances {xi}i with target index j to generate a local opening auxj for xj . Here opening auxj
along with the mutated proof π′ can be viewed as a redacted proof for instance xj . Moreover, if
the local opening satisfies mutation privacy (which guarantees that the opening does not reveal
any information about unopened instances), then this implies that the redacted proof (auxj , π

′)
satisfies deletion privacy. Here by deletion privacy, we mean that the deleted/redacted proof does
not contain any non-trivial information about the deleted instances and/or witnesses.

With the above observation, our strategy for building de-BARGs is to lift the mutable BARG
scheme supporting all-but-one deletion into a scheme that supports arbitrary deletion. To execute
this, we use a rather simple idea. The general deletion algorithm now works in two phases– (1) it
simply generates local openings for every instance that is not being deleted (i.e., {xi}i/∈S), and (2)
then generates a fresh BARG proof for all these instances {xi}i/∈S using the individual all-but-one
deleted proofs as the new witnesses. Basically, we are recursively generating BARGs of BARGs to
perform deletion. The core insight here is that the local verifiability feature enables translating
a short proof π with large verification time (due to having to read entire batch of instances)
into another short proof aux with small verification time (as LVfy only reads a single instance).
Thus, while BARGing of BARGs could have been very inefficient (and also not necessarily privacy
preserving), introducing local verifiability as an intermediate operation before BARGing a proof
again solves the efficiency problem. Moreover, as long as the local openings also satisfy mutation
privacy, this approach ensures full deletion privacy nearly generically. We discuss the above (and
achieving more properties) in detail in Section 9.

Extending to general subset mutations. We highlight that the above approach directly extends to
the more general setting of subset mutations. That is, even when the instance lists Xi’s and
corresponding proofs πi’s are no longer identical, the above strategy is sufficient for handling subset
mutations. Although there is one subtle technical difference. When all the instance lists and proofs
are the same, then our approach guarantees that the size of the mutated (deleted) proof grows only
by an additive factor that can be made independent of the original witness size. This is because
in our formulation locally opened proofs have two components– auxiliary opening information and
a mutated batch proof. Now for a fixed batch proof, the actual mutated batch proof portion for
different target indices are the same. Thus, they can be simply kept as part of the instance or the
NP language instead. This optimization suggests that the locally opened proofs for a single batch
proof can be batched more efficiently, but this cannot be guaranteed whenXi’s and πi’s are no longer
identical. It is an interesting problem to design mutable BARGs for general subset mutations with
only a fixed polynomial additive proof growth. We believe that this might either need to develop
new algebraic techniques for composing batch arguments, or a careful use of optimal-rate batch
arguments [DGKV22, PP22].

Application 2: redactable signatures. Redactable signatures [JMSW02, SBZ01] allow a sig-
nature holder to publicly censor parts of a signed document such that the corresponding signa-
ture σ can be efficiently updated without the secret signing key, and the updated signature can
still be verified given only the redacted document. These signatures have many real-world ap-

11

plications in privacy-preserving authentication as they can be used to sanitize digital signatures.
(See [DPSS15, DKS16] for a detailed overview.)

We show that deletable BARGs provide a clean and natural framework to design redactable
signatures with many interesting properties. Next, we summarize our construction for redactable
signatures. In our redactable signature scheme, a signer partitions the document into equal sized
chunks and signs each chunk individually. Here by a chunk we refer to the smallest portion of the
message that a user might want to redact. For simplicity, one could consider breaking a long message
bit-by-bit, and signing each bit individually along with its position in the message. However, the
signer might break messages into larger chunks depending upong the application (e.g., partitioning
it word-by-word or sentence-by-sentence).

Next, using de-BARGs, a signer can create a succinct batch proof proving knowledge of valid
signatures for each chunk. In order to prevent trivial forgery attacks, the signer alsos sample a
random tag and adds the same tag to each chunk before signing. This avoids trivial mix-and-
match forgery attacks. We show by a simple reduction to de-BARGs and signature security that
the above scheme satisfies stronger notions of unforgeability. More importantly, this also enables a
simple approach to redact signatures. Whenever a user has to redact a signature (i.e., a batch proof
as per our dsign), then it can run the proof deletion algorithm to delete the corresponding chunks.
The resulting redacted/deleted proof is then set as the redacted signature. Any user can verify the
redacted proof given just the non-redacted message chunks and their locations. Moreover, deletion
privacy of de-BARGs also guarantees that the resulting scheme guarantees privacy of redacted
messages.

We want to point out that in all known redactable signatures, the size of a redacted signature
scales at least linearly with the length of non-redacted message. However, our redactable signatures
are truly optimal since both the non-redacted and redacted signatures are of fixed size. Thus, to
the best of our knowledge, this gives the first truly compact redactable signature scheme where all
system parameter sizes are asymptotically optimal. We refer to Section 13 for more details.

2.3 Monotone Policy batchNP Mutations

The final class that we consider in this work are a special class of non-deterministic mutations, that
we call monotone policy batchNP mutations. The mutation class is inspired by the recent work on
SNARGs for monotone policy batchNP by Brakerski et al. [BBK+23]. For any NP language L and

circuit family C = {Ck}k, the monotone policy batchNP language L(k)C is defined as:

L(k)C = {(C, x1, . . . , xk) : C ∈ Ck and C(Ix1∈L, . . . , Ixk∈L) = 1} ,

where I is an indicator variable defined as Ix∈L = 1 iff x ∈ L. [BBK+23] considered above languages
where C contained all monotone circuits.5

In this work, we design mutable BARGs supporting monotone policy batchNP mutation func-
tions. The monotone policy batchNP mutation class, denoted as Pmtone, is associated with a class

5We remark that prior works considered the language to be parameterized by a single monotone circuit C rather
than a class of circuits C. However, we find it to be cleaner to define the language w.r.t. a class of circuits rather
than a single circuit. That is, we consider the circuit C to be part of the instance as well. While this is a non-trivial
adjustment to the definition of batchNP languages, it turns out that this merely resorts to a syntactic change in
the underlying constructions. In other words, existing constructions [BBK+23, NWW23] already satisfy the above
formulation. Thus, we use the above more general notation for batchNP languages.

12

of monotone circuits C = {C`}`, where circuit C ∈ C` is a monotone circuit that takes ` bits as in-
puts. Each function P` is associated with a monotone circuit C ∈ C`, and it takes as input/mutates
an `-sequence of index-instances-proof tuples (j1, X1, π1), . . . , (j`, X`, π`). Here the associated mu-

tated language LP` is the monotone policy batchNP language L(k)C , as defined above. That is,

(x1,j1 , . . . , x`,j`) ∈ LP` iff (C, x1,j1 , . . . , x`,j`) ∈ L
(`)
C . It is important to note that some of the proofs

πi can also be empty since the monotone circuit C might be satisfiable even when some of the input
statements {xi,ji}i are not in the language L. This is unlike previous mutation classes, where all
the input batch proofs must be valid for the mutation operation to create a valid mutated proof.

Next, we describe our construction for mutable BARGs for aforementioned mutation class. Our
construction relies on two central pieces: (a) mutable BARGs for identity mutations (i.e., locally
verifiable BARGs), and (b) SNARGs for monotone policy batchNP.

Monotone policy batchNP mutations via batchNP SNARGs and lv-BARGs. We start by
recalling the notion of SNARGs for monotone policy batchNP language from the recent work of
Brakerski et al. [BBK+23]. In such SNARGs, the prover takes description of a monotone circuit

C ∈ C along with a batch of k instance-witness pairs {(xi, ωi)}i. As long as (C, x1, . . . , xk) ∈ L
(k)
C ,

the prover generates a valid succinct proof π that can be verified given the monotone circuit C and
k instances {xi}i. Succinctness only guarantees that the proof size does not grow with the batch
size k, but can grow with the length of a single witness.

Our main strategy for enabling monotone policy batchNP mutations is to combine above
SNARGs with any locally verifiable BARG scheme (BARGs supporting identity mutations). This
further illustrates the fundamental nature of the identity mutation class as it enables such a wide
array of mutation functions via simple generic compilers. We describe the main approach next. To
set up an lv-BARG system as well as a monotone policy batchNP SNARG system, and combine
their individual CRS as the joint CRS for the new mutable BARG system. The regular prover
and verifier algorithms for the mutable BARG system simply use the lv-BARG prover and verifier
algorithms as is. Now, to mutate a sequence of k index-instances-proof tuples {(ji, Xi, πi)}i w.r.t.
monotone circuit C, one performs a two-step approach: first, each batch proof πi is locally opened
for index ji; second, run the batchNP SNARG prover for circuit C and instances {xi,ji}i using
the locally opened proofs as the corresponding witnesses. The output proof is simply set to be
the succinct mutated proof. Succinctness follows from succinctness of lv-BARGs and underlying
SNARGs.

The soundness of the above design is not as straightforward. This is because the underlying
lv-BARG scheme is only computationally sound, thus to argue soundness of the above design we
need a reasonable notion of extraction for the underlying SNARGs. So far, for other mutation
classes, the notion of somewhere extractability for BARGs was sufficient. However, here we need
an appropriate notion of extractability for the batchNP SNARGs. A starting point would be to rely
on the somewhere argument of knowledge property for such SNARGs as defined in [BBK+23], but
it is unclear how to select the “necessary subset” non-adaptively to enable somewhere extraction.
Fortunately, Brakerski et al. [BBK+23] also proved a much stronger notion of non-adaptive full
extractability for their SNARGs. They proved their SNARG to be an argument of knowledge
under the hardness of learning with errors assumption [Reg05]. By relying on full extractability,
we can bypass the above technical issue and prove non-adaptive soundness of our mutable BARG
system. Furthermore, we can combine this with somewhere extractability of our underlying lv-
BARG system to get obtain an appropriate notion of somewhere extractability for our mutable

13

BARG proof system. This property will be later useful for our final application to homomorphic
signatures.

Later in Section 10, we provide the above construction in full detail. Next, we overview the key
ideas behind our homomorphic signature schemes based on mutable BARGs for monotone policy
batchNP mutations.

Application 3: homomorphic signatures. Homomorphic signatures [AB09, BFKW09, BF11,
GVW15] allow a signature holder to publicly run homomorphic computations on a signature, with-
out the knowledge of the signing key. As discussed in many prior works [AB09, BFKW09, BF11,
CF13, CFW14, GVW15, FMNP16], homomorphic signatures are very useful for numerous appli-
cations as well as for generalizing the functionality of public-key signatures.

We start by recalling a simplified syntax for homomorphic signatures, informally referred to as
single-dataset fixed-length dataset model. In this model, the signature scheme supports signing of
datasets of fixed size, say `. To enable full generality, the signer can sign the bit value at each
index location of the dataset individually. That is, the signing algorithm takes a bit b and index
i as inputs, and generates a corresponding signature σ. In this model, the signer signs at most
one bit for index i ≤ `, and there exists a special homomorphic evaluation algorithm, Eval, that
takes as input a circuit C, an-` sequence of signatures σi for message bits mi, and it generates
an evaluated signature σ′ that acts as a signature for message the evaluated C(m1, . . . ,m`). The
special property of the evaluated signature is that it can be verified given only the description of
circuit C and the circuit output on the dataset. That is, a verifier does not need the underlying
dataset m = (m1, . . . ,m`). As noted in prior works [GVW15], the above formalization can be
generically upgraded to homomorphic signatures to general models such as multi-dataset model.

Our main observation is that any mutable BARG system supporting monotone policy batchNP
mutations can be used to design homomorphic signatures for both monotone as well as non-
monotone circuits. That is, even when the mutable BARG system only support mutation of
monotone circuits, we can still design homomorphic signatures to evaluate non-monotone circuits.

Homomorphically evaluating monotone circuits. As a starting point, let us consider the simpler
case of evaluating monotone circuits with single-bit output. And, for simplicity, consider that the
attacker’s goal is to create a forgery σ′ w.r.t. a circuit C∗, such that the circuit’s output is 0 on the
queried dataset, yet the verifier accepts it as a valid signature for output bit 1. We informally refer
to this as 1-sided forgery. This simplifying assumption about forgery type follows without loss of
generality. This is because to protect from attackers who want to claim the opposite (i.e., claim
forgery for output bit 0 when circuit output is actually 1), one could repeat a homomorphic scheme
with above guarantee twice (one for actual circuit and one for its complementary circuit). That is,
simply consider the negated circuit C∗ which outputs the complementary bit of C∗. Now if C∗ is
monotone, then by applying De Morgan’s identities we can move the negation to the input wires
and deterministically build another monotone circuit that will be applied on the negated input.
Thus, a signer would sign the actual dataset bits under the first homomorphic signature scheme,
and also sign its complement under the second homomorphic signature scheme. Now if it wants to
claim the evaluated circuit output is 1, then it uses the first system for evaluation, else it uses the
second system for evaluation.

With the above observation, the idea for designing homomorphic signatures for monotone cir-
cuits (with 1-sided forgery as describe above) is to simply start with an aggregate signature scheme
from BARGs that we discussed earlier, and use the monotone policy batchNP mutation feature

14

for BARGs to compute the evaluated signature as a mutated batch proof. In words, the idea is
to generate signatures individually (using the underlying standard signature scheme), and then
aggregate them using the BARG prover’s algorithm. That is, each dataset bit-value pair (i,mi)
is individually signed using a regular signing key sk. Then all these bit-by-bit signatures σi are
aggregated in the form of a batch proof π. Now since we only want to guarantee 1-sided forgery
(i.e., only want to prevent forgery for output bit being incorrectly claimed to be 1), we do not
aggregate all signatures σi but only those where the corresponding message bit mi = 1. That is,
we only aggregate a signature if it can be useful in proving the evaluated circuit output to be 1.
Note that since we are only considering monotone circuits here, thus only an input wire with value
1 can be useful in proving the output of the circuit is 1.

Now the idea for evaluating a monotone circuit on any given signature σ of some dataset
M = (m1, . . . ,m`) is to simply run the proof mutation algorithm on the signature σ (interpreted
as a batch proof) where the mutation function is set to be C. To fit the notation of the mutation
function, we have to set the index-instances-proof tuples {(ji, Xi, πi)}i appropriately. That is, each
πi is either σ or (depending upon ith message bit mi), and the index-instances are set as ji = i
and Xi = (1, . . . , `).6 We refer to Section 14.2 for more details. The proof of unforgeability boils
down to the mutation soundness of the underlying mutable BARG as well as the signature scheme
also satisfies context hiding if the BARG scheme satisfies mutation privacy. Since both of these
propoerties are satisfied by our design of mutable BARGs, thus our homomorphic signatures are
secure and context hiding.

Interestingly, our approach of using mutable BARGs for monotone policy batchNP mutations
enables us to view and design far more general notions of homomorphic signatures. This is in part
because our above approach does not use the full power of mutable BARGs. While it is not a focus
of this work, we briefly sketch on how we could construct non-trivial generalizations of homomorphic
signatures such as multi-key homomorphic signatures [FMNP16]. In homomorphic signatures, one
could only evaluate a single ‘fixed’ dataset signed by a single user. However, one could consider a
multi-signer setting where different dataset portions could be signed by asynchronously by multiple
different signers. Such a multi-key setting was considered in the work of Fiore et al. [FMNP16],
where they defined homomorphic signatures for this more general multi-signer model. It is straight-
forward to see that our aforementioned homomorphic signature construction can be naturally ex-
tended to the multi-key setting. This is because our mutable BARGs support mutation of batch
proofs generated by different provers thus, by appropriately re-defining the index-instances-proof
tuples, we can obtain multi-key homomorphic signatures for monotone circuits as well. We believe
this to be an interesting direction, and leave further analysis for future work.

Beyond monotone circuits. While at first it might seem that designing homomorphic signature
for classes beyond monotone circuits will be difficult following the above approach (unless we can
design non-monotone batchNP SNARGs), we show this is not the case. Fortunately, we are able to
extend the ideas behind the above construction for monotone circuits to be able to evaluate non-
monotone circuits. Our intuition is to rely on folklore approaches to transform any non-monotone
boolean circuits into monotone boolean circuits by introducing more input wires. Concretely, our
approach is to use well-known and commonly-used technique of translating any non-monotone
boolean formulae into a monotone boolean formulae of similar size. Please refer [GLW21, §8.2]
and [GPSW06] for more details.

We know that any log-depth (NC1) circuit can be written as a polynomial-sized (non-monotone)

6In the main body, we set the values a bit differently for technical reasons. However, the intuition stays the same.

15

boolean formulae, which itself can be converted into a polynomial-sized monotone boolean formulae.
Basically, the trick is to use De Morgan’s identities to deterministically translate a non-monotone
formula C with n-bit inputs into a monotone formula C¬ that reads 2n-bits of inputs, but does not
contain any negation gates. Here each input wire for formula C is encoded as two distinct input wires
in formula C¬. Once we do this transformation, then we can just use the proof mutation algorithm
as before to mutate a BARG proof (corresponding to the dataset that is signed) for “monotonized”
circuit C¬. The soundness and context hiding proofs also can be naturally reduced to the security
of underlying mutable BARGs and signature scheme. Later in Section 14.1, we describe this in
full detail. We briefly remark that our usage of mutable BARGs as an abstraction also ensures
that our homomorphic signatures satisfy many new interesting properties such as aggregatability
of signatures and evaluation of aggregate signatures etc. This is an additional feature of using
mutable batch arguments as a core cryptographic primitive for applications.

This concludes the overview of our main results and applications, and next we briefly discuss
some other results and related work.

2.4 Auxiliary results and related work

Mutable Batch Arguments from SNARKs. As a final feasibility result, we outline a high
level sketch for constructing most general notion of mutable BARGs from any succinct non-
interactive arguments of knowledge (SNARKs) [Kil92, Mic94]. The idea quite simply is to use
the mutation program P along with entire list of index-instances-proof tuples {(ji, Xi, πi)}i as the
witness for showing the validity of the mutated instance xP = P (x1,j1 , . . . , x`,j`) as per language
LP . As we discussed earlier, mutable BARGs are only feasible when P and {(ji, Xi, πi)}i are suffi-
cient to efficiently decide whether xP ∈ LP or not. If this is not feasible, then it is unclear whether
such a mutable BARG can be designed without bypassing standard complexity-theoretic separa-
tions. Now, whenever P and {(ji, Xi, πi)}i are enough to efficiently decide xP ∈ LP , then we can
simply create a SNARK proof using this as the witness. And, any cheating prover can be caught
by running the SNARK extractor, and using that to break soundness of the underlying BARG
scheme. This merely suggests that under the assumption general-purpose SNARKs exist, we can
design general-purpose mutable BARGs generically. As a simple corollary, this would imply that
under existence of SNARKs, we get mutable BARGs for even non-monotone batchNP mutations.
The focus of this work is to design succinct mutable proof systems without relying on idealized
assumptions (such as those needed for SNARKs).

Adaptive soundness: leveraging SEH is enough. Additionally, we observed that we can
prove adaptive soundness of BARGs from the polynomial harndess of any non-adaptively-sound
BARG by relying on sub-exponential hardness of somewhere extractable hash (SEH) functions.
Recall that adaptive soundness states that an attacker receives crs before selecting the batch of
instances {xi}i and the proof π it submits as its soundness attack. It is well known [BHK17]
that there are significant technical challenges to adaptive soundness from falsifiable assumptions.
However, we show these barriers can be bypassed if BARG is only somewhere extractable and not
everywhere extractable.

Our observation is that the commit-and-prove construction for designing seBARGs is already
adaptively sound by using complexity leveraging on the SEH component. Very briefly, the intuition
is that an adaptive attacker must either break non-adaptive soundness of the underlying BARG
or index hiding of the SEH function. This is because if there is a ‘bad’ soundness attacker that

16

breaks adaptive soundness but not non-adaptive soundness, then it must be able to break index
hiding (moreover, a reduction algorithm can figure this out via a brute force search). While this
does not impact any of our results in this paper, we formalize this observation later in Appendix C
as it may be of independent interest.

Alternate approaches to identity mutation and limitations. As we hinted earlier, we
also studied alternate approaches to design locally verifiable BARGs with mutation privacy. One
successful strategy is to use NIZKs as a last step; that is, take a locally opened batch proof and
then create a NIZK proof of it. Since all inputs to the local verifier are short, thus the size of the
NIZK proof will still be short. Moreover, the resulting mutated proof satisfies mutation privacy
because of the zero-knowledge property. Concretely, given a (non-private) local opening aux and
batch proof π, we could generate a NIZK proving knowledge of aux and π such that they verify
membership of target instance x.

While this also satisfies mutation privacy and seems simpler than our current approach, this
has multiple limitations that we briefly summarize.

1. Complementary mutations. Using puncturable PRFs, we could easily handle complemen-
tary mutations. However, it seems unclear whether that follows from NIZKs-on-top approach.

2. Inefficient proof mutation. Further, by using NIZKs-on-top, the proof mutation algo-
rithm would run in time polynomial in the witness size. This is because a batch proof size
does grow with the size of a single witness and, if this batch proof is used as a witness by
a NIZK prover, the proof mutation algorithm runtime would grow polynomially with the
witness size. Our approach already gives us fast proof mutation.

3. Black-box vs. non-black-box. We wanted to avoid making non-black-box use of BARGs
(if at all possible). Using NIZKs as a last step would mean making non-black-box use of
cryptography, both inside and outside BARGs. Our current transformations only make black-
box use of BARGs, and only within BARG themselves do we make non-black-box use of other
cryptographic objects. We believe this will eventually lead to more practical constructions.

4. Minimizing assumptions. Moreover, from a theoretical view point, our approach requires
far simpler assumptions. Observe that in our current construction (combining all individual
transformations in one bigger transformation), we only need to rely on a NIZK proof system
for language L ∧ COM.Verify. That is, we need a NIZK for just a slightly bigger language
than L. Whereas NIZKs-on-top would need a NIZK proof for language defined by the BARG
verifier circuit which is far more complicated. E.g., if L is simply UP, then our approach
only needs the minimal assumptions of BARGs and NIZKs for UP (since COM.Verify can be
specified within UP as well). Thus, our current approach seems to be a better approach for
understanding minimal cryptographic complexity of these concepts.

Lastly, although currently we have a separate transformation for making our BARGs witness
private, our hope is that concrete BARG constructions in the future might be directly zero-
knowledge by exploiting the underlying mathematical structure in them. This would lead to
concretely efficient constructions of instance private BARGs.

Related work. BARGs for NP follow directly from any SNARG for NP, and starting with
the work of Micali [Mic94], there has been tremendous research advances in designing SNARGs

17

from a wide variety of assumptions. However, all such current constructions of SNARGs for NP
rely on either idealized assumptions [Gro16, BSBHR18, COS20, CHM+20, Set20], or non-falsifiable
assumptions [Gro10, BCCT12, DFH12, Lip13, PHGR16, GGPR13, BCI+13, BCPR14, BISW17,
BCC+17], or obfuscation [SW14]. Moreover, due to Gentry-Wichs [GW11], we know that we
cannot build an adaptively sound SNARG for NP (via a black-box reduction) to a falsifiable
assumption [Nao03].

However, the landscape for BARGs for NP from standard assumptions is a lot more promising.
The initial work by Kalai et al. [KPY19] on designing BARGs for NP relied on a non-standard
pairing-based assumption. In recent outstanding results, [CJJ21a, CJJ21b] designed BARGs for NP
with poly-logarithmic succinctness from LWE, and square-root succinctness from subexponentially-
hard DDH and QR assumptions.7 [KVZ21] provided a “BARG-to-SNARG compiler” to construct
a SNARG for P and NTISP. Later on, [WW22] constructed a low-tech BARG construction
from NIZK-like techniques achieving sublinear proof size from standard pairing-based assumptions,
and [HJKS22] improved the proof size in [CJJ21b] to sublinear, and [CGJ+22, KLV22] constructed
BARGs from sub-exponential Diffie-Hellman assumptions among other results. [DGKV22, PP22]
constructed rate-1 BARGs based on standard cryptographic assumptions and provided numer-
ous applications to such as aggregate signatures, incrementally verifiable computing and more,
and [KLVW23] gave a compiler to boost weak succinctness to full succinctness via a rate-1 string
OT, thereby making all prior weakly-succinct BARGs fully succinct. Furthermore, there has been
tremendous progress on designing BARGs in many other settings, and for classes smaller than NP.
References for those can be found within the above articles.

Recently, there has been great progress in understanding the connection between NIZKs and
BARGs. Champion and Wu [CW23] as well as Bitansky et al. [BKP+23] designed NIZK argu-
ments for NP from BARGs and dual-mode commitments (and local pseudorandom generators
for [CW23]). Moreover, a concurrent work by Bradley et al. [BWW23] further reduced the as-
sumptions to either sub-exponentially hard BARGs, or polynomially hard BARGs and public-key
encryption. These results supplement our results very well, since we assume existence of NIZKs
in many of our constructions. Thus, using these recent results, we can simplify our cryptographic
assumptions to just seBARGs and PKE for many of our results (rather than having NIZKs as an
extra assumption).

Concurrent works. In a concurrent work, Bradley et al. [BWW23] independently observed
that sub-exponentially somewhere sound BARGs are also adaptively sound. Our transformation
in Appendix C proves a slightly more general statement as we show that just sub-exponentially
secure SEH is enough to go from somewhere sound BARGs to adaptively sound BARGs.

In two independent and concurrent works, Brodsky et al. [BCJP24] and Nassar et al. [NWW23]
introduced and designed a new generalization of aggregate signatures called monotone-policy ag-
gregate signatures. Such aggregate signatures enable aggregating signatures on a fixed message m
coming from ≤ n different signers w.r.t. an n-bit policy predicate P . The policy predicates are
general monotone circuits, and they generalize regular aggregate signatures where the policy predi-
cate simply corresponds to ‘AND’ of all input bits. The functionality of monotone-policy aggregate
signatures states that if a user has signatures on a message m from some subset S ⊂ [n] of signers

7Coincidentally, main ideas behind our ‘non-private’ locally verifiable BARGs were already present in [CJJ21a], but
used for a totally unrelated goal of building BARGs for CSAT from BARGs for index languages. It is an interesting
coincidence that similar ideas are useful for local verifiability.

18

such that P (S) = 1 (i.e., the predicate is satisfied for the subset S of signers), then those can be
aggregated into a short signature. And, this short signature can be verified given just P , and not
the entire set of input signatures corresponding to set S. This captures the essence of aggregate
signatures while giving more flexibility in terms of predicates satisfied over the group of signers.
These works also relied on SNARGs for monotone-policy batchNP [BBK+23, NWW23].

In this work, we study and design homomorphic signatures which seem incomparable to monotone-
policy aggregate signatures. Recall in homomorphic signatures, one perform computation on a
signed message; whereas in monotone-policy aggregate signatures, the input message m is not eval-
uated but aggregated. Thus, on a technical level, there does not seem an immediate overlap, except
the common use of monotone-policy batchNP SNARGs.

Lastly, we remark that Nassar et al. [NWW23] observed that by using ‘all-but-one’ (ABO)
signatures [GVW19], one could rely on regular soundness of SNARGs rather than extractability
notions. We believe similar ideas could be useful for generalizing the underlying assumptions for our
construction of homomorphic signatures. Since Goyal et al. [GVW19] already designed ABO sig-
natures from a wide variety of standard cryptographic assumptions, thus the above approach could
possibly lead to new constructions of homomorphic signatures from more general cryptographic
assumptions. We leave further exploration for future work.

3 Preliminaries

Notation. We will let PPT denote probabilistic polynomial-time. We denote the set of all positive
integers up to n as [n] := {1, . . . , n}. Also, we use [0, n] to denote the set of all non-negative integers
up to n, i.e. [0, n] := {0} ∪ [n].

Throughout this paper, unless specified, all polynomials we consider are positive polynomials.
For any finite set S, x ← S denotes a uniformly random element x from the set S. Similarly, for
any distribution D, x← D denotes an element x drawn from distribution D. The distribution Dn
is used to represent a distribution over vectors of n components, where each component is drawn
independently from the distribution D.

3.1 Non-interactive Batch Arguments

Syntax. A non-interactive batch argument (BARG) scheme BARG for language L consists of the
following polynomial time algorithms:

Setup(1λ, 1k, 1n)→ crs. The setup algorithm takes as input the security parameter λ, number of
instances k, instance length n, and outputs a crs crs.

Prove(crs, {(xi, ωi)}i∈[k])→ π. The prover algorithm takes as input a crs and a sequence of k
instance-witness pairs (xi, ωi) for i ∈ [k]. It outputs a proof π.

Verify(crs, {xi}i∈[k], π)→ 0/1. The verification algorithm takes as input a crs, a sequence of k in-
stances xi for i ∈ [k], and a proof π. It outputs a bit to signal whether the proof is valid or
not.

In this work, we rely on somewhere extractable BARGs (seBARGs) for language L which are
defined as above, except the setup algorithm also takes a special index as an input. And, there
exists an additional algorithm called Extract that extracts an accepting witness for the special index

19

from any accepting batched proof. Below we provide the updated setup algorithm syntax along
with the extraction algorithm.

Setup(1λ, 1k, 1n, i∗)→ (crs, td). The setup takes an index i∗ ∈ [k] as an additional input, and out-
puts a trapdoor td as well.

Extract(td, {xi}i, π)→ ω. The extraction algorithm takes as input the trapdoor td, k instances
{xi}i, proof π, and outputs an extracted witness ω.

Correctness and succinctness. An seBARG is said to be correct and succinct if for every
λ, k, n ∈ N, index i∗ ∈ [k], setup parameters (crs, td) ← Setup(1λ, 1k, 1n, i∗), any k instances
x1, . . . , xk ∈ L ∩ {0, 1}n and their corresponding witnesses ωi for i ∈ [k], and every proof π ←
Prove(crs, {(xi, ωi)}i), the following holds:

Completeness. Verify(crs, {xi}i, π) = 1.

Extraction correctness. Extract(td, {xi}i, π) = ωi∗ .

Succinctness. |π| ≤ poly(λ, log k, n,m). That is, the size of the batched proof is bounded by a
fixed polynomial in λ, n, m, and log k where m is length of one witness.

Soundness. A BARG scheme is said to be sound if an attacker can not create a valid proof where
one of the k instances being batch-proved do not belong to the language L. For seBARGs, this can
be indirectly captured by the following two properties.

Definition 3.1 (index hiding). A somewhere extractable batch argument scheme seBARG satisfies
index hiding if for every stateful PPT attacker A, there exists a negligible function negl(·) such
that for all λ ∈ N, the following holds

Pr

[
A(crs) = b
∧ i∗0, i∗1 ∈ [k]

:
(1k, 1n, i∗0, i

∗
1)← A(1λ), b← {0, 1}

(crs, td)← Setup(1λ, 1k, 1n, i∗b)

]
≤ 1

2
+ negl(λ).

Definition 3.2 (somewhere argument of knowledge). A somewhere extractable batch argument
scheme seBARG is a somewhere argument of knowledge if for every stateful PPT attacker A, there
exists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr

 Verify(crs, {xi}i, π) = 1 ∧ i∗ ∈ [k]
∧ ω∗ is not a valid witness for xi∗ ∈ L

:

(1k, 1n, i∗)← A(1λ)
(crs, td)← Setup(1λ, 1k, 1n, i∗)
({xi}i∈[k], π)← A(crs)
ω∗ ← Extract(td, {xi}i, π)

 ≤ negl(λ).

It was noted in prior works [DGKV22, Remark 3.3] that somewhere argument of knowledge
property implies semi-adaptive soundness. For completeness, we provide the regular soundness
definitions (adaptive and semi-adaptive variants) later in Appendix A.1.

3.2 Somewhere Extractable Hash

In this section, we define the notion of somewhere extractable hash schemes, which is essentially
the same as a somewhere statistically binding hash function [HW15, OPWW15] except there is an
explicit extraction algorithm.

20

Syntax. A somewhere extractable hash (SEH) scheme SEH consists of the following polynomial
time algorithms:

Setup(1λ, N, I)→ (hk, td). The setup algorithm takes as input a security parameters λ, the input
length N , and a subset I ⊂ N. It outputs a hash key hk along with a trapdoor td.

H(hk, x)→ h. The hash function takes as input a hash key hk, an input x ∈ {0, 1}N , and outputs
a hash value h.

Open(hk, x, S)→ π. The opening algorithm takes as input a hash key hk, an input x ∈ {0, 1}N , a
set S ⊂ [N], and outputs a proof π.

Verify(hk, h, S, (bj)j∈S , π)→ 0/1. The verification algorithm takes as input a hash key hk, a hash
value h, a set S ⊂ [N], a sequence of bits bj for j ∈ S, a proof π, and outputs 0 or 1.

Extract(td, h, S)→ (bj)j . The extraction algorithm takes as input the trapdoor td, a hash value h,
a set S ⊂ [N], and outputs a sequence of extracted bits (bj)j∈S .

Correctness and compactness. A somewhere extractable hash scheme is said to be correct
and compact if for every λ,N ∈ N, every subset I ⊂ [N], hash key and trapdoor (hk, td) ←
Setup(1λ, N, I), input x ∈ {0, 1}N , hash h = H(hk, x), the following holds:

Correctness of opening. For every set S ⊂ [N], Verify(hk, h, S, (x[j])j∈S , π) = 1, where x[j]
denotes the j-th bit of x and opening π = Open(hk, x, S).

Correctness of extraction. For every set S ⊆ I, Extract(td, h, S) = (x[j])j∈S .

Compactness of hash key, hash value, and opening. |hk|, |h| ≤ |I|·poly(λ, logN), and |π| ≤
|I| · |S| · poly(λ, logN).

Security. For security, we consider index hiding and somewhere statistical binding properties.

Definition 3.3 (index hiding). A somewhere extractable hash scheme SEH satisfies index hiding if
for every stateful PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈ N,
the following holds

Pr

[
A(hk) = b
∧ |I0| = |I1|

:
(N, I0, I1)← A(1λ), b← {0, 1}
(hk, td)← Setup(1λ, N, Ib)

]
≤ 1

2
+ negl(λ).

Definition 3.4 (somewhere statistical binding). A somewhere extractable hash scheme SEH sat-
isfies somewhere statistical binding if for every stateful (computationally unbounded) attacker A,
there exists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr

[
Verify(hk, h, S, (bj)j , π) = 1
∧ Extract(td, h, S) 6= (bj)j

:
(N, I)← A(1λ), (hk, td)← Setup(1λ, N, I)
(h, S, (bj)j , π)← A(hk)

]
≤ negl(λ).

We note that such hash schemes have been constructed in [HW15, OPWW15] from assumptions
such as LWE, DDH and DCR.

21

4 Mutable Batch Arguments

In this section, we introduce the concept of general mutability in batch proofs. Briefly, mutability
property states that a sequence of batch proofs can be combined such that the resulting “mutated”
proof is a fresh succinct proof of a “related” statement. Interestingly, this mutation operation: (1)
can be performed without explicit knowledge of the original witnesses used to create the underlying
batch proofs, and (2) ensures the resulting mutated proof will also not grow with original batch
sizes.

Broadly, we view mutable BARGs as a BARG system which supports certain special mutation
operations on top of batch proofs (without knowledge of original witnesses). One simplistic and
generalized view would be to consider these as enabling “computation on succinctly proven data”.
Syntactically, we define them as follows.

A mutable BARG scheme for mutation class P contains the following two additional algorithms:

Eval(crs, P, {(ji, Xi, πi)}i≤`)→ π̂. The proof evaluation (or mutation) algorithm takes as input a
crs, mutation function P ∈ P, and an `-length sequence of index-instances-proof tuple.

(That is, Xi consists of a sequence of instances Xi = (xi,1, . . .) and πi is a batch proof for
the ith sequence of instances, and ji is an index corresponding to some instance in the ith

sequence.)

The algorithm outputs a mutated proof π̂. Proof π̂ is viewed as a succinct proof (SNARG)
for the mutated instance xP = P (x1,j1 , . . . , x`,j`) corresponding to mutated language LP . We
use P to denote the class of supported mutation functions, and LP denotes the NP language
associated with each mutation function.

Post-Verify(crs, P, xP , π̂)→ 0/1. The (post evaluation) verifier algorithm takes the crs, mutation
function P , mutated instance xP , and a mutated proof π̂. It outputs a single bit.

Correctness and succinctness of mutation. Informally, correctness for mutable BARGs
states that the verifier accepts a mutated proof as long as the underlying batch proofs are valid.
And, succinctness states that the size of a mutated proof grows only polynomially with the security
parameter and maximum proofs size amongst the input batch proofs. We formalize it as follows.

Mutation correctness and succinctness. Let P denote the class of supported mutation functions.
It states that for every λ, k, n, ` ∈ N, crs← Setup(1λ, 1k, 1n), every sequence of instances and
corresponding proofs Xi and πi for ` ∈ N such that Verify(crs, Xi, πi) = 1, and every sequence
of indices j1, . . . , j` ∈ [`], and every function P ∈ P, the following holds

Pr [Post-Verify(crs, P, xP , π̂) = 1 : π̂ ← Eval(crs, P, {(ji, Xi, πi)}i)] = 1,

where xP = P (x1,j1 , . . . , x`,j`). Further, succinctness states that |π̂| ≤ poly(λ,maxi |πi|, log `).8

Multi-hop correctness and succinctness. More generally, in this work, we also consider notions
of multi-hop mutation correctness and succinctness for certain specific mutation operations.

8Ideally, we would want that |π̂| − maxi |πi| = 0, or a fixed polynomial poly(λ). That is, the mutated proofs grow
only additively by a fixed amount. However, this is not the focus of this work.

22

Intuitively, we define them as that a mutated proof can be used for further evaluations for ap-
propriate mutation functions. One can very naturally extend the correctness and succinctness
notions for the multi-hop variants as well.

While multi-hop mutation is not the main focus of this paper, we give constructions for
multi-hop mutable batch proofs supporting deletion/redaction functions.

Soundness. For security, we consider natural post-mutation soundness properties. The intuition
is that any polynomial-time attacker cannot create an accepting proof for any pair of mutation
function and mutated instance (P, xP). Formally, we define it as below.

Definition 4.1 (adaptive mutation soundness). A mutable BARG scheme BARG for mutation class
P satisfies semi-adaptive mutation soundness if for every stateful PPT attacker A, there exists a
negligible function negl(·) such that for all λ ∈ N, the following holds

Pr

 Post-Verify(crs, P, xP , π̂) = 1
∧ P ∈ P ∧ xP /∈ LP

:
(1k, 1n)← A(1λ)
(crs, td)← Setup(1λ, 1k, 1n)
(P, xP , π̂)← A(crs)

 ≤ negl(λ).

Definition 4.2 (non-adaptive mutation soundness). We say the scheme is non-adaptively mutation
sound if the attacker A selects (both) the challenge mutation function P and instance xP at the
beginning of the security experiment.

Privacy. Additionally, we consider a novel privacy property for mutable batch proofs. The goal
is to capture privacy of instances that were mutated to create a new proof. A mutated proof should
not reveal any non-trivial information about the underlying batch proofs. That is, a mutated proof
π̂ for any function-instance pair (P, xP) does not reveal any non-trivial information about the input
sequence of index-instances-proof tuples {(ji, Xi, πi)}i. Below we provide a simulation based notion
of mutation privacy, but one can also consider an indistinguishability based notion for mutation
privacy. Later in this paper, we also formally define indistinguishability based mutation privacy
notions for restricted class of mutation operations.

Definition 4.3 (mutation privacy). A mutable BARG scheme lv-BARG for mutation class P satis-
fies mutation privacy if there exists a stateful PPT simulator Sim such that for every stateful PPT
attacker A, there exists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr


A(π̂b) = b ∧
Post-Verify(crs, P, xP , π̂0) = 1

:

(1k, 1n)← A(1λ), b← {0, 1}
(crs0, td0)← Setup(1λ, 1k, 1n)
crs1 ← Sim(1λ, 1k, 1n)
(P, {(ji, Xi, πi)}i∈[`])← A(crsb)
π̂0 ← Eval(crs, P, {(ji, Xi, πi)}i)
π̂1 ← Sim(P, xP := P (x1,j1 , . . . , x`,j`))

 ≤
1

2
+ negl(λ).

Remark 4.4 (Mutability vs. Homomorphism). A mutable proof system can be viewed as a natural
extension of homomorphism features to batch/succinct proofs. Thus, one might expect the tech-
niques developed in related cryptographic systems such as homomorphic encryption/signatures/ZK-
proofs to find new applications in this setting. However, we believe this might not be the case. This
is because there is a major difference between these settings. One could easily consider mutation

23

classes such that it will be impossible to design mutable batch proofs supporting those mutations
operation, but the same is not true for these other cryptographic systems.

As a simple example, consider a mutation function P that outputs a 3-SAT instance by inter-
preting the underlying instances as clauses. Clearly, if one could build a polynomial-time evaluation
algorithm that supports such mutation operations, then this means one can efficiently solve 3-SAT
arbitrarily. Therefore, unlike homomorphic encryption/signatures/non-succinct proofs, where ho-
momorphic operations supported can be a Turing-complete set, mutable batch proofs supporting
mutation operations that correspond to a Turing-complete set are impossible.

5 Identity Mutations = Local Proof Opening

We begin our study of mutable batch proofs by proposing a fundamental class of mutation operators.
We refer to this class as local proof opening. The intuition behind the local proof opening operator
is to mutate a batch proof π for (say) a sequence of k statements x1, . . . , xk ∈ L into k equally
short proofs π′1, . . . , π

′
j , such that π′j can be used to verify xj ∈ L in time and space independent

of k. Moreover, π′j hides all information about all other instances which were not locally opened.
Following our notation for mutable proofs from previous section, we define the ‘local proof opening’
mutation class P local as follows.

The mutation class P local contains only the ‘identity’ function P = 1. Further, it mutates only
a single index-instances-proof tuple (j,X, π) (thus ` = 1), and the associated language is the same
language, LP = L. Hence, for P local, the mutated proof π̂ is regarded as a proof/pseudo-witness
for xj (the jth instance in list X).

5.1 Specializing syntax and definition

In this work, we refer to mutable batch proofs for identity mutation functions as “locally verifiable
BARGs” (lv-BARGs). Such lv-BARGs enable faster verification, in time independent of the batch
size. These are going to be a central ingredient in the rest of our paper, thus we provide a specialized
set of evaluation and verification algorithms tailored towards these mutation functions for ease of
notation. Formally, an lv-BARG scheme is associated with the following additional algorithms–

LOpen(crs, {xi}i, j, π)→ (auxj , π
′). This takes as input crs, k instances {xi}i, target index j ∈ [k],

and proof π. It outputs opening information auxj corresponding to instance xj , and a proof
π′.

LVfy(crs, x, j, π, aux)→ 0/1. This takes as input crs, instance x, index j, proof π, and opening
information aux. It outputs one bit to denote acceptance/rejection.

Remark 5.1 (proof-independent openings). We split up the proof π′ and opening information
aux into different components to distinguish the setting when the local opening can be computed
independent of the the original batch proof. We call such lv-BARGs to have proof-independent
local openings. That is, syntactically we have LOpen(crs, {xi}i, j)→ auxj . Thus, LOpen is oblivious
to the batched proof, and the same local opening can be used for multiple independently computed
batch proofs for the same group of instances. We do not consider this a core requirement for local
verifiability, however it might be of independent interest.

24

The notion of correctness, succinctness, soundness, and privacy for lv-BARGs can be appro-
priately obtained by specializing the appropriate properties and definitions considered for general
mutable batch proofs. Below we provide the specialized definitions (and some strengthenings)
formally.

5.1.1 Correctness, succinctness, and security

Correctness and succinctness of local opening and verification. Informally, correctness
for a locally verifiable BARG (lv-BARG) states that, given an accepting batch proof for a set of
instances, the local opening algorithm generates a pair of batch proof and auxiliary information for
each instance that can be efficiently verified by the local verifier. And, succinctness states that the
size of the auxiliary opening as well as updated batch proof is poly-logarithmic in k. We formalize
it as follows.

Local correctness. For every λ, k, n ∈ N, crs← Setup(1λ, 1k, 1n), any k instances {xi}i ∈ L∩{0, 1}n
with corresponding witnesses ωi, and every proof π ← Prove(crs, {(xi, ωi)}i), we have that for
every j ∈ [k]

LVfy(crs, xj , j, π
′
j , auxj) = 1, where (auxj , π

′
j) = LOpen(crs, {xi}i, j, π).

Succinctness of opening. |auxj |, |π′j | ≤ poly(λ, log k, n,m). That is, the size of the auxiliary
information and the updated proof is bounded by a fixed polynomial in λ, n, m, and log k
(where m is length of one witness).

Whenever crs is short, this implies that the running time of local verifier is independent of
k (i.e., only grows poly-logarithmically in k). In situations where crs is not short, we can
define an abridged version of crs such that that will be short, and local verifier only reads the
abridged version.

Local soundness and extraction. In addition to the standard (extraction) soundness proper-
ties described in prior sections for regular BARGs, we propose stronger forms of local soundness
properties with/out extraction guarantees. As discussed earlier, stronger soundness properties
targeted to shield the local verifier are very useful for many applications (including deletion and
redaction). The need for stronger soundness is highlighted by the fact that a local verifier can
potentially be fooled in multiple disjoint ways– e.g., a cheating prover could create a purported
batch proof that gets locally verified for an honest auxiliary opening, or it can create a malformed
auxiliary information that gets verified for an honest batch proof, or it could mix-and-match these
attack strategies arbitrarily. Thus, while defining soundness security for a local verifier, we con-
sider, both, the prover and the user creating local opening as adversaries. Intuitively, we define local
soundness property that says an adversary cannot find a valid proof π∗ and auxiliary information
aux∗ for any invalid statement x∗ /∈ L. We formalize it as follows.

Definition 5.2 (semi-adaptive local soundness with adversarial openings). A locally verifiable
BARG scheme lv-BARG satisfies semi-adaptive local soundness with adversarial openings if for
every stateful PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈ N, the
following holds

Pr

 LVfy(crs, x, i∗, π, aux) = 1
∧ i∗ ∈ [k] ∧ x /∈ L :

(1k, 1n, i∗)← A(1λ)
(crs, td)← Setup(1λ, 1k, 1n, i∗)
(x, π, aux)← A(crs)

 ≤ negl(λ).

25

We also consider the following local extraction soundness property.

Definition 5.3 (local argument of knowledge with adversarial openings). A locally verifiable BARG
scheme lv-BARG satisfies local argument of knowledge with adversarial openings if there exists a
local extraction algorithm LExtract such that for every stateful PPT attacker A, there exists a
negligible function negl(·) such that for all λ ∈ N, the following holds

Pr

 LVfy(crs, x, i∗, π, aux) = 1 ∧ i∗ ∈ [k]
∧ ω∗ is not a valid witness for x ∈ L :

(1k, 1n, i∗)← A(1λ)
(crs, td)← Setup(1λ, 1k, 1n, i∗)
(x, π, aux)← A(crs)
ω∗ ← LExtract(td, x, π, aux)

 ≤ negl(λ).

Remark 5.4 (Comparing local argument of knowledge and local soundness). We want to point
out that local argument of knowledge implies local soundness. If there exists a successful local
soundness attacker, then that same attacker would be a successful local argument of knowledge
attacker. Otherwise, the extractor will find an accepting witness, thereby invalidating the attacker
being a valid soundness attacker.

Also, note that the above definitions are defined w.r.t. seBARGs since the setup algorithm takes
a trapdoor index i∗ as input. Alternatively, we could define local soundness for plain BARGs where
the setup algorithm only produces a crs. However, later we provide a construction that achieves
local extractability from any seBARG scheme. Thus, for simplicity, we define local soundness
properties with a trapdoor index directly.

5.1.2 Instance Privacy

While local verifiability is a highly desirable feature on its own, the concept of a local verifier is very
useful for privacy sensitive applications. As discussed earlier, the fact that, both, the batch proof
π and opening aux are short (i.e., independent of batch size) implies that (at least on-average) they
should hide information about other instances that were part of the initial set that was batched
together. This opens the door for using lv-BARGs as a privacy preserving proof accumulator.
By this we mean, that an lv-BARG system can accumulate a batch of classical NP proofs and
store them succinctly. Moreover, the accumulated value can later be opened efficiently to obtain a
verifiable yet private encoding of each individual NP proof without revealing anything about other
proofs inside the accumulator.

Due to its many potential advantages and applications, we propose a strong worst-case instance
privacy property for lv-BARGs. We view the local opening algorithm as generating an auxiliary
opening aux along with a shielded batch proof π′. The intuition is that, from the local verifier’s
perspective, π′ and aux hide everything about all the instances that were not locally opened.
Formally, we capture it via the following game.

Definition 5.5 (instance privacy). A locally verifiable BARG scheme lv-BARG satisfies instance
privacy if there exists a PPT stateful simulator Sim such that for every stateful PPT attacker A,

26

there exists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr


A
(
{(auxj,b, π′j,b)}j∈S

)
= b

∧
(
∀i ∈ [k], ωi is a valid
witness for xi ∈ L

)
:

(1k, 1n, i∗)← A(1λ), b← {0, 1}
(crs0, td0)← Setup(1λ, 1k, 1n, i∗)
crs1 ← Sim(1λ, 1k, 1n, i∗)
(S, {(xi, ωi)}i∈[k])← A(crsb)
π0 ← Prove(crs, {(xi, ωi)}i)
∀j ∈ S : (auxj,0, π

′
j,0)← LOpen(crs, {xi}i, j, π0)

{(auxj,1, π′j,1)}j∈S ← Sim(S, {xj}j∈S , {ωj}j∈S)


≤ 1

2
+negl(λ).

In this work, also we consider a stronger privacy notion called full privacy. It it nearly identical
to the above instance privacy property, except the simulator Sim does not get witnesses for the
opened instances {xj}j∈S as well.

Definition 5.6 (full privacy). We say an lv-BARG scheme satisfies full privacy if any PPT ad-
versary does not win in the experiment described above even when Sim only gets S, {xj}j∈S as
inputs.

6 Building locally verifiable BARGs

In this section, we construct a locally verifiable BARG (lv-BARG) scheme for language L. Let
seBARG = (seB.Setup, seB.Prove, seB.Verify, seB.Extract) be an seBARG for language L̂ (described Fig. 1),
and SEH = (SEH.Setup,SEH.H, SEH.Open,SEH.Verify, SEH.Extract) be a somewhere extractable
hash scheme.

Set notation. Throughout this section, we will use the shorthand notation Ii to denote the
set {(i − 1) · n + 1, . . . , i · n}. Here n is the length of an instance x in language L. In words, Ii
denotes the coordinates of the ith block of size n.

Language L̂

Instance: x̂ := (index i, SEH key hk, hash value hx).

Witness: ω̂ := (instance x, witness ω w.r.t. L, hash opening seh.π).

Membership: ω̂ is a valid witness for x̂ ∈ L̂ if all of the following are satisfied:

– seh.π is a valid opening for instance x. Let Ii denote the indices corresponding to ith

instance block. This requires that SEH.Verify(hk, hx, Ii, x, seh.π) = 1.

– ω is a valid witness for x. Namely, RL(x, ω) = 1 (where RL is L’s relation).

Figure 1: Language L̂ for the seBARG.

Construction. Below we describe our locally verifiable seBARG scheme lv-BARG = (Setup,
Prove,Verify,Extract, LOpen, LVfy) for language L.

27

Setup(1λ, 1k, 1n, i∗)→ (crs, td). It runs the setup algorithms for seBARG (for language L̂) and SEH
schemes where the index i∗ is used to both decide the subset of indices whose extraction is
enabled by SEH scheme and the extraction index in seBARG. Namely, it generates the SEH
hash key and trapdoor as

(seh.hk, seh.td)← SEH.Setup(1λ, k · n, Ii∗),

where Ii∗ is as defined above. It generates the seBARG parameters as

(sebg.crs, sebg.td)← seB.Setup(1λ, 1k, 1n̂, i∗),

where n̂ is the length of instances in language L̂ (i.e., n̂ is dlog ke plus the sum of lengths of
key seh.hk and hash value generated using SEH).

It outputs the lv-BARG crs and trapdoor as

crs = (sebg.crs, seh.hk), td = (sebg.td, seh.td).

Prove(crs, {(xi, ωi)}i∈[k])→ π. It parses the crs as above. It first hashes the sequence of instances
(x1, . . . , xk) using the SEH to obtain a digest/hash value hx. Namely, it computes hx =
SEH.H(seh.hk, (x1, . . . , xk)).

It then generates the opening for each instance xi as follows

∀i ∈ [k], seh.πi = SEH.Open(seh.hk, (x1, . . . , xk), Ii).

Next, it computes a BARG using the somewhere extractable BARG system where each in-
stance now contains its index i, the hash key seh.hk and hash value hω, and the corresponding
witness additionally contains the hash opening seh.πi and the instance xi. Formally, it gen-
erates the batch proof as

sebg.π ← seB.Prove(sebg.crs, {(x̂i, ω̂i)}i∈[k]),

where x̂i = (i, seh.hk, hx) and ω̂i = (xi, ωi, seh.πi) for every i ∈ [k].

Finally, it outputs π = sebg.π.

Verify(crs, {xi}i∈[k], π)→ 0/1. It parses the crs and proof as above. Note that crs contains the hash
key seh.hk but the proof does not contain the hashed value hx. However, since the verifier
knows all the instances {xi}i, it recomputes hx as hx = SEH.H(seh.hk, (x1, . . . , xk)).

The verifier then runs the seBARG verifier on sebg.π = π where the instances now contain i,
seh.hk and hx. Concretely, it outputs the following

seB.Verify(sebg.crs, {x̂i = (i, seh.hk, hx)}i∈[k], sebg.π).

Extract(td, {xi}i, π)→ ω. It parses the trapdoor and proof as above. It first recomputes the hash
value hx as hx = SEH.H(seh.hk, (x1, . . . , xk)).

Here we assume that td contains the crs as well, thus seh.hk is also available to the extraction
algorithm. It then runs the seBARG extraction algorithm to extract the witness ω̂ as

ω̂ = seB.Extract(sebg.td, {x̂i}i, π), where x̂i = (i, seh.hk, hx) ∀ i ∈ [k].

28

It then parses ω̂ as (x, ω, seh.π) and outputs ω as the extracted witness.9

LOpen(crs, {xi}i, j, π)→ (auxj , π
′). It generates the hash value hx and the opening for the target

instance xj as:

hx = SEH.H(seh.hk, (x1, . . . , xk)), seh.π = SEH.Open(seh.hk, (x1, . . . , xk), Ij).

It simply outputs the auxiliary information as aux = (hx, seh.π) and leaves the proof as is
(i.e., π′ = π).

LVfy(crs, x, j, π, aux)→ 0/1. The local verifier parses the inputs as above, and performs the follow-
ing two checks.

Verifying validity of instance. It runs the SEH verifier to check that

SEH.Verify(seh.hk, hx, Ij , x, seh.π) = 1.

That is, x was the jth instance in the instance batch hashed to create hx.

Verifying validity of BARG. It runs the seBARG verifier to check that

seB.Verify(sebg.crs, {x̂i}i∈[k], π) = 1,

where x̂i = (i, seh.hk, hx) for every i. Note that the local verifier only needs the hash
value hx to run the seBARG verifier.

It outputs 1 if both checks pass, otherwise it outputs 0.

6.1 Correctness and succinctness

We now show that the above locally verifiable BARG scheme satisfies completeness, correctness of
extraction, local correctness, and succinctness of proof and opening if the underlying BARG and
SEH schemes satisfy appropriate correctness and succinctness properties.

First, note that by the SEH correctness of opening we know that SEH.Verify(seh.hk, hx, Ii, xi, seh.πi) =
1 for the opening seh.πi as computed by the prover. Therefore, whenever ωi is a valid witness for
xi (w.r.t. language L), then we have that ω̂i is a valid witness for x̂i (w.r.t. language L̂) for every
i. Thus, by completeness of seBARG, the completeness of lv-BARG follows.

Second, note that by seBARG correctness of extraction we know that seB.Extract(sebg.td, {x̂i}i, π) =
ω̂i∗ for the digest hx as computed by the prover and extraction algorithms. Thus, the correctness
of lv-BARG extraction follows.

Third, note that the local verifier checks two conditions. It starts by checking that hx is well
formed in the auxiliary information, and then checks the validity of the BARG proof π. Observe
that since the local opening and prover algorithms compute hx identically, thus by SEH correctness
of opening the first condition is always verified for honest executions. Next, observe that the
seBARG verifier only needs hx to specify the instances (which is computed correctly), thus the
second condition is also verified. Hence, local correctness follows immediately.

9Interestingly, the extractor only requires the hash of all instances hx for running the seBARG extractor, and it does
not need to read all k instances for any other purposes. We use this property while proving local extraction security
of our construction.

29

Finally, to argue succinctness of the lv-BARG scheme, note that it is sufficient to show that |x̂|,
|ω̂|, |hx|, seh.πj are all poly(λ, log k, n,m). This is because then rest of the argument just relied on
seBARG succinctness. Now observe that the above follows from compactness of SEH since |seh.hk|,
|seh.πi|, |hω| are all individually bounded as polynomials in λ, n and m. Therefore, (proof and
opening) succinctness of lv-BARG follows. Moreover, the local verifier’s running time grows only
poly-logarithmically with the batch size k. This follows from two facts– first, the time needed
for hash verification performed by the local verifier depends only depends polynomially on log k
by the efficiency of hash verification; second, the running time for an seBARG verifier also grows
only as poly(log k) since the underlying seBARG needed for this construction is only an ‘index’
seBARG [CJJ21a, KLVW23] where the verifier runtime is independent of the batch size.

Proof-independent openings. Interestingly, our construction naturally satisfies the proof-independent
opening property. Note that the proof π is not used for any computation by the local verifier.

6.2 Security

Below we prove the security of our lv-BARG scheme.

Theorem 6.1. If the somewhere extractable BARG scheme seBARG satisfies index hiding and
somewhere argument of knowledge (Definitions 3.1 and 3.2), and the SEH scheme SEH satisfies index
hiding and somewhere statistical binding (Definitions 3.3 and 3.4), then the above scheme lv-BARG
is a locally verifiable seBARG scheme satisfying index hiding, somewhere argument of knowledge,
semi-adaptive local soundness with adversarial openings, and local argument of knowledge with
adversarial openings (Definitions 3.1, 3.2, 5.2 and 5.3).

Proof. The proof is divided into five parts where we individually prove each security property.

Index hiding. This follows directly from the index hiding properties of the seBARG and SEH
schemes. Concretely, we prove the following.

Lemma 6.2. If the seBARG scheme seBARG and SEH scheme SEH satisfy index hiding, then
lv-BARG also satisfies index hiding.

Proof. This follows from a simple hybrid argument. We define an intermediate hybrid experiment
in which the trapdoor index used while generating the seBARG parameters is i∗1 instead of i∗1, while
SEH parameters are still generated w.r.t. index set Ii∗0 . Note that i∗0 and i∗1 are the two challenge
indices chosen by the attacker. Observe that the hybrid experiment is indistinguishable from the
experiment where the lv-BARG setup algorithm is run with index i∗0 by performing a simple reduction
to the seBARG index hiding property. Similarly, the hybrid experiment is indistinguishable from
the experiment where the lv-BARG setup algorithm is run with index i∗1 by performing a simple
reduction to the SEH index hiding property. Thus, the lemma follows.

Somewhere argument of knowledge. This follows directly from the somewhere statistical
binding property of the SEH scheme and somewhere argument of knowledge of seBARG. Concretely,
we prove the following.

30

Lemma 6.3. If the SEH scheme SEH satisfies somewhere statistical binding and the seBARG
scheme seBARG satisfies somewhere argument of knowledge, then lv-BARG satisfies somewhere
argument of knowledge.

Proof. This follows from a simple case by case reduction to the SEH somewhere statistical bind-
ing challenger and BARG somewhere argument of knowledge challenger. Suppose there exists
a PPT attacker A that breaks somewhere argument of knowledge of the lv-BARG scheme with
non-negligible probability ε = ε(λ). We divide the analysis in two cases.

Type 1 attacker: A outputs a sequence of instances {xi}i and a proof π such that Verify(crs, {xi}i, π) =
1 but seB.Extract(sebg.td, {x̂i}i, π) = ω̂ is not a valid witness for x̂i∗ . Note that a Type 1 attacker
breaks the somewhere argument of knowledge property of the underlying seBARG scheme. This
follows directly from a reduction to somewhere argument of knowledge of seBARG.

Briefly, the attacker A starts by outputting (1k, 1n, i∗). The reduction algorithm B simply sends
(1k, 1n̂, i∗) to the seBARG challenger, and the challenger sends the crs sebg.crs to B. B then samples
the SEH hash key seh.hk along with trapdoor seh.td as in the setup, and sends (sebg.crs, seh.hk) as
the crs to A. A then outputs a sequence of k instances x1, . . . , xk along with a proof π = sebg.π. B
then submits {x̂i}i and sebg.π as its argument of knowledge attack to the seBARG challenger (here
x̂i is as defined in the description of the scheme; note that this contains the hash value hx which
can be computed using {xi}i and seh.hk). Note that whenever A is a successful type 1 attacker on
somewhere argument of knowledge, then B is a successful attacker on seBARG somewhere argument
of knowledge. This follows from the definition of a Type 1 attacker, and A’s advantage in breaking
somewhere argument of knowledge.

Type 2 attacker: A outputs a sequence of instances {xi}i and a proof π = sebg.π such that
Verify(crs, {xi}i, π) = 1 and seB.Extract(sebg.td, {x̂i}i, π) = ω̂ = (x, ω, seh.π) is a valid witness
for x̂i∗ , but ω is not a valid witness for xi∗ . Note that a Type 2 attacker breaks the somewhere
statistical binding property of the SEH scheme. This relies on the fact that given ω̂ = (x, ω, seh.π)
is a valid witness for x̂i∗ = (i∗, seh.hk, hx), then ω is a valid witness for x (w.r.t. language L) and
seh.π is a valid opening for x w.r.t. hash value hx. That is, SEH.Verify(seh.hk, hx, Ii∗ , x, seh.π) = 1.
Now by correctness of SEH extraction, we know that SEH.Extract(seh.td, hx, Ii∗) = xi∗ , thus by the
somewhere statistical binding property of SEH, we know that it must be the case that x = xi∗ . This
results in a contradiction. Thus, A can not be a successful Type 2 attacker even if is computationally
unbounded.

Note that any successful somewhere argument of knowledge attacker A must be either Type 1
or 2. Thus, combining the above arguments, the lemma follows.

Semi-adaptive soundness. As noted in prior works [DGKV22, Remark 3.3], somewhere argu-
ment of knowledge property implies semi-adaptive soundness. Combining it with our somewhere
argument of knowledge lemma proved above, we can prove it by combining the two lemmas. Al-
ternatively, we can prove the following directly.

Lemma 6.4. If the SEH scheme SEH satisfies somewhere statistical binding and the seBARG
scheme seBARG satisfies semi-adaptive soundness, then lv-BARG satisfies semi-adaptive soundness.

Proof. Note that the above proof of above lemma follows directly by combining proof of Lemma 6.3
with [DGKV22, Remark 3.3]. We could alternatively prove it directly by following the same strategy
as for the proof of Lemma 6.3. The main difference will be in the way the attacker types are defined.
The Type 1 attacker would now be defined as one who outputs a sequence of instances {xi}i and a

31

proof π such that Verify(crs, {xi}i, π) = 1 but x̂i∗ = (i∗, seh.hk, hx) /∈ L̂, where hx as simply the hash
of all instances combined. Note that Type 1 attacker directly break the semi-adaptive soundness
of the seBARG scheme by a similar reduction to as described above.

And, by using the somewhere statistical binding property and extraction correctness of SEH, we
get that a non-Type-1 attacker can not exist (with non-negligible probability) since if x̂i∗ ∈ L̂ and
hx = SEH.H(seh.hk, (x1, . . . , xk)), then xi∗ is the only valid instance at the i∗th location of input
corresponding to hx, therefore xi∗ ∈ L.

Local argument of knowledge with adversarial openings. This follows from the somewhere
statistical binding property of the SEH scheme and somewhere argument of knowledge of seBARG.
Concretely, we prove the following.

Lemma 6.5. If the SEH scheme SEH satisfies somewhere statistical binding and the seBARG
scheme seBARG satisfies somewhere argument of knowledge, then lv-BARG satisfies local argument
of knowledge with adversarial openings.

Proof. This follows from a simple case by case reduction to the SEH somewhere statistical binding
challenger and BARG somewhere argument of knowledge challenger. To begin the argument, we
define the local extraction algorithm LExtract as follows–

LExtract(td, x, π, aux) : It parses aux = (hx, seh.π), and sets the k instances x̂i = (i, seh.hk, hx) for
all i ∈ [k]. It then runs the seBARG extractor as ω̂ = seB.Extract(sebg.td, {x̂i}i, π). It parses
ω̂ as (x′, ω, seh.π) and outputs ω as the extracted witness.

Suppose there exists a PPT attackerA that breaks the local argument of knowledge with adversarial
opening of the lv-BARG scheme with non-negligible probability ε = ε(λ). We divide the analysis in
two cases similar to the proof of Lemma 6.3.

Type 1 attacker: A outputs an instance x, proof π, and auxiliary information aux such
that LVfy(crs, x, i∗, π, aux) = 1 but seB.Extract(sebg.td, x, π, aux) = ω̂∗ is not a valid witness for
x̂i∗ = (i∗, seh.hk, hx). Note that a Type 1 attacker breaks the somewhere argument of knowledge
property of the underlying seBARG scheme. This follows directly from a reduction to somewhere
argument of knowledge of seBARG.

Briefly, the attacker A starts by outputting (1k, 1n, i∗). The reduction algorithm B simply sends
(1k, 1n̂, i∗) to the seBARG challenger, and the challenger sends the crs sebg.crs to B. B then samples
the SEH hash key seh.hk along with trapdoor seh.td as in the setup, and sends (sebg.crs, seh.hk)
as the crs to A. A then outputs an instance x, proof π, and auxiliary information aux. B then
submits {x̂i}i and π as its argument of knowledge attack to the seBARG challenger. (Here x̂i is as
defined in the description of the local extraction algorithm LExtract; note that aux contains the hash
value hx which is used to define each x̂i.) Note that whenever A is a successful type 1 attacker on
local argument of knowledge with adversarial opening, then B is a successful attacker on seBARG
somewhere argument of knowledge. This follows from the definition of a Type 1 attacker, and
A’s advantage in breaking somewhere argument of knowledge. (Note that this is because since
LVfy(crs, x, i∗, π, aux) = 1, we have that seB.Verify(sebg.crs, {x̂i}i, π) = 1.)

Type 2 attacker: A outputs an instance x, proof π, and auxiliary information aux = (hx, seh.π)
such that LVfy(crs, x, i∗, π, aux) = 1 and seB.Extract(sebg.td, x, π, aux) = ω̂∗ = (x∗, ω∗, seh.π∗) is a
valid witness for x̂i∗ = (i∗, seh.hk, hx), but ω∗ is not a valid witness for x. First, note that in this
case we have that SEH.Verify(seh.hk, hx, Ii∗ , x, seh.π) = 1, SEH.Verify(seh.hk, hx, Ii∗ , x∗, seh.π∗) = 1,

32

and w∗ is a valid witness for x∗. To get the desired contradiction, observe that it must be the
case that x = x∗ as otherwise SEH does not even satisfy computational binding w.r.t. openings.
This is because from above we get that both x and x∗ have valid openings for Ii∗ w.r.t. hash hx.
Now this directly follows from the somewhere statistical binding property. Note that the reduction
algorithm can simply output one of (x, seh.π) and (x∗, seh.π∗) as the somewhere statistical binding
attack as if x 6= x∗, then at most one of them is correctly extractable.

Note that any successful somewhere argument of knowledge attacker A must be either Type 1
or 2. Thus, combining the above arguments, the lemma follows.

Semi-adaptive local soundness with adversarial openings. As noted in Remark 5.4, this
follows directly from Lemma 6.5. However, we prove below that this also follows from the somewhere
statistical binding property of the SEH scheme and semi-adaptive soundness of seBARG. That is, the
underlying BARG need not be somewhere extractable for our compiler to make it locally verifiable.
Concretely, we prove the following.

Lemma 6.6. If the SEH scheme SEH satisfies somewhere statistical binding and the seBARG
scheme seBARG satisfies semi-adaptive soundness, then lv-BARG satisfies semi-adaptive local sound-
ness with adversarial openings.

Proof. The proof follows the same strategy as for the proof of Lemma 6.5. The main difference
will be in the way the attacker types are defined. The Type 1 attacker would now be defined as
one who outputs an instance x, proof π, and auxiliary information aux = (hx, seh.π) such that
LVfy(crs, x, i∗, π, aux) = 1 but x̂i∗ = (i∗, seh.hk, hx) /∈ L̂. Now the Type 1 attacker directly breaks
the semi-adaptive soundness of the seBARG scheme by a similar reduction to as described above.

And, by using the somewhere statistical binding property of SEH, we get that a non-Type-1
attacker can not exist (with non-negligible probability) since if x̂i∗ ∈ L̂ and LVfy(crs, x, i∗, π, aux) =
1, then x can be the only valid instance at the i∗th location of input corresponding to hx, therefore
xi∗ ∈ L.

This completes the proof of our main theorem.

7 Fully Private Locally Verifiable Batch Arguments

In this section, we design a fully private lv-BARG scheme. Our idea is to split the process of hiding
instances into two steps – first, we show that privacy can be reduced to a witness hiding property;
second, we remark on how to make any (lv-)BARG into a witness hiding (lv-)BARG system. We
start by recalling some useful preliminaries for this section.

7.1 Preliminaries

Pseudo Random Functions. A pseudorandom function (PRF) F : {0, 1}λ × {0, 1}λ → {0, 1}λ
is a keyed function10, that takes a λ-bit key as input, and on input x ∈ {0, 1}λ, it outputs a value
y = FK(x). (Throughout the paper, we use FK(x) as a shorthand for PRF evaluation.)

10For simplicity, we fix the key space, input space, and output space to be λ-bit strings.

33

Definition 7.1 (Pseudorandomness). A PRF F is said to be secure if for every stateful PPT
adversary A, there exists a negligible function negl(·) such that for all λ, the following holds:

Pr
[
AOK,b(·)(1λ) = b : K ← {0, 1}λ, b← {0, 1}

]
≤ 1

2
+ negl(λ),

where oracle OK,b(·) is defined as FK(·) if b = 0, otherwise it is defined as a random function from
{0, 1}λ → {0, 1}λ.

Perfectly Binding Commitments. A commitment scheme COM consists of the following al-
gorithms.

Setup(1λ, 1n)→ crs. The setup algorithm takes as input the security parameter λ, message length
n, and outputs a crs crs.

Com(crs,m; r)→ c. The commit algorithm that takes as input the crs crs, message m ∈ {0, 1}n,
and randomness r ∈ {0, 1}λ. It outputs a commitment c. (We assume for simplicity that r
is always a λ-bit string. Note that this follows w.l.o.g., and is not an extra assumption.)

Verify(crs,m, c, r)→ 0/1. The verification algorithm takes as input the crs crs, message m, com-
mitment c, and an opening/randomness r. It outputs either 0 or 1 to signal validity of the
opening.

Correctness. A commitment scheme COM is correct if for every λ, n ∈ N, crs crs ← Setup(1λ, 1n),
any message m ∈ {0, 1}n, the following holds

Pr
[
Verify(crs,m, c, r) = 1 : r ← {0, 1}λ, c = Com(crs,m; r)

]
= 1.

Perfect binding. A commitment scheme is said to be perfectly binding if no commitment can have
valid openings for two different messages.

Definition 7.2 (Perfect binding). A commitment scheme COM is perfectly binding if for all λ, n ∈
N, every crs crs← Setup(1λ, 1n), for every (c,m1, r1,m2, r2) such that m1 6= m2, the following holds
for at least one i ∈ {1, 2}:

Pr[Verify(crs,mi, c, ri) = 1] = 0.

Computational hiding. A commitment scheme is said to be computationally hiding if a commitment
hides the messages when the openings are hidden.

Definition 7.3 (Hiding). A commitment scheme COM is computationally hiding if for every state-
ful PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds

Pr

 A(c) = b
∧ m0,m1 ∈ {0, 1}n

:
1n ← A(1λ), crs← Setup(1λ, 1n)
(m0,m1)← A(crs), b← {0, 1}
c← Com(crs,mb)

 ≤ 1

2
+ negl(λ).

34

7.2 Witness hiding BARGs

A BARG satisfies witness indistinguishability if an attacker cannot distinguish between batch proofs
for any particular set of instances computed using two separate yet valid witnesses. Similarly, it is
zero-knowledge if an attacker cannot distinguish between an honestly computed batch proof and
simulated batch proof. It is well known that witness indistinguishability implies zero-knowledge
for succinct proofs as well by the folklore OR trick [FLS99], whenever the goal is computational
security. Thus, we directly zero-knowledge property below, and for completeness provide witness
indistinguishability for BARGs in Appendix A.1.

Definition 7.4 (Zero-Knowledge). A BARG scheme BARG satisfies zero-knowledge property if
there exists a PPT stateful simulator S such that for every stateful PPT attacker A, there exists
a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr


A(πb) = b

∧
(
∀i ∈ [k], ωi is a valid
witness for xi ∈ L

)
:

(1k, 1n, i∗)← A(1λ), b← {0, 1}
(crs0, td0)← Setup(1λ, 1k, 1n, i∗)
crs1 ← S(1λ, 1k, 1n, i∗)
{(xi, ωi)}i∈[k] ← A(crsb)
π0 ← Prove(crs, {(xi, ωi)}i)
π1 ← S({xi}i)

 ≤
1

2
+ negl(λ).

Clearly, a zk-BARG scheme implies a NIZK. Moreover, as shown in recent works [CW23,
BKP+23], any seBARG implies a NIZK proof system, and therefore it also implies a zk-BARG
scheme. Later, we show a simpler approach to designing zk-BARGs than previously considered in
the literature. Moreover, we consider somewhere extractability property for such zk-BARGs.

7.3 Designing fully private lv-BARGs

Our strategy for hiding instances is to use perfectly binding commitments to hide instances, and
use witness hiding BARGs to compute a batch proof using the commitments openings as the
witness. The intution is that as long as the BARG scheme gives witness indistinguishability (or
zero-knowledge), we can hide all unopened instances using a combination of commitment hiding
property and PRF pseudorandomness.

Construction. Let F be a pseudorandom function, COM = (COM.Setup,COM.Com,COM.Verify)
be a perfectly binding commitment scheme, and lv-BARG = (Setup,Prove,Verify,Extract, LOpen,
LVfy) be a locally verifiable seBARG for language L̂ (described in Fig. 2). Below we describe our
private lv-BARG scheme ih-BARG = (Setup,Prove,Verify,Extract, LOpen, LVfy) for language L.

35

Language L̂

Instance: x̂ := (commitment c, commitment crs crs).

Witness: ω̂ := (instance x, witness ω w.r.t. L, opening randomness r).

Membership: ω̂ is a valid witness for x̂ ∈ L̂ if the following are satisfied:

– r is a valid opening for x w.r.t. c. Namely, COM.Verify(crs, x, c, r) = 1.

– ω is a valid witness for x. Namely, RL(x, ω) = 1 (where RL is L’s relation).

Figure 2: Language L̂ for the lv-BARG.

Setup(1λ, 1k, 1n, i∗)→ (crs, td). It runs the setup algorithms for lv-BARG and COM schemes where
the index i∗ is used to set the extraction index in the lv-BARG scheme. Namely, it generates

com.crs← COM.Setup(1λ, 1n), (lvbg.crs, lvbg.td)← lvB.Setup(1λ, 1k, 1n̂, i∗),

where n̂ is the length of instances in language L̂ (i.e., n̂ is the sum of lengths of commitment
and crs com.crs). It outputs the crs and trapdoor as

crs = (lvbg.crs, com.crs), td = lvbg.td.

Prove(crs, {(xi, ωi)}i∈[k])→ π. It parses the crs as above. It first samples a random PRF key K ←
{0, 1}λ, and encodes each instance xi into an individual commitment ci while using FK(i) as
the randomness. Namely, it runs as follows

∀i ∈ [k], ci = COM.Com(com.crs, xi;FK(i)).

Next, it computes a proof using lv-BARG where each instance contains com.crs and commit-
ment ci, and the corresponding witness additionally contains the commitment opening FK(i)
and the instance xi. Formally, it generates the batch proof as

lvbg.π ← lvB.Prove(lvbg.crs, {(x̂i, ω̂i)}i∈[k]),

where x̂i = (ci, com.crs) and ω̂i = (xi, ωi, FK(i)) for every i. It outputs π = (lvbg.π,K).

Verify(crs, {xi}i∈[k], π)→ 0/1. Note that neither π nor crs contain the commitments to the instances
{xi}i needed for running the lv-BARG verifier. But they can be recomputed by the verifier
since π contains the PRF key K needed for computing the commitments ci. Thus, the verifier
starts by recomputing ci as:

∀i ∈ [k], ci = COM.Com(com.crs, xi;FK(i)).

The verifier then runs the lv-BARG verifier on lvbg.π where the instances x̂i are set as
(ci, com.crs) for every i. Concretely, it outputs the following

lvB.Verify(lvbg.crs, {x̂i}i∈[k], lvbg.π).

36

Extract(td, {xi}i, π)→ ω. It first recomputes the commitments ci as above. That is,

∀i ∈ [k], ci = COM.Com(com.crs, xi;FK(i)).

It then runs the lv-BARG extraction algorithm to extract the witness ω̂ as

ω̂ = lvB.Extract(lvbg.td, {x̂i}i, lvbg.π), where x̂i = (ci, com.crs) ∀ i ∈ [k].

It then parses ω̂ as (x, r, ω) and outputs ω as the extracted witness.

LOpen(crs, {xi}i, j, π)→ (auxj , π
′). It first recomputes the commitments ci as above. That is,

∀i ∈ [k], ci = COM.Com(com.crs, xi;FK(i)).

It then runs the local opening algorithm for lv-BARG to generate appropriate auxiliary infor-
mation for locally opening proof lvbg.π. Namely, it runs

(lvbg.auxj , lvbg.π
′) = lvB.LOpen(lvbg.crs, {x̂i = (ci, com.crs)}i, j, lvbg.π).

Finally, it outputs the auxiliary opening and sanitized proof as

aux = (lvbg.auxj , FK(j)), π′ = lvbg.π′.

Note. We want to point out that the reason we call π′ as the sanitized proof is because we
remove the PRF key from the original (unopened) proof. As we discuss later, this is crucial
for guaranteeing instance privacy.

LVfy(crs, x, j, π, aux)→ 0/1. The local verifier parses the inputs as above. That is, it interprets
aux = (lvbg.aux, r) and π = lvbg.π. It simply computes the commitment of instance x as
c = COM.Com(com.crs, x; r). It then simply runs the lv-BARG local verifier and outputs
whatever it outputs. Namely, it outputs

lvB.LVfy(lvbg.crs, x̂ = (c, com.crs), j, lvbg.π, lvbg.aux).

Correctness and succinctness. We now show that the above locally verifiable BARG scheme
satisfies completeness, correctness of extraction, local correctness, and succinctness of proof and
opening if the underlying BARG and commitment schemes satisfy appropriate correctness and
succinctness properties.

First, note that by the COM correctness we know that COM.Verify(com.crs, xi, ci, FK(i)) = 1
for every ci and K as computed by the prover. Therefore, whenever ωi is a valid witness for xi
(w.r.t. language L), then we have that ω̂i is a valid witness for x̂i (w.r.t. language L̂) for every i.
Thus, by completeness of lv-BARG, the completeness of ih-BARG follows.

Second, note that by lv-BARG correctness of extraction we know that lvB.Extract(lvbg.td, {x̂i}i,
lvbg.π) = ω̂i∗ for the commitments {ci}i as computed by the prover and extraction algorithms.
Thus, the correctness of ih-BARG extraction follows.

Third, note that the local verifier simply checks that x̂ = (c = COM.Com(com.crs, x; r), com.crs) ∈
L̂ by using lvbg.π and the auxiliary opening auxj . By COM correctness, we have that COM.Verify(
com.crs, x, c, r) = 1. Therefore, if x ∈ L and ω is a valid witness for it, then lvB.LVfy(lvbg.crs,

37

x̂, j, lvbg.π, lvbg.aux) = 1 by correctness of local verification of lv-BARG. Hence, local correctness
follows immediately.

Finally, to argue succinctness of the ih-BARG scheme, note that it is sufficient to show that |x̂|,
|ω̂|, |com.crs|, |K| are all poly(λ, log k, n,m). This is because then rest of the argument just relied
on seBARG succinctness. Now observe that the above follows from the fact that the running time
of algorithms in the commitment scheme are all individually bounded as polynomials in λ and n.
Therefore, (proof and opening) succinctness of ih-BARG follows. Further, the running time of a
local verifier still grows poly-logarithmically with the batch size k since it runs the local verifier for
the underlying lv-BARG after (re-)computing a single commitment string.

Remark 7.5 (Proof-Independent Openings). We want to point out that unlike all the other com-
pilers in this work, the instance privacy compiler described in this section does not preserve the
proof-independent opening property. Moreover, it is extremely crucial for hiding the instances that
the local opening algorithm has the ability to read and update/sanitize a batched proof.

7.4 Security

Below we prove the security of our ih-BARG scheme.

Theorem 7.6. If the lv-BARG scheme lv-BARG satisfies index hiding, somewhere argument of
knowledge, semi-adaptive local soundness with adversarial openings, local argument of knowledge
with adversarial openings, and zero-knowledge (Definitions 3.1, 3.2, 5.2, 5.3 and 7.4), and the com-
mitment scheme COM satisfies perfect binding and computational hiding (Definitions 7.2 and 7.3),
and the PRF F is a secure pseudorandom function (Definition 7.1), then the above scheme ih-BARG
is an lv-BARG scheme satisfying index hiding, somewhere argument of knowledge, semi-adaptive
local soundness with adversarial openings, local argument of knowledge with adversarial openings,
and full privacy (Definitions 3.1, 3.2, 5.2, 5.3 and 5.6).

Proof. The proof is divided into multiple parts where we individually prove the desired properties.

Index hiding. This follows directly from the index hiding property of lv-BARG. Concretely, we
prove the following.

Lemma 7.7. If the lv-BARG scheme lv-BARG satisfies index hiding, then ih-BARG also satisfies
index hiding.

Proof. This directly follows from a straightforward reduction where the reduction algorithm simply
generates the commitment crs com.crs on its own, and gets lvbg.crs from the lv-BARG challenger, and
sends (lvbg.crs, com.crs) to the index hiding attacker on ih-BARG. The advantage of the reduction
algorithm is the same as the attacker’s advantage, thus the lemma follows.

Somewhere argument of knowledge. This follows directly from the somewhere statistical
binding property of the SEH scheme and somewhere argument of knowledge of seBARG. Concretely,
we prove the following.

Lemma 7.8. If the commitment scheme COM satisfies (computational) binding and the lv-BARG
scheme lv-BARG satisfies somewhere argument of knowledge, then ih-BARG satisfies somewhere
argument of knowledge.

38

Proof. This follows from a simple case by case reduction to the commitment binding challenger
and the lv-BARG somewhere argument of knowledge challenger. Suppose there exists a PPT at-
tacker A that breaks somewhere argument of knowledge of the ih-BARG scheme with non-negligible
probability ε = ε(λ). We divide the analysis in two cases.

Type 1 attacker: A outputs a sequence of instances {xi}i and a proof π such that Verify(crs, {xi}i, π) =
1 but lvB.Extract(lvbg.td, {x̂i}i, π) = ω̂ is not a valid witness for x̂i∗ . Note that a Type 1 attacker
breaks the somewhere argument of knowledge property of the underlying lv-BARG scheme. This
follows directly from a reduction to somewhere argument of knowledge of seBARG.

Type 2 attacker: A outputs a sequence of instances {xi}i and a proof π = (lvbg.π,K) such that
Verify(crs, {xi}i, π) = 1 and lvB.Extract(lvbg.td, {x̂i}i, π) = ω̂ = (x, r, ω) is a valid witness for x̂i∗ ,
but ω is not a valid witness for xi∗ . Note that a Type 2 attacker breaks the binding property of the
commitment. This relies on the fact that given ω̂ = (x, r, ω) is a valid witness for x̂i∗ = (ci∗ , com.crs)
(where ci∗ = COM.Com(com.crs, xi∗ ;FK(i∗))), then ω is a valid witness for x (w.r.t. language L)
and r is a valid opening for x w.r.t. commitment ci∗ (that is, COM.Verify(com.crs, x, c, r) = 1).
Since we know that FK(i∗) is a valid opening for xi∗ w.r.t. commitment ci∗ . Since x 6= xi∗ ,
thus the reduction algorithm can create valid openings for two different messages thereby breaking
(computational) binding property of the commitment scheme. This results in a contradiction.
Thus, A can not be a successful Type 2 attacker even if is computationally unbounded (assuming
statistical binding).

Note that any successful somewhere argument of knowledge attacker A must be either Type 1
or 2. Thus, combining the above arguments, the lemma follows.

Semi-adaptive soundness. As noted previously, somewhere argument of knowledge property
implies semi-adaptive soundness. Combining it with our somewhere argument of knowledge lemma
proved above, we can prove it by combining the two lemmas. Alternatively, we can prove the
following directly.

Lemma 7.9. If the commitment scheme COM satisfies (perfect) binding and the lv-BARG scheme
lv-BARG satisfies semi-adaptive soundness, then ih-BARG satisfies semi-adaptive soundness.

Proof. The proof strategy is similar to that of Lemma 6.3, except the Type 1 attacker is defined
as an attacker which creates a proof π = (lvbg.π,K) such that x̂i∗ /∈ L̂, where x̂i∗ = (ci∗ =
COM.Com(com.crs, xi∗ ;FK(i∗)), com.crs). Now Type 1 attacker directly breaks the semi-adaptive
soundness of the lv-BARG scheme by a similar reduction to as described above.

And, from the perfect binding and correctness properties of COM, we get that a non-Type-1
attacker can not exist. This is because since ci∗ = COM.Com(com.crs, xi∗ ;FK(i∗)) has FK(i∗) as a
valid opening for xi∗ (by correctness), and by perfect binding, there can not be any other instance
x 6= xi∗ that has a valid opening w.r.t. commitment ci∗ . Thus, a non-Type-1 attacker will never
be successful semi-adaptive soundness attacker.

Local argument of knowledge with adversarial openings. This follows from the (compu-
tational) binding property of COM and local argument of knowledge of lv-BARG. Concretely, we
prove the following.

Lemma 7.10. If the commitment scheme COM satisfies (computational) binding and the lv-BARG
scheme lv-BARG satisfies local argument of knowledge with adversarial openings, then ih-BARG
satisfies local argument of knowledge with adversarial openings.

39

Proof. The proof is very similar to the proof of Lemma 7.8. It follows from a simple case by case
reduction to the commitment challenger and lv-BARG local argument of knowledge challenger. To
begin the argument, suppose lv-BARG.LExtract is the local extractor for lv-BARG, then we define
the local extraction algorithm LExtract for ih-BARG as follows–

LExtract(td, x, π, aux) : It parses aux = (lvbg.aux, r), and sets the instance x̂ = (c, com.crs) where
c = COM.Com(com.crs, x; r). It then runs the lv-BARG local extractor as ω̂ = lv-BARG.LExtract(
td, x̂, π, lvbg.aux). It parses ω̂ as (x′, r′, ω) and outputs ω as the extracted witness.

Suppose there exists a PPT attackerA that breaks the local argument of knowledge with adversarial
opening of the ih-BARG scheme with non-negligible probability ε = ε(λ). We divide the analysis in
two cases as before.

Type 1 attacker: A outputs an instance x, proof π, and auxiliary information aux such
that LVfy(crs, x, i∗, π, aux) = 1 but lv-BARG.LExtract(td, x̂, π, lvbg.aux) = ω̂ is not a valid witness
for x̂ = (c, com.crs). Note that a Type 1 attacker breaks the local argument of knowledge with
adversarial openings property of the underlying lv-BARG scheme. This follows directly from a
reduction to somewhere argument of knowledge of seBARG.

Type 2 attacker: A outputs an instance x, proof π, and auxiliary information aux =
(lvbg.aux, r) such that LVfy(crs, x, i∗, π, aux) = 1 and lv-BARG.LExtract(td, x̂, π, lvbg.aux) = ω̂ =
(x′, r′, ω) is a valid witness for x̂ = (c, com.crs), but ω is not a valid witness for x. Note that since ω̂
is a valid witness for ω̂, thus COM.Verify(com.crs, x′, c, r′) = 1 where c = COM.Com(com.crs, x; r).
By completeness of the commitment scheme, we know that r is valid opening of x w.r.t. commit-
ment c, therefore either x = x′, or this breaks (computational) binding property of the commitment
scheme. This results in a contradiction. Thus, A can not be a successful Type 2 attacker even if is
computationally unbounded (assuming statistical binding).

Note that any successful somewhere argument of knowledge attacker A must be either Type 1
or 2. Thus, combining the above arguments, the lemma follows.

Semi-adaptive local soundness with adversarial openings. As noted in Remark 5.4, this
follows directly from Lemma 7.10. However, we prove below that this also follows from the perfect
binding property of COM and semi-adaptive local soundness of lv-BARG. That is, the underlying
BARG need not be locally extractable. Concretely, we prove the following.

Lemma 7.11. If the commitment scheme COM satisfies (perfect) binding and the lv-BARG scheme
lv-BARG satisfies semi-adaptive local soundness with adversarial openings, then ih-BARG satisfies
semi-adaptive local soundness with adversarial openings.

Proof. The proof follows the same strategy as for the proof of Lemma 7.10. The main difference
will be in the way the attacker types are defined. The Type 1 attacker would now be defined as
one who outputs an instance x, proof π, and auxiliary information aux = (lvbg.aux, r) such that
LVfy(crs, x, i∗, π, aux) = 1 but x̂ = (COM.Com(com.crs, x; r), com.crs) /∈ L̂. Now the Type 1 attacker
directly breaks the semi-adaptive local soundness of the seBARG scheme by a similar reduction as
described above.

And, by using the perfect binding property of COM, we get that a non-Type-1 attacker can
not exist. This is because since c = COM.Com(com.crs, x; r) has r as a valid opening for x (by
correctness), and by perfect binding, there can not be any other instance x′ 6= x that has a valid
opening w.r.t. commitment c. Thus, a non-Type-1 attacker will never be successful semi-adaptive
local soundness attacker.

40

Instance privacy. This follows from a combination of the PRF pseudorandomness property,
commitment hiding security, and zero-knowledge property of lv-BARG. Concretely, we prove the
following.

Lemma 7.12. If the pseudorandom function F is secure, amd the commitment scheme COM
satisfies hiding, and the lv-BARG scheme lv-BARG satisfies (witness) zero-knowledge, then ih-BARG
satisfies full privacy.

Proof. Let lv-BARG.Sim be the zero-knowledge simulator (see Definition 7.4) for the lv-BARG
scheme. We use lv-BARG.Sim to design the (privacy) simulator Sim for ih-BARG described in
this section. The simulator Sim works as follows:

1. On inputs (1λ, 1k, 1n, i∗), it runs the lv-BARG.Sim to sample the lvbg.crs as lvbg.crs ←
lv-BARG.Sim(1λ, 1k, 1n, i∗). It stores the state of the simulator lv-BARG.Sim for simulating
other components.

2. On input (S, {xj}j∈S), it runs as follows–

(a) It sample k random coins {ri}i independently as ri ← {0, 1}λ for i ∈ [k].

(b) It creates k commitments {ci}i as ci ← COM.Com(com.crs, 0; ri) for i /∈ S and cj =
COM.Com(com.crs, xj ; rj) for j ∈ S.

(c) It continues running the lv-BARG simulator to create a simulated proof as lvbg.π ←
lv-BARG.Sim({x̂i}i) where x̂i = (ci, com.crs) for i ∈ [k]. (Note that the simulator stores
the internal state of lv-BARG.Sim and uses that to run the simulator for generating
lvbg.π.)

(d) It computes the local openings for the proof lvbg.π as

∀j ∈ S : lvbg.auxj = lvB.LOpen(lvbg.crs, {x̂i}i, j, lvbg.π).

(e) Finally, it outputs the (simulated) auxiliary opening information as auxj = (lvbg.aux, rj)
and (simulated) proof as πj = lvbg.π for all j ∈ S.

The proof of security follows from a sequence of simple hybrid experiments. Let Hybrid 0
denote the real privacy experiment where the challenger runs the ih-BARG scheme honestly to
generate the crs, proof and opening. Consider the following hybrid experiments.

Hybrid 1. This is identical to hybrid 0, except the challenger creates the commitments ci using
fresh independent random coins rather than by using a PRF. That is, ci = COM.Com(com.crs, xi; ri)
for all i where ri ← {0, 1}λ instead of computing it as ri = FK(i) for a random key K ← {0, 1}λ.
Now, since there does not exist a succinct representation of the random coins, it can not run the
LOpen algorithm as described in the construction, however it can simply be computed by running
lvB.LOpen algorithm as is (i.e., using x̂i = (ci, com.crs)), and setting the opening commitment to
be rj in the auxiliary information. (Note that since the attacker never receives the original/pre-
redacted proof, thus the PRF key is never required in this experiment.)

Hybrid 2. This is identical to hybrid 1, except the challenger computes the lv-BARG proof lvbg.π
as a simulated proof instead of a honestly computed proof using x̂i = (ci, com.crs) as the instances.
(Note that the instances at this point still have valid witnesses.)

41

Hybrid 3. This is identical to hybrid 2, except the challenger computes all commitments cj for
j /∈ S as commitments to the all zeros string rather than committing to the actual corresponding
instance xi. That is, it creates k commitments {ci}i as ci ← COM.Com(com.crs, 0; ri) for i /∈ S and
cj = COM.Com(com.crs, xj ; rj) for j ∈ S.

Observe that Hybrid 3 is identical to the ideal privacy experiment where the challenger runs the
ih-BARG simulator described above. Below we show via a sequence of claims that all the adjacent
hybrids are computationally indistinguishable. Let pAi (λ) denote the probability that the attacker
A outputs 0 in Hybrid i.

Claim 7.13. Assuming pseudorandom function F is secure, for every PPT attacker A there exists
a negligible function negl(·) such that for all λ ∈ N, pA0 (λ)− pA1 (λ) ≤ negl(λ).

Proof. This follows from a simple reduction to the PRF challenger. Suppose A has non-negligible
advantage ε = ε(λ) in distinguishing between hybrids 0 and 1. We can design a reduction algorithm
B that can break pseudorandomness of F with advantage ε. The reduction algorithm B simply
runs the ih-BARG setup as described, and sends the crs crs to A. A then sends a target set S
and a sequence of k instance-witness pairs {(xi, ωi)}i to B. B then queries the PRF challenger
on inputs 1, 2, . . . , k, and receives the corresponding inputs r1, . . . , rinstno from the challenger. It
uses {ri}i to create the commitments ci = COM.Com(com.crs, xi; ri), and sets x̂i = (ci, com.crs) for
all i. It then runs the lv-BARG prover on instance-witness pairs {(x̂i, ω̂i)}i, where ω̂i = (xi, ri, ωi)
for all i, to compute the proof lvbg.π. Note that ω̂i is a valid instance for x̂i for every i, thus
by completeness of lv-BARG, B can create an accepting proof lvbg.π. Next, B runs the lv-BARG
local opening algorithm to compute lvbg.auxj as lvbg.auxj = lvB.LOpen(lvbg.crs, {x̂i}i, j, lvbg.π) for
j ∈ S, and sends auxj = (lvbg.auxj , rj) and πj = lvbg.π for j ∈ S to the attacker A. If A guesses
0, then B also guesses 0 to signal the PRF challenger used a PRF, otherwise it guesses 1 to signal
that the PRF challenger used a truly random function.

Observe that B perfectly simulates the distinguishing game between hybrids 0 and 1 for the
attacker A. This is mainly due to the fact that the PRF key K is not required for simluating the
experiment, and only the function evaluation on inputs 1, . . . , k are required in the experiment.
Thus, if A wins with probability ε, then so does B thereby breaking pseudorandomness of PRF F .
This completes the proof of the claim.

Claim 7.14. Assuming the lv-BARG scheme lv-BARG is (witness) zero-knowledge, for every PPT
attacker A there exists a negligible function negl(·) such that for all λ ∈ N, pA1 (λ)−pA2 (λ) ≤ negl(λ).

Proof. This follows from a simple reduction to the ZK property of lv-BARG. Suppose A has
non-negligible advantage ε = ε(λ) in distinguishing between hybrids 1 and 2. We can design a re-
duction algorithm B that can distinguish between honest and simulated proofs in scheme lv-BARG
with advantage ε. The reduction algorithm B starts by generating the com.crs honestly, and it
receives a crs lvbg.crs from the lv-BARG challenger. (Note that this is either simulated or hon-
estly computed crs.) B then sends crs = (lvbg.crs, com.crs) to A, and A then outputs a target
set S and a sequence of k instance-witness pairs {(xi, ωi)}i. B then creates fresh (honest) com-
mitments to each of the instances as ci = COM.Com(com.crs, xi; ri) where ri ← {0, 1}λ for every
i ∈ [k]. It sets x̂i = (ci, com.crs) and ω̂i = (xi, ri, ωi) for all i, and sends it to the lv-BARG
challenger which outputs a proof lvbg.π. (Again, note that the proof is either simulated or hon-
estly computed.) Next, B runs the lv-BARG local opening algorithm to compute lvbg.auxj as
lvbg.auxj = lvB.LOpen(lvbg.crs, {x̂i}i, j, lvbg.π) for j ∈ S, and sends auxj = (lvbg.auxj , rj) and

42

πj = lvbg.π for j ∈ S to the attacker A. If A guesses 0, then B also guesses 0 to signal the lv-BARG
challenger created the proof lvbg.π honestly, otherwise it guesses 1 to signal that the proof was
simulated.

Observe that B perfectly simulates the distinguishing game between hybrids 1 and 2 for the
attacker A. Thus, if A wins with probability ε, then so does B thereby breaking zero-knowledge
property of lv-BARG. This completes the proof of the claim.

Claim 7.15. Assuming the commitment scheme COM is (computationally) hiding, for every PPT
attacker A there exists a negligible function negl(·) such that for all λ ∈ N, pA2 (λ)−pA3 (λ) ≤ negl(λ).

Proof. This follows from a simple reduction to the commitment challenger. We are going to use a
multi-message version of the hiding security game where the attacker outputs a sequence of message
pairs rather than just two messages, and the challenger picks a random bit for the entire sequence
and sends back a fresh commitment of the corresponding message in each pair to the attacker. Note
that this follows immediately from a single message pair hiding game by a simple hybrid argument.

Suppose A has non-negligible advantage ε = ε(λ) in distinguishing between hybrids 2 and 3.
We can design a reduction algorithm B that can break hiding security of COM with advantage
ε. The reduction algorithm B receives crs com.crs from the commitment challenger, and runs the
lv-BARG simulator lv-BARG.Sim to compute lvbg.crs (and it stores the internal state of lv-BARG.Sim
for further computation), and sends crs = (lvbg.crs, com.crs) to A. A then sends a target set
S and a sequence of k instance-witness pairs {(xi, ωi)}i to B. B then sends {(xi, 0)}i/∈S as the
sequence of message pairs, and receives the corresponding commitments {ci}i/∈S . For j ∈ S, it
creates commitments cj = COM.Com(com.crs, xj ; rj) honestly for some rj ← {0, 1}λ. It sets x̂i =
(ci, com.crs) for all i, and runs the lv-BARG simulator to compute the simulated proof as lvbg.π ←
lv-BARG.Sim({x̂i}i). Next, B runs the lv-BARG local opening algorithm to compute lvbg.auxj as
lvbg.auxj = lvB.LOpen(lvbg.crs, {x̂i}i, j, lvbg.π), and sends auxj = (lvbg.auxj , rj) and πj = lvbg.π for
j ∈ S to the attacker A. If A guesses 0, then B also guesses 0 to signal the commitment challenger
committed the left messages, otherwise it guesses 1 to signal that the challenger committed the
right messages.

Observe that B perfectly simulates the distinguishing game between hybrids 2 and 3 for the at-
tacker A. Thus, if A wins with probability ε, then so does B thereby breaking hiding of commitment
COM. This completes the proof of the claim.

Combining above claims, the lemma follows.

This completes the proof of our main theorem.

7.5 Hiding witnesses within BARGs

Next, we provide a general approach to hide witnesses in any BARG scheme. The naive approach is
to compute a NIZK proof over a batch proof. That is, take a batch proof, and use it as a witness for
NIZK/WI proof system to make it zero-knowledge/witness-indistinguishable. However, as noted
in [CW23], this does not work as it takes away the succinctness property of the underlying BARG
scheme. This is due to the fact that the instance used in the NIZK/WI proof system will contain
all k instances. To that end, Champion and Wu [CW23], proposed a work-around. Their approach
was to rely on the split-state verification property of BARGs, where the verification procedure
can be split into an inefficient offline and efficient online phase. They suggested to use a NIZK

43

system only for hiding online portion of the verification protocol, thereby upgrading a BARG with
split-state verification to zero-knowledge BARG with split-state verification.

In this work, we suggest a much simpler and more general approach for turning a BARG into
zero-knowledge (or witness indistinguishable). Our idea is to, first, create a NIZK/WI proof πi
for each witness ωi of the underlying BARG. Next, the BARG prover uses {πi}i as the witnesses
for generating the batch proof. The ZK/WI property of the resulting BARG follows directly from
the ZK/WI property of the underlying non-succinct proof system. Due to its simplicity and space
limitations, we describe the transformation in detail later in Appendix D. Below we state the
theorem informally. (See Theorem D.2 for a formal version.)

Theorem 7.16 (informal). If a proof system Π satisfies soundness and witness indistinguishability
(or zero-knowledge), then any seBARG scheme seBARG can be upgraded to be a witness indis-
tinguishable (or zero-knowledge) proof system. Moreover, if BARG is locally verifiable, then the
resulting scheme also satisfies the same properties11.

Recall that recent works [CW23, BKP+23] show that any seBARG implies a NIZK proof system,
thus the above theorem show that any seBARG scheme can be upgraded into a zk-seBARG scheme.
Furthermore, in the CRS model, a proof system that satisfies computational WI/ZK are equivalent
assumptions. Thus, the above approach gives us a zk-seBARG proof system which, as discussed
in Section 7.3, can be turned into a instance private proof system.

8 Subset Mutations = Deleting Proofs

As a next natural expansion of the class of supported mutation functions, we consider a new model
for batch proofs that we refer to as deletable proofs. The intuition behind deletable proofs is to
enable a user holding a batch proof π for a batch of instances X = {xi}i to create a redacted batch
proof πred for any subset batch Y of instances such that Y ⊆ X. In words, it allows a user to
delete instances (and their corresponding witnesses) from an existing batch proof π. Moreover, an
additional interesting goal is to achieve privacy for deleted instances and witnesses. Following our
notation for mutable proofs from Section 4, we define the ‘proof deletion’ mutation class Pdel as
follows.

The mutation class Pdel still contains the family of ‘identity’ functions, however the identity
functions P` = I (for every ` ∈ N) work on a tuple of instances rather than a single instance (as
in P local). Basically, P` takes as input (i.e., mutates) an `-sequence of index-instances-proof tuples
(j1, X1, π1), . . . , (j`, X`, π`) (where ` ∈ N denotes the arity of the function). Further, the associated
language is also a batch language, LP` = L⊗`. That is, (x1, . . . , x`) ∈ LP` iff xi ∈ L for all i.

In summary, for Pdel, the mutated proof π̂ is viewed as a redacted/deleted proof for some subset
of instances x1,j1 , . . . , x1,j` (the jth1 instance in list X1, and so on).

8.1 Specializing syntax and definition

In this work, we refer to mutable batch proofs for subset mutation functions as “deletable BARGs”
(de-BARGs). Below we provide a specialized set of evaluation and verification algorithms tailored
towards such mutation functions for ease of notation. Formally, a de-BARG scheme is associated
with the following additional algorithm–

11Technically, we need Π to have an extractor to make the final proof somewhere extractable.

44

Delete(crs, {xi}i∈[k], S ⊂ [k], π)→ πred. The deletion algorithm is a randomized algorithm that takes
as input crs, a set of k instances {xi}i, a deletion set S ⊂ [k], and outputs a redacted proof
πred.

The redacted proof πred is viewed as a batch proof for the set of instances {xi}i∈[k]\S . That
is, it deletes instances {xi}i∈S (and their witnesses) from the original batch proof π.

note. The deletion algorithm can be applied on an already redacted proof πred as well. In that
case, the set of input instances to the deletion algorithm will be less than k as well as the
deletion set S will a subset of a smaller set. We refer this as multi-hop deletion property
of BARGs. In terms of verification, we consider that the existing verification algorithm also
works for redacted batch proofs as well.

The notion of correctness, succinctness, soundness, and privacy for de-BARGs can be appro-
priately obtained by specializing the appropriate properties and definitions considered for general
mutable batch proofs. Below we provide the specialized definitions (and some strengthenings)
formally.

8.1.1 Correctness, succinctness, and security

Correctness and succinctness of deletion. Informally, correctness for de-BARGs states that
the verifier accepts a redacted batch proof as long as the verifier accepts the input batch proof to
be valid. And, succinctness states that the size of a redacted batch proof is poly-logarithmic in k
(and the batch size of instances after deletion). We formalize it as follows.

Deletion correctness and succinctness. It states that for every λ, k, n ∈ N, crs← Setup(1λ, 1k, 1n),
any k instances {xi}i ∈ L ∩ {0, 1}n with corresponding witnesses {ωi}i, and every proof
π ← Prove(crs, {(xi, ωi)}i), deletion correctness says that for every S ⊂ [k],

Pr
[
Verify(crs, {xi}i/∈S , πred) = 1 : πred ← Delete(crs, {xi}i, S, π)

]
= 1.

And, deletion succinctness states that |πred| ≤ poly(λ, |π|, log(k − |S|)).12

Multi-hop correctness and succinctness. More generally, we also consider multi-hop deletion cor-
rectness and succinctness which says that given any ` ≤ k instances {xi}i with witnesses
{ωi}i, and any (possibly redacted) proof π such that Verify(crs, {xi}i, π) = 1, we have that
for every S ⊂ [`], the aforementioned correctness and succinctness properties still hold.

Soundness and Privacy. Next, we consider post-deletion soundness property. As noted earlier,
in our formalization of de-BARGs, the verification algorithm can take as input, either of, unredacted
and redacted batch proofs. Therefore, soundness of de-BARGs can be defined as in Definitions A.1
and A.2. Furthermore, we can also naturally extend the argument of knowledge property Defini-
tion 3.2 for de-BARG schemes.

In addition to the above properties, we consider a new privacy property for such proof systems.
The goal is to capture the following: Given a proof π for a batch of instances {xi}i, a redacted

12Ideally, we would want that |πred| − |π| = 0, or a fixed polynomial poly(λ). That is, the redacted proofs grow only
additively by a fixed amount. However, this is not the focus of this work.

45

proof πred, for any choice of deletion set S, does not reveal any information about the deleted
instances {xi}i∈S (or their corresponding witnesses). We are not trying to hide the fact that πred is
a redacted proof or the deletion set S that was used to compute πred, but merely the instances that
were deleted. This is inspired by similar notions in the context of redactable and homomorphic
signatures.

Definition 8.1 (deletion privacy). A de-BARG scheme de-BARG satisfies deletion privacy if for
every stateful admissible PPT attacker A, there exists a negligible function negl(·) such that for all
λ ∈ N, the following holds

Pr

A(πred) = β :

(1k, 1n)← A(1λ), β ← {0, 1}
crs← Setup(1λ, 1k, 1n)
(S, {(xi,b, ωi,b)}i∈[k],b∈{0,1})← A(crs)
π ← Prove(crs, {(xi,β, ωi,β)}i)
πred ← Delete(crs, {xi,β}i, S, π)

 ≤ 1

2
+ negl(λ),

where A is admissible iff (xi,0, ωi,0) = (xi,1, ωi,1)
13 for all i /∈ S, and ωi,b is a valid witness for

xi,b ∈ L for every i, b.

Definition 8.2 (multi-hop deletion privacy). A de-BARG scheme de-BARG satisfies multi-hop
deletion privacy if every PPT attacker’s advantage in the above distinguishing game (described
in Definition 8.3) is negligible, even when the final redacted proof (provided as the challenge) is
computed via two different sequence of deletion operations as long as the final set of non-deleted
instances are identical. More concretely, the attacker additionally outputs a sequence of deletion
set pairs {(Si,0, Si,1)}i≤` such that ∪iSi,0 = ∪iSi,1. And, the challenger computes the final challenge
proof by first computing π ← Prove(crs, {(xi,β, ωi,β)}i), and then running the deletion algorithms
for sets S1,β, . . . , S`,β successively.

Beyond deletion privacy. We also propose a stronger notion of deletion security where we
require a redacted proof is indistinguishable from a fresh proof. This goes beyond deletion privacy.
It implies that a redacted proof also hides the set S used for deletion, thereby hiding the fact
whether a batch proof is a redacted proof or not. We call this as deletion anonymity.

Definition 8.3 (deletion anonymity). A de-BARG scheme de-BARG satisfies deletion anonymity
if for every stateful admissible PPT attacker A, there exists a negligible function negl(·) such that
for all λ ∈ N, the following holds

Pr

A(πb) = b :

(1k, 1n)← A(1λ), b← {0, 1}
crs← Setup(1λ, 1k, 1n)
(S ⊂ [`], {(xi, ωi)}i∈[`])← A(crs)
π ← Prove(crs, {(xi, ωi)}i∈[`])
π0 := πred ← Delete(crs, {xi}i, S, π)
π1 ← Prove(crs, {(xi, ωi)}i∈[`]\S)

 ≤
1

2
+ negl(λ),

where A is admissible iff ` ≤ k and ωi is a valid witness for xi ∈ L for every i ∈ [`].

13One could define a slightly stronger property where the witnesses could be different, but only xi,0 = xi,1 for i /∈ S.
Note that this already implies that the resulting BARG would satisfy witness indistinguishability too.

46

note. We would like to point out that, in the above game, we extend the prover’s algorithm
to take a batch of instances of size fewer than k. That is, the Prove algorithm supports variable
batch sizes. This is useful to define deletion anonymity in full generality, since this captures
multi-hop deletion anonymity as well as multi-hop deletion indistinguishability via standard hybrid
arguments.

9 Deletable BARGs via Private Local Verifiability

Next, we construct deletable BARGs (de-BARGs) from any locally verifiable BARGs (lv-BARGs).
Our deletable BARGs naturally support multi-hop deletion. Moreover, we show that if lv-BARGs
satisfy instance privacy, then our de-BARG scheme satisfies multi-hop deletion privacy. To design
a de-BARG scheme for language L, we require two lv-BARG schemes lv-BARG = (lvB.Setup,
lvB.Prove, lvB.Verify, lvB.Extract, lvB.LOpen, lvB.LVfy) for languages L and L̂ (described Fig. 3).

Language L̂

Instance: x̂ := (instance x, CRS crs).

Witness: ω̂ := (proof π w.r.t. crs, auxiliary opening aux, index j).

Membership: ω̂ is a valid witness for x̂ ∈ L̂ if (π, aux) are a valid batch proof and local
opening for index j, under crs, proving x ∈ L. That is, lvB.LVfy(crs, x, j, π, aux) = 1.

Figure 3: Language L̂ for the lv-BARG.

9.1 Construction

Below we describe our single-hop de-BARG scheme de-BARG = (Setup,Prove,Delete,Verify) for
language L.

Setup(1λ, 1k, 1n, i∗)→ (crs, td). It runs the setup algorithm for lv-BARG (for languages L and L̂)
with extraction index i∗. Namely, it generates

(lvbg.crs, lvbg.td)← lvB.SetupL(1λ, 1k, 1n, i∗),

(̂lvbg.crs, ̂lvbg.td)← lvB.SetupL̂(1λ, 1k, 1n̂, i∗),

where n̂ is the length of instances in language L̂ (i.e., n̂ is n+ |lvbg.crs|). It outputs

crs = (lvbg.crs, ̂lvbg.crs), td = (lvbg.td, ̂lvbg.td).

Prove(crs, {(xi, ωi)}i∈[k])→ π. Let crs = (lvbg.crs, ̂lvbg.crs). It generates a batch proof under lvbg.crs
for the input instance-witness pairs as π ← lvB.Prove(lvbg.crs, {(xi, ωi)}i).

Delete(crs, {xi}i, S, π)→ πred. It generates a local opening for each instance xj such that j /∈ S.
That is, it computes

∀j ∈ [k] \ S, (auxj , π
′
j)← lvB.LOpen(lvbg.crs, {xi}i, j, π).

47

Observe that lvB.LVfy can be used to verify each such opening-proof pair. The deletion
algorithm then creates a fresh batch proof for instances {xj}j /∈S14. Concretely, it outputs the
proof as

πred ← lvB.Prove(̂lvbg.crs, {(x̂j , ω̂j)}j /∈S)), where x̂j = (xj , lvbg.crs), ω̂j = (π′j , auxj , j).

Verify(crs, {xi}i∈[`], π)→ 0/1. If ` = k, then the prover runs the lv-BARG verifier w.r.t. lvbg.crs
since π is a proof of a full batch of instances. That is, if ` = k, it outputs lvB.Verify(lvbg.crs, {xi}i, π).

Otherwise, it outputs lvB.Verify(̂lvbg.crs, {xi}i, π).

Preserving local verifiability and somewhere extractability. Observe that the above con-
struction is also locally verifiable since we could simply use the corresponding local opening al-
gorithm for a unredacted batch proof π and redacted batch proof πred to create relevant local
openings.

LOpen(crs, {xi}i∈[`], j, π)→ (auxj , π
′). Based on the batch size, it runs the local opening algorithm

w.r.t. lvbg.crs or ̂lvbg.crs. That is, if ` = k, it outputs (auxj , π
′)← lvB.LOpen(lvbg.crs, {xi}i, j, π).

Else, it outputs (auxj , π
′)← lvB.LOpen(̂lvbg.crs, {xi}i, j, π).

LVfy(crs, x, j, π, aux)→ 0/1. The local verifier can simply run lvB.LVfy on both lvbg.crs and ̂lvbg.crs,
and output 1 if either execution accepts the proof. (Alternatively, we could add an indicator
bit in the auxiliary opening to indicate whether it is a local opening of a unredacted or a
redacted proof.)

Moreover, if the lv-BARG scheme satisfies somewhere extractability as well as local extractability
properties, then the above de-BARG scheme also satisfies somewhere extractability as well as local
extractability. For ease of exposition, we assume that the deletion algorithm replaces each deleted
instance with a dummy15 satisfying instance at the time of computing the redacted proof πred. Thus,
Delete runs lvB.Prove on a batch of size k after creating local openings. This assumption makes
it easier to explain somewhere and local extractability. This is due to the fact that this strategy
of replacing each deleted instance with dummy (satisfying instances) maintains the invariant that
every instance that does not get deleted stays in the same index position. Thus, a somewhere/local
extractor for above de-BARG scheme can simply be run as follows – (1) for a unredacted proof,
run the somewhere extractor directly using lvbg.td to extract the witness ωi∗ , (2) for a redacted

proof, first run the somewhere extractor using ̂lvbg.td to extract a tuple of proof π and auxiliary
opening aux, and then run the local extractor using lvbg.td on the extracted values to extract the
underlying witness ωi∗ .

From single-hop to multi-hop deletion. We remark that one can generically construct a
multi-hop de-BARG scheme from a single-hop de-BARGs, with the restriction that the number of

14Note that here we are assuming that the prover algorithm can compute a batch proof for any batch size ≤ k. This
follows w.l.o.g. since a prover could either add dummy valid instances to pad the batch size to k, or the BARG
prover can simply natively support varying batch sizes. We point out that all existing BARG schemes already
support varying length batch sizes. Here we assume that the algorithm adds dummy instances in place of every
deleted instance.

15A dummy instance could simply be either the first instance that is not deleted, or some global instance.

48

hops is constant. For building a `-hop de-BARG system (for some constant ` > 0), the approach
is to sample a sequence of ` single-hop de-BARG systems such that a redacted proof generated
using the ith single-hop de-BARG system can be further redacted by the (i + 1)th single-hop
system. Intuitively, we can generate the local openings for the ith redacted proof, and use them as
witnesses for (i+ 1)th single-hop system. Now by using deletion property of the (i+ q)th instance,
we can perform another level of deletion. This is reminscient to Gentry’s bootstrapping [Gen09],
but extended to deletable BARG schemes. This can be slightly optimized by modifying the above
construction and sampling a sequence of `+1 lv-BARG systems, and performing the above deletion
bootstrapping (or, sequential deletion) slightly more efficiently. However, the above approaches only
support constant number of deletion hops due to potential exponential (in number of hops) growth
in the proof size. This is because the proof size after each deletion could be polynomially larger
than initial proof. However, if we start with a rate-1 de-BARG scheme, then they would enable
unbounded number of multi-hop deletion operations.

Correctness and succinctness. We now show that the above scheme satisfies deletion cor-
rectness and succinctness. (It already satisfies regular correctness and succinctness due to regular
correctness and succinctness of the base BARG scheme for language L.) Deletion correctness fol-
lows similarly from the local correctness of the BARG scheme corresponding to languages L, and
regular correctness property for the BARG scheme corresponding to languages L̂. Moreover, the
deletion succinctness follows from opening succinctness of BARG scheme (for language L̂) and
proof succinctness of BARG scheme (for language L).

In further detail, first note that by local correctness of the base BARG scheme, we have that
(auxj , π

′
j) is a valid proof for instance xj w.r.t. language L̂ due to the local correctness prop-

erty. Moreover, by succinctness of opening we have that |auxj |, |π′j | are succinct (i.e., grow as

poly(λ, log k)). Therefore, any proof πred obtained using the deletion algorithm for a set S is ac-
cepted by the verifier since x̂j and ω̂j will be a vali instance-witness pair w.r.t. L̂. Further, by
succinctness of the second BARG scheme, we also get that |πred| = poly(λ, log(k − |S|), |ω̂j |) and
since |ω̂j | is the same as the size of a locally opened barg proof, thus deletion succinctness follows.
The proof of multi-hop deletion also follows analogously.

Lastly, we point out that if both the BARG scheme are rate-1, then the proof growth is only
additive.

9.2 Security

Below we prove the security of our scheme.

Theorem 9.1. If the lv-BARG scheme lv-BARG satisfies index hiding, somewhere argument of
knowledge, local argument of knowledge with adversarial openings, and instance privacy (Defini-
tions 3.1, 3.2, 5.3 and 5.5), then the above scheme is a deletable BARG scheme satisfying index
hiding, somewhere argument of knowledge, local argument of knowledge with adversarial openings,
and deletion privacy (Definitions 3.1, 3.2, 5.3 and 8.3).

Proof. The proof is divided into four parts where we individually prove the desired properties.

Index hiding. This follows directly from the index hiding properties of the two lv-BARG schemes.
Concretely, we prove the following.

49

Lemma 9.2. If the BARG scheme lv-BARG satisfies index hiding, then de-BARG also satisfies
index hiding.

Proof. This follows from a simple hybrid argument. We define an intermediate hybrid experiment
in which the trapdoor index used while generating the lv-BARG parameters for language L is i∗1
instead of i∗0, while parameters for lv-BARG for language L̂ are still generated as before. Note that
i∗0 and i∗1 are the two challenge indices chosen by the attacker. Observe that the hybrid experiment
is indistinguishable from the experiment where the de-BARG setup algorithm is run with index
i∗0 by performing a simple reduction to the lv-BARG index hiding property. Similarly, the hybrid
experiment is indistinguishable from the experiment where the de-BARG setup algorithm is run
with index i∗1 by performing a simple reduction to the lv-BARG index hiding property. Thus, the
lemma follows.

Somewhere argument of knowledge. This follows from a combination of the somewhere ar-
gument of knowledge property and the local argument of knowledge with adversarial openings
property of lv-BARG for languages L̂ and L, respectively. Concretely, we prove the following.

Lemma 9.3. If the BARG scheme lv-BARG satisfies somewhere argument of knowledge and local
argument of knowledge with adversarial openings, then de-BARG satisfies somewhere argument of
knowledge.

Proof. This follows from a simple recursive extraction procedure for the lv-BARG. Suppose there
exists a PPT attacker A that breaks somewhere argument of knowledge of the de-BARG scheme
with non-negligible probability ε = ε(λ). We divide the analysis in three cases.

Type 1 attacker: A outputs a sequence of instances {xi}i∈[`] and a proof π such that ` = k
and lvB.Verify(lvbg.crs, {xi}i, π) = 1 but lvB.Extract(lvbg.td, {xi}i, π) = ω is not a valid witness for
xi∗ . Note that a Type 1 attacker breaks the somewhere argument of knowledge property of the
inner BARG scheme. This follows directly from a reduction to somewhere argument of knowledge
of lv-BARG.

Type 2 attacker: A outputs a sequence of instances {xi}i∈[`] and a proof π such that ` < k

and lvB.Verify(̂lvbg.crs, {x̂i}i, π) = 1 but lvB.Extract(̂lvbg.td, {x̂i}i, π) = ω̂ is not a valid witness for
x̂i∗ . Note that a Type 2 attacker breaks the somewhere argument of knowledge property of the
outer BARG scheme. This follows directly from a reduction to somewhere argument of knowledge
of lv-BARG.

Type 3 attacker: A outputs a sequence of instances {xi}i∈[`] and a proof π such that ` < k

and lvB.Verify(̂lvbg.crs, {x̂i}i, π) = 1, and lvB.Extract(̂lvbg.td, {x̂i}i, π) = ω̂ = (π′j , auxj , j) is a valid
witness for x̂i∗ = (xi∗ , lvbg.crs), but lvB.LExtract(lvbg.td, xi∗ , j, π

′
j , auxj) = ω is not a valid witness

for xi∗ . Note that a Type 3 attacker breaks the local argument of knowledge with adversarial
openings property of the inner BARG scheme. This follows directly from a reduction to local
argument of knowledge of lv-BARG.

We want to highlight that here we are assuming that the deletion algorithm simply replaces
each deleted instance with a dummy instance. This ensures that the index/location of an instance
before and after deletion in the full batch of instances stays the same. This ensures that j = i∗, thus
extraction can be recursively performed. In case, the deletion algorithm changes the order of the
instances or reduces the batch size, then we will need to update the notion of somewhere extraction
for deleted proofs where an aversary must commit to not only the location of the instance in the

50

original batch of instances, but also its location (relative to the batch of deleted instances) after
the delete operation.

Finally, note that any successful somewhere argument of knowledge attacker A must be either
Type 1, 2, or 3. Thus, combining the above arguments, the lemma follows.

Semi-adaptive soundness. As noted earlier, somewhere argument of knowledge property im-
plies semi-adaptive soundness. Combining this with our somewhere argument of knowledge lemma
proved above, we achieve semi-adaptive soundness as well.

Local argument of knowledge with adversarial openings. This is a natural extension of
the somewhere argument of knowledge proved in Lemma 9.3. Concretely, we prove the following.

Lemma 9.4. If the BARG scheme lv-BARG satisfies local argument of knowledge with adversarial
openings, then de-BARG satisfies local argument of knowledge with adversarial openings.

Proof. The proof is similar to the proof of Lemma 9.3 which is by relying on a recursive extraction
strategy, except now we use a local extractor for both outer and inner BARG schemes. Previously,
we used a mixture of local extractor and somewhere extractor. However, now we simply recurse
using the local extractor. Basically, a type 1 attacker is defined as before, except we run LExtract for
the inner BARG to extract the witness. Similarly, for type 2 and 3 attacker, we first run LExtract
for outer BARG, and then run LExtract for inner BARG as well (if needed, i.e. only for type 3
attacker).

Deletion privacy. This follows from the instance privacy property of the lv-BARG scheme. Con-
cretely, we prove the following.

Lemma 9.5. If the BARG scheme lv-BARG satisfies instance privacy, then de-BARG satisfies
deletion privacy.

Proof. This follows immediately from the instance privacy property of the lv-BARG scheme. Sup-
pose there exists a PPT attacker A that breaks deletion privacy of the de-BARG scheme with
non-negligible probability ε = ε(λ). Then we construct another PPT attacker B that breaks in-
stance privacy property of lv-BARG.

Briefly, the attacker A starts by outputting (1k, 1n, i∗).16 The reduction algorithm B simply
sends (1k, 1n, i∗) to the lv-BARG challenger, and the challenger sends lvbg.crs to B. B then samples

parameters for the outer BARG scheme to sample ̂lvbg.crs and ̂lvbg.td as in the actual scheme.

(That is, (̂lvbg.crs, ̂lvbg.td)← lvB.SetupL̂(1λ, 1k, 1n̂, i∗)). It then sends (lvbg.crs, ̂lvbg.crs) as the crs
to A. A then outputs a set S along with two sequences of k instance-witness pairs (xi,b, ωi,b) for
i ∈ [k] and b ∈ {0, 1}. B then samples a random bit β ← {0, 1}, and then forwards S = [k] \ S and
instance-witness pairs {(xi,β, ωi,β)}i∈[k] to the instance privacy challenger. Next, the challenger
replies with a set of opening and (sanitized) batch proof pairs {(auxj , π′j)}j /∈S . Finally, B uses
(π′j , auxj , j) as witness for each instance x̂j = (xj , lvbg.crs) for every j /∈ S, and computes a batch

proof using ̂lvbg.crs. That is, it computes a deleted proof πred as in the Delete algorithm, except

16Technically, in the deletion privacy definition, the adversary only outputs 1k, 1n, but here we expect it outputs i∗

as well. We point out that this is simply due to the fact that our design de-BARG scheme also satisfies somewhere
extractability, thus we have used an extended syntax.

51

that it receives the opening from the challenger rather than computing on its own. B then sends
πred to A, and A outputs its guess b∗. If β = b∗, then B outputs 0 as its guess (i.e., opening and
sanitized batch proofs were computed honestly). Otherwise, B outputs 1 to signal that they were
simulated.

Using a standard probability analysis, we obtain that B’s advantage is at least ε/2, thus this
breaks the instance privacy property of the lv-BARG scheme. This completes the proof of the
lemma.

This completes the proof of our main theorem.

10 Mutable Batch Proofs for C-batchNP mutation

In this section, we provide a constructions for mutable batch proofs for a special class of non-
deterministic mutations, that we call C-batchNP mutations where C = {Ck}k∈N is a family of
circuits (where Ck : {0, 1}k → {0, 1}). We start by defining the language associated with such
mutation operations. For simplicity, we call it C-batchNP languages.

C-batchNP languages. For any NP language L, the C-batchNP language L(k)C is defined as:

L(k)C = {(C, x1, . . . , xk) : C ∈ Ck and C(Ix1∈L, . . . , Ixk∈L) = 1} ,

where indicator variable is defined as Ix∈L = 1 iff x ∈ L.
In recent works [BBK+23], such languages were considered where C contained all monotone

circuits. In this work, we consider a more general abstraction for such languages, and provide new
constructions for mutable batch proofs where the mutated language corresponds to appropriate
C-batchNP language. We start by recalling some useful preliminaries.

10.1 Preliminaries

SNARGs. A SNARG for NP language L consists of the following algorithms.

Setup(1λ, 1n,L)→ crs. The setup algorithm takes as input the security parameter λ, instance length
n, and language description L. It outputs crs.

Prove(crs, x, ω)→ π. The prover algorithm takes as input a crs, instance-witness pair (x, ω), and
outputs a proof π.

Verify(crs, x, π)→ 0/1. The verification algorithm takes as input a crs, an instance x, and a proof
π. It outputs a bit denoting proof validity.

Correctness and succinctness. A SNARG is said to be correct and succinct if for every λ, n ∈ N,
any instance x ∈ L ∩ {0, 1}n and corresponding witness ω, and every proof π ← Prove(crs, x, ω),
the following holds:

Completeness. Verify(crs, x, π) = 1.

Succinctness. |π| ≤ poly(λ, n). That is, the size of the batched proof is bounded by a fixed
polynomial in λ, n.

52

Soundness. A SNARG scheme is said to be non-adaptively sound if an attacker can not create a
valid proof for any invalid instance fixed before receiving the CRS.

Definition 10.1 (non-adaptive soundness). A SNARG satisfies non-adaptive soundness if for any
polynomial n = n(λ), every PPT attacker A, there exists a negligible function negl(·) such that for
any instance x /∈ L where |x| = n, the following holds for all λ ∈ N,

Pr

[
Verify(crs, x, π) = 1 :

crs← Setup(1λ, 1n,L)
π ← A(crs)

]
≤ negl(λ).

Extractability. Furthermore, we consider the notion of extractability considered and achieved in
prior works. Full extractability states that it an attacker breaks non-adaptive soundness, then there
exists an extractor which can extract a sequence of valid witnesses given only oracle access to the
attacker.

Definition 10.2 (argument of knowledge). A SNARG is an argument of knowledge if for every
constant c ∈ N, there exists a PPT oracle machine Ec such that for every polynomial n = n(λ),
every PPT attacker A, if for infinitely many λ ∈ N, there exists instance x where |x| = n such that

Pr

[
Verify(crs, x, π) = 1 :

crs← Setup(1λ, 1n,L)
π ← A(crs)

]
≥ 1

λc
.

then there exists a negligible function negl(·) such that for every such λ, the following holds (where
R denotes the relation for language L),

Pr
[
R(x, ω) = 1 : ω ← EAc (1λ, 1n,L)

]
= 1− negl(λ).

Prior works also considered a weaker somewhere extractability notion. However, in this work,
we stick to the just the regular extractability notion.

10.2 Mutable proofs via locally verifiable BARGs and SNARGs

Here we give a construction for mutable proofs for C-batchNP mutation operations by combining
any locally verifiable BARG scheme with any extractable SNARG scheme for language C-batchNP.
By combining it with recent constructions for extractable SNARGs, we obtain a mutable proofs for
monotone policy batchNP mutation operations under learning with errors assumption.

Construction. Let C = {C`}`∈N be a family of circuits as discussed above (where ` denotes the in-
put length of circuits in class C`), lv-BARG = (Setup,Prove,Verify,Extract, LOpen, LVfy) be a locally
verifiable seBARG for language L, and SNARG = (SNARG.Setup,SNARG.Prove,SNARG.Verify) for
language C-batchNP. Below we describe our mutable BARG scheme for language L and mutation
class C.

Setup(1λ, 1k, 1n, C`)→ (crs, td). It runs the setup algorithms for lv-BARG and SNARG schemes.
Namely, it outputs crs = (crs′, lvbg.crs) where

crs′ ← SNARG.Setup(1λ, 1n, C`), lvbg.crs← lvB.Setup(1λ, 1k, 1n).

Prove(crs, {(xi, ωi)}i∈[k])→ π. It generates the proof as π ← lvB.Prove(lvbg.crs, {(xi, ωi)}i).

53

Verify(crs, {xi}i∈[k], π)→ 0/1. It runs lv-BARG verifier to output lvB.Verify(lvbg.crs, {xi}i, π).

Eval(crs, C, {(ji, Xi, πi)}i≤`)→ π̂. Let Xi = (xi,1, . . . , xi,k). It starts by running the local opening
algorithm for each proof πi corresponding to index ji as follows

∀i ∈ [`], (lvbg.auxi, lvbg.π
′
i) = lvB.LOpen(lvbg.crs, Xi, ji, πi).

Next, it runs the SNARG prover to create mutated proof as π̂ ← SNARG.Prove(crs′, xC , ωC),
where the instance-witness pair is defined as

xC = (C, x1,j1 , . . . , x`,j`), ωC = ((lvbg.aux1, lvbg.π
′
1), . . . , (lvbg.aux`, lvbg.π

′
`)).

Note that here the NP language we use for the batchNP portion of the C-batchNP language for
SNARG corresponds to lvB.LVfylvbg.crs, where message is the instance and the local opening
and proof are the witnesses.

Post-Verify(crs, C, xC , π̂)→ 0/1. The (post evaluation) verifier algorithm runs the SNARG verifier
to output SNARG.Verify(crs′, xC , π̂).

Remark 10.3. Note that the above construction still preserves the local verifiability feature for
the underlying BARG scheme. Thus, it would be more appropriate to define the class of supported
mutation functions for this proof system to contain both C-batchNP mutation as well as (private)
local opening mutations.

Correctness and succinctness. The basic correctness and succinctness (about non-mutated
proofs) in the above scheme follow directly from correctness and succinctness of the lv-BARG
scheme since the Prove and Verify algorithms are just lvB.Prove and lvB.Verify. Next, by correctness
of lvB.LVfy and SNARG, we get that the mutation correctness also holds. This is because ωC as
described in the construction will be a valid witness for xC as long as C(Ix1,j1∈L, . . . , Ixk,jk∈L) = 1.
Furthermore, succinctness of mutation proof follows from succinctness of SNARG succinctness and
the fact that the output of the local opening algorithm is also succinct.

Soundness. Below we prove soundness of our mutable BARGs.

Theorem 10.4. If the locally verifiable BARG scheme lv-BARG satisfies semi-adaptive local sound-
ness with adversarial openings (Definition 5.2), and the SNARG scheme SNARG satisfies argument
of knowledge property (Definition 10.2), then the above scheme is a mutable BARG scheme satis-
fying non-adaptive soundness (Definition 4.2).

Proof. The proof follow from a simple type-based reduction to lv-BARG and SNARG. We provide
a brief sketch below.

To begin the argument, consider a successful attacker A on mutation privacy. Then, suppose E
is the extractor for SNARG, then we define a partial extraction oracle algorithm Extract as follows–

ExtractA(1λ, 1n, C`) : It runs the oracle machine EA (with oracle access to A), and uses it to extract
the SNARG witness ωC .

54

Next, We divide the analysis in two cases.
Type 1 attacker: ωC is a not valid witness for instance xC . In this case, we reduce the attack

to breaking argument of knowledge property of SNARG.
Type 2 attacker: ωC is a not valid witness for instance xC , but one of the underlying instances

xi /∈ L, where xC = (C, x1, . . . , x`). In this case, we break semi-adaptive local soundness with
adversarial openings. To design a reduction algorithm, the reduction algorithm guesses the index
i such that xi /∈ L, and uses as its attack on the local soundness. The reduction suffers from a
polynomial loss in the advantage, but still results in a contradiction.

Note that any successful non-adaptive soundness attacker A must be either Type 1 or 2. Thus,
combining the above arguments, the lemma follows.

Remark 10.5 (somewhere extraction). In our applications to homomorphic signatures, we need to
rely on a slightly stronger somewhere extractability property of our mutable batch proofs. Some-
where extractability for mutable BARGs states that for every index i, there exists an oracle PPT
machine E i that is able to extract a valid witness for the ith instance in the mutated instance
xC . Furthermore, the adversary cannot distinguish the CRS generated by any two different oracle
machines E i and Ej . This can be achieved by combining the above notion of SNARG extractor
with the local somewhere extractor for underlying batch proofs. To avoid compicating the syntax,
we keep this as a remark.

Privacy. Similarly, we can prove privacy of our mutable BARGs scheme.

Theorem 10.6. If the locally verifiable BARG scheme lv-BARG satisfies full privacy (Defini-
tion 5.6), then the above scheme is a mutable BARG scheme satisfying mutation privacy (Def-
inition 4.3).

Proof. The proof follow from a straightforward reduction to lv-BARG privacy property.

10.2.1 Instantiating from LWE

Given the recent work by Brakerski et al. [BBK+23], we know the following.

Theorem 10.7 (Paraphrased [BBK+23]). Assuming the polynomial hardness of learning with
errors (LWE), there exist non-adaptively sound SNARGs for monotone policy batchNP for all
polynomial-size monotone circuit policies, and the SNARG is an argument of knowledge.

Combining this with our construction of locally verifiable BARGs and Theorems 10.4 and 10.6,
we obtain the following corollary.

Corollary 10.8. Assuming the polynomial hardness of learning with errors (LWE), there exist
non-adaptively sound and private mutable batch proofs for any NP language with mutation class
is C-batchNP where C contains all polynomial-size monotone circuits.

We leave it as an interesting open problem to design mutable batch proofs for such C-batchNP
mutations from other standard assumptions.

55

11 Advanced Signature Schemes

In this section, we recall three types of advanced signature schemes– redactable signatures, aggre-
gate signatures with local verifiability, and homomorphic signatures. Later we provide constructions
of each of these signature schemes based on our mutable BARG schemes with appropriate mutation
class.

For example, we show that a de-BARG directly implies a redactable signature with optimal
parameters. Prior to this work, all known redactable signatures were restricted in one of many ways.
Such as either they had sub-optimal parameters (in terms of sizes of signatures and public keys), or
relied on idealized assumptions (such as random oracles, or knowledge-based assumptions), or could
not support multi-hop deletions, or provided only weak forms of deletion privacy or unforgeability.
In this work, we show a general template from de-BARGs to design redactable signatures that
avoids all such limitations.

Further, we discuss how BARGs with different features and security properties proposed in
this work can be used to design signatures with a variety of different features. In this section, we
provide the definitional framework for different types of signature schemes. In following sections,
we provide new constructions for these signatures based on standard assumptions.

11.1 Redactable Signatures

A redactable signature scheme [JMSW02, SBZ01] consists of the following polynomial time algo-
rithms.

Setup(1λ, L)→ (vk, sk). It takes as input the security parameter λ and message length L, outputs
a signing-verification key pair (vk, sk). (Note that message length is given in binary, thus can
be as large as 2λ.)

Sign(sk,m)→ σ. The signing algorithm takes as input a signing key sk and message m ∈ {0, 1}L,
and computes a signature σ.

Verify(vk,m, σ)→ 0/1. The verification algorithm takes as input a verification key vk, message
m ∈ {0, 1,⊥}L, and signature σ. It outputs a bit.

note. The ‘⊥’ symbol denotes a redacted bit. One can alternatively represent a redacted
message as a sequence of bits (bi)i∈T along with a set T , where T denotes all the messages
that have not been redacted. We use ‘⊥’ above for notational clarity, but our constructions
can work with either representation.

Redact(vk,m, S, σ)→ σ′. It takes as input key vk, a message m ∈ {0, 1,⊥}L, and a redaction set
S ⊂ [|m|], and outputs a redacted signature σ′.

note. We say the scheme is multi-hop redactable if Redact can be used to further redact a
redacted signature σ′.

Notation. For any message m and set S, we use m{S} as a shorthand notation to denote a message
m redacted at places in S. That is, m{S}[i] = m[i] if i /∈ S, else m{S}[i] =⊥. In words, the i-th bit
of m{S} matches i-th bit of m if i /∈ S, otherwise it is set as ⊥.

56

Correctness and succintness. A redactable scheme satisfies correctness if Verify accepts an
honestly generated signature σ or any honestly computed redacted signature σ′. Moreover, the
scheme is succinct if the size of a redacted signature does not grow with the maximum message
length or the size of redacted message. Formally, it means that for every λ ∈ N, L ≤ 2λ, key pair
(vk, sk) ← Setup(1λ, L), messages m ∈ {0, 1}L, every signature σ ← Sign(sk,m), every redaction
set S ⊂ [L], and redacted signature σ′ ← Redact(vk,m, S, σ), the following holds:

Verify(vk,m, σ) = Verify(vk,m{S}, σ′) = 1, |σ′| = poly(λ).

We also consider succinctness for regular (unredacted) messages which says |σ| = poly(λ). Further,
we can naturally generalize correctness and succintness for multi-hop redaction. In that case, we
require that the size of even a multi-hop redacted signature will be poly(λ), and Verify also accepts
a multi-hop redacted signature.

Basic unforgeability. Next, recall the standard unforgeability security for plain signatures.

Definition 11.1 (unforgeability). A signature scheme is said to be unforgeable if for every admis-
sible PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈ N, the following
holds

Pr

[
Verify(vk,m∗, σ∗) = 1 :

L← A(1λ), (vk, sk)← Setup(1λ, L)

(m∗, σ∗)← ASign(sk,·)(vk)

]
≤ negl(λ),

and A is admissible as long as it did not query m∗ to the Sign oracle.

Unforgeability and unlinkability of redaction. For redactable signatures, there are two main
security properties. The first is a extension of unforgeability for redactable signature. It says that
an attacker cannot produce a forgery on a message (either redacted or unredacted) for which it did
not receive a signature yet. This is the simplest formulation in which the attacker does not make
queries to the redaction algorithm. We also consider a strong notion of redaction unforgeability
where the attacker can also make queries to the redaction algorithm. We describe both versions
below.

Definition 11.2 (redaction unforgeability). A redactable signature scheme is said to be unforgeable
if no PPT attacker wins in the unforgeability game described in Definition 11.1 even when the

challenge message m∗ could be a redacted message as long as m∗ 6= m
{S}
i for any queried message

mi and any redaction set S. That is, unforgeability of signatures holds as long as an attacker does
not produce a trivial forgery by replaying a signature or by outputting redacted signature for a
queried message.

Definition 11.3 (strong redaction unforgeability). A redactable signature scheme is said to be
strongly unforgeable if no PPT attacker wins in the unforgeability game described in Definition 11.1
where:

1. A can also make queries to two more oracles – Redact,Request. Sign oracle computes the sig-
nature, but only sends a signature handle (i.e., an index) to A. Moreover, A can make queries
to Redact where it provides a handle and a redaction set, and Redact oracle answers with a
handle to the redacted signature. To request a signature, A provides a handle to Request
oracle, and receives the corresponding redacted/unredacted signature from the challenger.

57

2. A forgery on m∗ is defined as successful if none of the signatures received by A as part of
Request oracle queries are valid for m∗.

Additionally, we consider unlinkability property for redacted signatures. The intuition is that two
redacted signatures of the same message should look indistinguishable, and not reveal anything
about their source messages. We also consider a stronger unlinkability property where a signature
also hides whether it was a redacted signature or a fresh signature (in this case, we expect Sign to
be able to sign redacted messages).

Definition 11.4 (redaction unlinkability). A redactable signature scheme is said satisfy unlinka-
bility if for every stateful admissible PPT attacker A, there exists a negligible function negl(·) such
that for all λ ∈ N, the following holds

Pr

A(σ′) = β :

L← A(1λ), (vk, sk)← Setup(1λ, L)

(S,m0,m1)← ASign(sk,·)(vk)
σ0 ← Sign(sk,m0), σ0 ← Sign(sk,m0)
b← {0, 1}, σ′ ← Redact(vk,mb, S, σb)

 ≤ 1

2
+ negl(λ),

where A is admissible iff m
{S}
0 = m

{S}
1 (that is, redacted messages are identical for all message bits

that are not redacted).

Definition 11.5 (strong redaction unlinkability). A redactable signature scheme is said satisfy
strong unlinkability if a redacted signature as defined in Definition 11.4 is indistinguishable from a

fresh signature on message m
{S}
0 .

11.2 Locally Verifiable Aggregate Signatures

A locally verifiable aggregate signature scheme [BGLS03, GV22] consists of the following polynomial
time algorithms.

CRS(1λ, 1k)→ crs. On input the security parameter λ and upper bound on number of aggregations
k, the CRS generation algorithm samples global parameters crs. (All the remaining algorithms
take crs as input, and for ease of notation we do not write it explicitly.)

Setup(1λ)→ (vk, sk). The setup algorithm, on input the security parameter λ, outputs a pair of
signing and verification keys (vk, sk).

Sign(sk,m)→ σ. The signing algorithm takes as input a signing key sk and message m ∈ {0, 1}λ,
and computes a signature σ.

Verify(vk,m, σ)→ 0/1. The verification algorithm takes as input a verification key vk, message
m ∈ {0, 1}λ, and signature σ. It outputs a bit to signal signature validity.

Agg({(vki,mi, σi)}i)→ σ̂/⊥. The signature aggregation algorithm takes as input a sequence of
tuples, each containing a verification key vki, a message mi, a signature σi, and it outputs
either an aggregated signature σ̂ or a special abort symbol ⊥.

AggV({(vki,mi)}i, σ̂)→ 0/1. The aggregate verify algorithm takes as input a sequence of tuples,
each containing a verification key vki, a message mi, and it outputs a bit to signal whether
the aggregated signature σ̂ is valid or not.

58

LOpen(σ̂, {(vki,mi)}i, j)→ auxj . The local opening algorithm takes as input an aggregated signa-
ture σ̂, a sequence of tuples (each containing a verification key vki and a message mi for
i ∈ [k]), and an index j ∈ [k]. It outputs auxiliary information auxj .

LVfy(σ̂, vk,m, j, aux)→ 0/1. The local verification algorithm takes as input an aggregated signature
σ̂, a verification key vk, a message m, index j, and auxiliary information aux. It outputs a
bit to signal whether the aggregate signature σ̂ contains a signature for message m under
verification key vk, or not.

Correctness and Compactness. A locally verifiable aggregate signature scheme is said to be
correct and compact if for all λ, k ∈ N, parameters crs← CRS(1λ, 1k), verification-signing key pairs
(vki, ski) ← Setup(1λ) for i ∈ [k], messages mi for i ∈ [k], every signature σi ← Sign(ski,mi) for
i ∈ [k], the following holds:

Correctness of signing. For all i ∈ [k], Verify(vki,mi, σi) = 1.

Correctness of aggregation. If σ̂ = Agg({(vki,mi, σi)}i), then

AggV({(vki,mi)}i, σ̂) = 1.

Correctness of local opening. For every j ∈ [k], LVfy(σ̂, vkj ,mj , j, auxj) = 1 where opening
and signature are computed as auxj = LOpen(σ̂, {(vki,mi)}i, j).

Compactness of aggregation and opening. |σ̂|, |aux| ≤ poly(λ). That is, the sizes of an
aggregated signature and auxiliary opening information are polynomially bounded in λ.

Remark 11.6 (Fully Public Openings). An aggregate signature scheme is said to have fully public
local openings if the algorithm LOpen does not need read the aggregated signature σ̂. That is, it
has the syntax — LOpen({(vki,mi)}i, j) → auxj . That is, LOpen is oblivious to the aggregated
signature.

Security. In addition to regular unforgeability Definition 11.1, we consider aggregated unforge-
ability with(/out) adversarial openings.

Definition 11.7 (aggregated unforgeability). An aggregate signature scheme satisfies aggregated
unforgeability if for every admissible PPT attacker A, there exists a negligible function negl(·) such
that for all λ ∈ N, the following holds

Pr

AggV({(vk∗i ,m∗i)}i, σ̂∗) = 1 :

1k ← A(1λ), crs← CRS(1λ, 1k)
(vk, sk)← Setup(1λ)

({(vk∗i ,m∗i)}i∈[k], σ̂∗)← ASign(sk,·)(vk)

 ≤ negl(λ),

where A is admissible if there exists i ∈ [k] such that vk∗i = vk and m∗i was not queried by A to the
Sign(sk, ·) oracle.

Definition 11.8 (aggregated unforgeability with adversarial opening). An aggregate signature
scheme satisfies aggregated unforgeability with adversarial openings if no PPT adversary A wins in
the unforgeability game described in Definition 11.1 where a successful forgery can be respresented
as a tuple of an aggregated signature σ̂, local opening aux, message m∗, and index j such that LVfy
accepts it under challenge key vk, and m∗ was never sign queried.

59

In this work, we also propose a strong notion of message privacy for locally verifiable aggregate
signatures, called local opening simulatability. It says that a locally opened aggregate signature
hides complete information about any aggregate signature (and corresponding messages) that were
not opened. As in the case of instance privacy for lv-BARGs, we need to update the syntax of
LOpen where it now also outputs a sanitized aggregate signature σ̂′.

Definition 11.9 (local opening simulatability). A locally verifiable aggregate signature scheme S
is said to satisfy message privacy with local opening if there exists a PPT stateful simulator Sim

such that for every admissible PPT attacker A, there exists a negligible function negl(·) such that
for all λ ∈ N, the following holds

Pr


A(auxb, σ̂

′
b) = b

∧
(
∀i ∈ [k],
Verify(vki,mi, σi) = 1

)
:

1k ← A(1λ), b← {0, 1}
crs0 ← CRS(1λ), crs1 ← Sim(1λ, 1k)
(j, {(vki,mi, σi)}i∈[k])← A(crsb)
σ̂0 ← Agg({(vki,mi, σi)}i)
(aux0, σ̂

′
0)← LOpen(σ̂0, {(vki,mi)}i, j)

(aux1, σ̂
′
1)← Sim(j, vkj ,mj , σj)

 ≤
1

2
+ negl(λ).

11.3 Homomorphic Signatures

Homomorphic signatures [BFKW09, BF11] have been defined with many different variations such as
single/multi-dataset, conjoined/independent signing, bounded length datasets, etc. In this work,
we consider schemes with the following polynomial time algorithms. These directly capture (or
generically imply) all existing formalizations of homomorphic signatures. Consider a circuit family
C = {C`}`∈N, where circuits in C` take `-bits as inputs.

Setup(1λ, C`)→ (vk, sk). On input the security parameter λ and a circuit class C`, it outputs a key
pair (vk, sk).

Sign(sk, i, b)→ σ. The signing algorithm takes as input a signing key sk, index i ∈ [`], and a message
bit b ∈ {0, 1}. It outputs a signature σ.

Eval(vk, {(mi, σi)}i, C)→ σ′. It takes as input key vk, a sequence of ` message-signature pairs
mi, σi, and a circuit C ∈ C`. It outputs an evaluated signature σ′ corresponding to message
m′ = C(m1, . . . ,m`).

note. We say the scheme has multi-hop evaluation if Eval can also run on an evaluated
signature σ′.

Verify(vk,m, σ, C)→ 0/1. The verification algorithm takes as input key vk, message m ∈ {0, 1}∗,
signature σ, and circuit C. It outputs a bit to denote whether σ is a valid evaluated signature
of message m w.r.t. circuit C.

note. One can verify a signature that has not been evaluated by setting C = I, an identity
circuit.

Correctness and succintness. A homomorphic signature scheme for circuit class C satisfies
correctness and succintness if for every λ, ` ∈ N, key pair (vk, sk) ← Setup(1λ, C`), any circuit

60

C ∈ C`, any `-bit message m = (m1, . . . ,m`) ∈ {0, 1}`, every signature σi ← Sign(sk, i,mi), and
evaluated signature σ′ ← Eval(vk, {(mi, σi)}i, C), the following holds:

Verify(vk, C(m1, . . . ,m`), σ
′, C) = 1, |σi|, |σ′| = poly(λ).

We want to highlight that we consider a stronger notion of succinctness than prior works as we
require the size of signatures to be independent of the input/output size of the circuit that is being
evaluated. For instance, C could have a really long output, and we still require the evaluated
signature to have size independent of |C(M)|.

Further, we can naturally generalize correctness and succintness for multi-hop evaluation. In
that case, we require that the size of even a multi-hop evaluated signature will be poly(λ), and
Verify also accepts all such multi-hop evaluated signatures.

Unforgeability. For unforgeability of homomorphic signatures, we define the most general fully
adaptive model where the adversay can query on arbitrary datasets for arbitrary tags, and eventu-
ally the adversary wins if it produces a valid signature for any output value w.r.t. any adversarially
selected circuit where the signature could not be computed by evaluating any combination of queried
messages. Formally, we define it as follows.

Definition 11.10 (homomorphic unforgeability). A homomorphic signature scheme for circuit
class C satisfies unforgeability if for every admissible PPT attacker A, there exists a negligible
function negl(·) such that for all λ, ` ∈ N, the following holds

Pr

[
Verify(vk,m∗, σ∗, C∗) = 1 :

(vk, sk)← Setup(1λ, C`)
(m∗, σ∗, C∗)← ASign(sk,·,·)(1λ, vk)

]
≤ negl(λ),

where A is admissible if for any index i it makes at most one signing query, and m∗ 6= C∗(m) for
message m created by combining the dataset queried (bit-by-bit) to the Sign oracle.

Definition 11.11 (circuit-selective homomorphic unforgeability). A homomorphic signature scheme
for circuit class C satisfies circuit-selective unforgeability if no PPT adversary A wins in the un-
forgeability game described in Definition 11.10 where A must declare C∗ at the beginning of the
game.

Context Hiding. As in prior works, we also consider the notion of context hiding for homomor-
phic signatures. It says that there exists a simulator that can simulate an evaluated signature given
only the output message and the circuit used during evaluation.

Definition 11.12 (context hiding). A homomorphic signature scheme for circuit class C satisfies
context hiding if there exists a PPT stateful simulator Sim such that for every admissible PPT
attacker A, there exists a negligible function negl(·) such that for all λ, ` ∈ N, the following holds

Pr

 A(σ′b) = b ∧
Verify(vk, y, σ′0, C) = 1

:

(vk, sk)← Setup(1λ, C`), b← {0, 1}
({(mi, σi)}i, C)← ASign(sk,·,·)(1λ, vk)
Let y = C(m1, . . . ,m`)
σ′0 ← Eval(vk, {(mi, σi)}i, C)
σ′1 ← Sim(vk, y, C)

 ≤ 1

2
+ negl(λ).

Note that the above property only guarantees to hide non-trivial information about the input
datasets, and not the homomorphic circuit or the fact that it is an evaluated circuit. Such stronger
forms of context hiding are called strong context hiding, and they are not the focus of this work.

61

12 Application 1: Locally Verifiable Aggregate Signatures

In this section, we provide a locally verifiable aggregate signature scheme from any lv-BARG
scheme. Below we provide our construction.

Construction. Let S = (S.Setup,S.Sign,S.Verify) be any regular signature scheme, and lv-BARG =
(lvB.Setup, lvB.Prove, lvB.Verify, lvB.Extract, lvB.LOpen, lvB.LVfy) be a locally verifiable seBARG scheme
for language LS (Fig. 4). Below we describe our locally verifiable aggregate signature scheme Agg.

Language LS
Instance: x̂ := (key vk, message m).

Witness: ω̂ := signature σ w.r.t. vk.

Membership: ω̂ is a valid witness for x̂ ∈ LS if σ is a valid signature of m under vk. That
is, S.Verify(vk,m, σ) = 1.

Figure 4: Language LS for the lv-BARG.

CRS(1λ, 1k)→ crs. It samples lv-BARG parameters as (lvbg.crs, ∗)← lvB.Setup(1λ, 1k, 1n,⊥). Here
n is signature length in S, ⊥ denotes a dummy/random target index, and ∗ means it ignores
the trapdoor. It outputs crs = lvbg.crs.

Setup(1λ)→ (vk, sk). Same as S.Setup. That is, (vk, sk)← S.Setup(1λ).

Sign(sk,m)→ σ. Same as S.Sign. That is, σ ← S.Sign(sk,m).

Verify(vk,m, σ)→ 0/1. Same as S.Verify. That is, it outputs S.Verify(vk,m, σ).

Agg({(vki,mi, σi)}i)→ σ̂. It computes the aggregated signature as a BARG proof with instance
xi = (vki,mi), and corresponding witness ωi = σi for all i ∈ [k]. Formally, it outputs the
aggregate signature as a batch proof σ̂ = π ← lvB.Prove(crs, {(xi, ωi)}i).

AggV({(vki,mi)}i, σ̂)→ 0/1. It runs lvB.Verify on σ̂ with instances {xi = (vki,mi)}i∈[k]. Con-
cretely, it outputs lvB.Verify(crs, {xi}i, σ̂).

LOpen(σ̂, {(vki,mi)}i, j)→ (auxj , σ̂
′). It runs lvB.LOpen, and outputs the auxiliary hint auxj and

updated signature σ̂′ as (auxj , σ̂
′)← lvB.LOpen(crs, {xi = (vki,mi)}i, j, σ̂).

LVfy(σ̂, vk,m, j, aux)→ 0/1. The local verifier runs lvB.LVfy, and outputs lvB.LVfy(crs, x = (vk,m), j, σ̂, aux).

Multi-hop aggregation. We want to point out that unlike the recent work of Devadas et
al. [DGKV22], our construction described above doesn’t directly satisfy unbounded multi-hop ag-
gregation. However, by relying on a rate-1 batch arguments as a starting point, our construction
satisfies multi-hop aggregation as well.

62

Correctness and Compactness. The correctness and compactness follows directly from the
correctness and compactness properties of the signature scheme S and BARG scheme lv-BARG.
Note that in the compactness definition, we drop the dependence upon k since our batch arguments
incur only poly-logarithmic dependence on k, and since k will always be a polynomial in λ, thus
we simply write it as a fixed polynomial in λ.

12.1 Security

Theorem 12.1. If the signature scheme S is unforgeable as per Definition 11.1, and locally ver-
ifiable BARG scheme lv-BARG satisfies index hiding, somewhere argument of knowledge, local
argument of knowledge with adversarial opening, and instance privacy properties (Definitions 3.1,
3.2, 5.3 and 5.5), then the designed scheme Agg is an aggregate signature scheme satisfying (plain)
unforgeability, aggregated unforgeability, aggregated unforgeability with adversarial openings, and
message privacy with local openings as per Definitions 11.1 and 11.7 to 11.9.

Proof. The proof is divided into multiple parts where we individually prove the desired properties.

(Plain) Unforgeability. This follows directly from the unforgeability of S. Concretely, we have
the following.

Lemma 12.2. If the base signature scheme S satisfies unforgeability, then Agg also satisfies (plain)
unforgeability.

Proof. Since the Agg scheme is identical to S w.r.t. Setup,Sign,Verify, thus the unforgeability of
Agg follows from a straightforward reduction to S.

Aggregated Unforgeability. This follows from the unforgeability of S and somewhere argument
of knowledge and index hiding of lv-BARG. Concretely, we have the following.

Lemma 12.3. If the base signature scheme S satisfies unforgeability and the BARG scheme
lv-BARG is a somewhere argument of knowledge and satisfies index hiding, then Agg satisfies ag-
gregated unforgeability.

Proof. Suppose there exists a PPT attacker A that breaks aggregated unforgeability of the Agg
scheme with non-negligible probability ε = ε(λ). That is, A finds a valid forgery ({(vk∗i ,m∗i)}i, σ̂∗)
with probability ε such that there exists an index j∗ ∈ [k] where vk∗j∗ is the challenger’s verification
key, and m∗j∗ was not queried by A to the challenger. While there might exist multiple such indices,
we use j∗ to denote the smallest such index. We start by defining simple hybrid experiments to
complete the proof.

Experiment 0. This is the aggregate unforgeability security game, and we say the output of the
experiment is 1 if and only if A wins.

Experiment 1. In this experiment, the challenger samples a random index î ← [k], and plays the
rest of aggregate unforgeability game with A as is. In the end, we say the output of the experiment
is 1 if and only if A wins and î = j∗ (that is, the challenger guesses the forgery index correctly).

Experiment 2. This is identical to the previous experiment, except the challenger uses î as the
extraction index in the lv-BARG setup. Namely, it runs (lvbg.crs, lvbg.td)← lvB.Setup(1λ, 1k, 1n, î).

63

It plays the rest of the experiment as before. As in previous experiment, we say the output of the
experiment is 1 if and only if A wins and î = j∗.

Experiment 3. This is same as previous experiment, except if A wins and î = j∗, then the challenger
runs lvB.Extract, the lv-BARG extractor, as follows:

σ∗ = lvB.Extract(lvbg.td, {xi = (vk∗i ,m
∗
i)}i, σ̂∗).

We say the output of the experiment is 1 if and only if (m∗
î
, σ∗) is a valid forgery w.r.t. challenge

key vk.

Let exptAi (1λ) denote the output of the experiment i. Next, we prove the following sequence of
claims regarding the above experiments.

Claim 12.4. For every adversary A, for every λ ∈ N, we have that

Pr
[
exptA1 (1λ)

]
≥

Pr
[
exptA0 (1λ)

]
k

.

Proof. This is an information theoretic argument, and follows directly from the fact that the chal-
lenger samples î as a random index, and the guess is correct with probability at least 1/k. Thus,
the output of the experiment 1 will be as 1 with probability at most k times smaller than the
probability in experiment 0.

Claim 12.5. If the batch argument scheme lv-BARG satisfies index hiding, then for every PPT
A playing the above aggregated unforgeability game, there exists a negligible function negl(·) such
that for all λ ∈ N, we have that

Pr
[
exptA1 (1λ)

]
− Pr

[
exptA2 (1λ)

]
≤ negl(λ).

Proof. This follows directly from the index hiding property. Note that in both the experiments,
the challenger samples two random indices i∗ and î. In experiment 1, it uses i∗ as the extraction
index in lv-BARG, while in experiment 2, it uses î. The reduction algorithm simply samples two
random indices i∗ and î, and send them to the index hiding challenger. It receives a crs lvbg.crs,
and runs the rest of the experiment honestly. In the end, if A outputs a valid forgery such that
j∗ = î then it guesses i∗ was used, otherwise it guesses î was used. Note that the challenger can
find j∗ since it is simply the smallest index such that vk∗j∗ is the challenge verification key and m∗j∗
was not sign queried. Thus, if A can distinguish between the two experiment with non-negligible
probability, then the reduction algorithm wins in the index hiding game with same probability.

Claim 12.6. If the batch argument scheme lv-BARG satisfies somewhere argument of knowledge
property, then for every PPT A playing the above aggregated unforgeability game, there exists a
negligible function negl(·) such that for all λ ∈ N, we have that

Pr
[
exptA2 (1λ)

]
− Pr

[
exptA3 (1λ)

]
≤ negl(λ).

Proof. This follows directly from the somewhere argument of knowledge property. Note that the
only difference in the two games is the way the winning condition is defined. In experiment 2, it
is defined as the attacker finding an accepting batch proof σ̂∗ where the îth instance contans the

64

challenge verification key and a non-sign-queried message. Whereas in experiment 3, it is changed
so that the attacker wins if the extracted witness σ∗ is an accepting signature for the non-sign-
queried message under the challenge verification key. Observe that if the output of the experiment
is noticeably different, then A can be used to break somewhere argument of knowledge property
directly. We can design a reduction algorithm B as follows– B samples î at random, and sends î as
the challenge index to the lv-BARG challenger; B receives lvbg.crs from the challenger, and generates
a challenge verification-signing key pair (vk, sk), and sends lvbg.crs, vk to A; B then answers each
sign query honestly; and finally, when the attacker outputs a forgery, B checks that î = j∗ (i.e.,
î was the correct guess) and submits ({xi = (vk∗i ,m

∗
i)}i, π = σ̂∗) as its attack on the somewhere

argument of knowledge property. Note that whenever A distinguishes between the two experiment
with non-negligible probability, then the reduction algorithm wins in the somewhere argument of
knowledge game with same probability. Thus, the claim follows.

Claim 12.7. If the signature scheme S satisfies unforgeability, then for every A playing the above
aggregated unforgeability game, there exists a negligible function negl(·) such that for all λ ∈ N,
we have that

Pr
[
exptA3 (1λ)

]
≤ negl(λ).

Proof. Suppose Pr
[
exptA3 (1λ)

]
= δ for some non-negligible probability δ = δ(λ). We now describe

a reduction algorithm B that uses A to break the unforgeability property of the signature scheme
S with probability at least δ.

The challenger corresponding to scheme S samples a verification-signing key pair, and sends
vk to the reduction algorithm B. B then samples a random index î ← [k], and samples the
crs as (lvbg.crs, lvbg.td) ← lvB.Setup(1λ, 1k, 1n, î). It sends lvbg.crs, vk to the adversary. B then
answers A’s signing queries by forwarding them to the signature scheme challenger, and relaying
the challenger’s response back to A. Finally, A outputs a forgery ({(vk∗i ,m∗i)}i, σ̂∗), and sends it
to B.
B computes the forgery as σ∗ = lvB.Extract(lvbg.td, {xi = (vk∗i ,m

∗
i)}i, σ̂∗). The reduction

algorithm B finally submits m∗
î

and σ∗ as its forgery.
Note that B wins the unforgeability game with the challenger for signature scheme S with

probability δ. This is because, by definition of experiment 3, the experiment outputs 1 if and only
if (m∗, σ∗) is a valid forgery w.r.t. challenge key vk. Thus, the claim follows.

Combining all the above claims, we obtain that Pr
[
exptA0 (1λ)

]
≤ negl(λ) as k is a polynomial

in the security parameter. Thus, proof of aggregate unforgeability follows

Aggregated Unforgeability with Adversarial Openings. This follows from the unforgeabil-
ity of S and local argument of knowledge with adversarial openings and index hiding of lv-BARG.
Concretely, we have the following.

Lemma 12.8. If the base signature scheme S satisfies unforgeability and the BARG scheme
lv-BARG is a local argument of knowledge with adversarial openings and satisfies index hiding,
then Agg satisfies aggregated unforgeability with adversarial openings.

Proof. The proof of this lemma is similar to the proof of Lemma 12.3, where the somewhere
extraction step is replaced with the local extraction provided by lv-BARG. Below we highlight the
main changes.

65

Suppose there exists a PPT attacker A that breaks aggregated unforgeability with adversarial
openings of the Agg scheme with non-negligible probability ε = ε(λ). That is, A finds a valid
forgery (σ̂, aux,m, j) with probability ε where m was not queried by A to the challenger. Below we
describe hybrid experiments to complete the proof.

Experiment 0. This is the aggregate unforgeability with adversarial opening security game, and we
say the output of the experiment is 1 if and only if A wins.

Experiment 1. In this experiment, the challenger samples a random index î ← [k], and plays the
rest of aggregate unforgeability game with A as is. In the end, we say the output of the experiment
is 1 if and only if A wins and î = j (that is, the challenger guesses the local forgery index correctly).

Experiment 2. This is identical to the previous experiment, except the challenger uses î as the
extraction index in the lv-BARG setup. Namely, it runs (lvbg.crs, lvbg.td)← lvB.Setup(1λ, 1k, 1n, î).
As before, we say the output of the experiment is 1 if and only if A wins and î = j.

Experiment 3. This is same as previous experiment, except if A wins and î = j, then the challenger
runs lv-BARG.LExtract, the lv-BARG local extractor, as follows:

σ = lv-BARG.LExtract(lvbg.td, x = (vk,m), σ̂, aux).

We say the output of the experiment is 1 if and only if (m,σ) is a valid forgery w.r.t. challenge key
vk.

Let exptAi (1λ) denote the output of the experiment i. Next, we prove the following sequence of
claims regarding the above experiments.

Claim 12.9. For every adversary A, for every λ ∈ N, we have that

Pr
[
exptA1 (1λ)

]
≥

Pr
[
exptA0 (1λ)

]
k

.

Proof. This is an information theoretic argument, and follows directly from the fact that the chal-
lenger samples î as a random index, and the guess is correct with probability at least 1/k.

Claim 12.10. If the batch argument scheme lv-BARG satisfies index hiding, then for every PPT
A playing the above aggregated unforgeability game, there exists a negligible function negl(·) such
that for all λ ∈ N, we have that

Pr
[
exptA1 (1λ)

]
− Pr

[
exptA2 (1λ)

]
≤ negl(λ).

Proof. This is similar to the proof of Claim 12.5.

Claim 12.11. If the batch argument scheme lv-BARG satisfies local argument of knowledge prop-
erty, then for every PPT A playing the above aggregated unforgeability game, there exists a negli-
gible function negl(·) such that for all λ ∈ N, we have that

Pr
[
exptA2 (1λ)

]
− Pr

[
exptA3 (1λ)

]
≤ negl(λ).

Proof. This is similar to the proof of Claim 12.6, with the only difference that the reduction
algorithm submits (x = (vk,m), π = σ̂, aux) as its attack on the local argument of knowledge
property.

66

Claim 12.12. If the signature scheme S satisfies unforgeability, then for every A playing the above
aggregated unforgeability game, there exists a negligible function negl(·) such that for all λ ∈ N,
we have that

Pr
[
exptA3 (1λ)

]
≤ negl(λ).

Proof. This is similar to the proof of Claim 12.7, with the only difference that the reduction
algorithm runs the lv-BARG local extractor instead to extract the forged signature from the batch
proof.

Message Privacy with Local Openings. This follows from the instance privacy of lv-BARG.
Concretely, we have the following.

Lemma 12.13. If the BARG scheme lv-BARG satisfies instance privacy, then Agg satisfies message
privacy with local openings.

Proof. This follows immediately from a straightforward reduction to the instance privacy security
of lv-BARG. The simulator for message privacy simply runs the instance privacy simulator with
instance xj = (vkj ,mj) and ωj = σj . Also, note that the reduction algorithm chooses a random
index i∗ and sends it to lv-BARG challenger. Note that i∗ does not affect any other part of the
reduction.

This completes the proof of our main theorem.

13 Application 2: Redactable Signatures

In this section, we construct a redactable signature scheme from any de-BARG scheme.

Construction. Let S = (S.Setup,S.Sign,S.Verify) be any plain signature scheme with message
space {0, 1}2λ, and de-BARG = (deB.Setup, deB.Prove, deB.Delete, deB.Verify) be a deletable BARG
scheme for language LS (Fig. 5). Below we describe our redactable signature scheme Sred.

Language LS
Instance: x̂ := (key vk, index i, bit b, tag τ).

Witness: ω̂ := signature σ w.r.t. vk.

Membership: ω̂ is a valid witness for x̂ ∈ LS if σ is a valid signature of message (τ, i, b)
under vk. That is, S.Verify(vk, (τ, i, b), σ) = 1.

Figure 5: Language LS for the de-BARG.

Setup(1λ, L)→ (vk, sk). It runs the signature setup algorithm to compute (vk, sk) ← S.Setup(1λ).
It also samples parameters for the de-BARG scheme as (crs, ∗) ← deB.Setup(1λ, k = L, n =
|vk|+ 2λ,⊥)17.

17Here by ⊥ we mean that it picks a dummy/random extraction index, and ∗ means it ignores the trapdoor.

67

Note. Technically, the verification and signing keys contain the crs too, however we do not
write it explicitly and drop it for ease of notation. Further, one could remove de-BARG setup
entirely from the setup of redactable signatures, and keep it as global CRS. However, we
avoid it as this would change the traditional syntax of redactable signatures.

Sign(sk,m)→ σ. The signer first samples a random tag τ ← {0, 1}λ, and then creates L signatures
on messages (τ, i,m[i]). That is, σi ← S.Sign(sk, (τ, i,m[i])). Next, it outputs the actual
signature σ = (π, τ) where the batch proof π is computed as follows

π ← deB.Prove(crs, {(xi, ωi)}i∈[L]), where xi = (vk, i,m[i], τ), ωi = σi.

Redact(vk,m, S, σ)→ σ′. Let σ = (π, τ). The redaction algorithm runs the deletion algorithm of
de-BARG to compute the redacted signature as σ′ = (πred, τ) where

πred ← deB.Delete(crs, {xj}j∈[L], S, σ), where xj = (vk, j,m[j], τ).

Note. Observe that the schem satisfies multi-hop redaction naturally if the underlying de-
BARG scheme satisfies multi-hop deletion.

Verify(vk,m, σ)→ 0/1. Let σ = (π, τ), ` = |{i : m[i] 6=⊥}|, and ij ∈ [L] denote the index of the jth

non-⊥ bit of m. For j ∈ [`], let xj = (vk, ij ,m[ij], τ). The verifier runs the de-BARG verifier
as deB.Verify(crs, {xj}j , π).

Correctness and succinctness. We now show that the above scheme satisfies correctness and
succinctness. This follows directly from the regular and deletion correctness and succinctness of
the BARG scheme.

In detail, first note that by correctness of the signature scheme, we have that, for every i,
S.Verify(vk, (τ, i,m[i]), σi) = 1 as defined in the signing algorithm. Therefore, the final signature
which is computed as a batch proof will be accepted by the verifier as a valid signature since it
simply runs the BARG verifier for the same batch of instances (since the tag τ is included as part
of the signature). Moreover, by BARG succinctness and the fact that each |σi| = poly(λ), we have
that |π| = poly(λ, logL). Next, note that the redaction algorithm simply runs the BARG deletion
algorithm, thus by deletion correctness we have that πred is accepted by the BARG verifier. And,
by deletion succinctness, we obtain succinctness of the redacted proof (i.e., |πred| = poly(λ)) since
the size of each batch proof is also only poly(λ) due to the fact that logL ≤ λ and |σi| = poly(λ).
The proof of multi-hop redaction follows analogously.

13.1 Security

Below we prove the security of our scheme.

Theorem 13.1. If the signature scheme S is unforgeable as per Definition 11.1, and BARG scheme
de-BARG satisfies index hiding, somewhere argument of knowledge, zero-knowledge, and deletion
privacy properties (Definitions 3.1, 3.2, 7.4 and 8.3), then the above scheme is a redactable sig-
nature scheme satisfying unforgeability, redaction unforgeability, and redaction unlinkability as
per Definitions 11.1, 11.2 and 11.4.

Proof. The proof is divided into three parts where we individually prove the desired properties.

68

Unforgeability. This follows directly from the unforgeability of S and index hiding and extrac-
tion security of de-BARG. Concretely, we have the following.

Lemma 13.2. If the base signature scheme S satisfies unforgeability and the BARG scheme
de-BARG is a somewhere argument of knowledge and satisfies index hiding, then Sred also sat-
isfies (plain) unforgeability.

Proof. Suppose there exists an attacker A than wins in the unforgeability game with non-negligible
probability ε = ε(λ). That is, A finds a valid forgery m∗, σ∗ with probability ε such that m∗ was
not queried by A to the challenger. Note that σ∗ = (π∗, τ∗) such that deB.Verify(crs, {x∗j}j , π∗)
where x∗j = (vk, j,m∗[j], τ∗). Let j∗ denote the smallest index such that (τ∗, j∗,m∗[j∗]) was not
signed by the challenger. Clearly, if A is an admissible attacker, then such an index j∗ exists (with
all-but-negligible probability). This is because with all-but-negligible probability, the tag values
{τi} selected by the challenger to answer any signing query do not have a collision. That is, τi1 = τi2
iff i1 = i2. Since the tags are randomly sampled λ-bit strings, thus this holds with probability at

least 1− q2

2λ
, where q is the totla number of signing queries. As q is a polynomial, we get that such

a j∗ exists with all-but-negligible probability. Let j∗ be the smallest such index if it exists. Next,
we start by defining simple hybrid experiments to complete the proof. In the following analysis, we
condition on the event that such a j∗ exists.

Experiment 0. This is the plain unforgeability security game, and we say the output of the experi-
ment is 1 if and only if A wins.

Experiment 1. In this experiment, the challenger samples a random index ĵ ← [L], and plays the
rest of the unforgeability game with A as is. In the end, we say the output of the experiment is 1
if and only if A wins and ĵ = j∗ (that is, the challenger guesses the forgery index correctly). Since
the challenger stores all the state from eevry signing query, thus it can efficiently check this.

Experiment 2. This is identical to the previous experiment, except the challenger uses ĵ as the
extraction index in the de-BARG setup. Namely, it runs (crs, td) ← deB.Setup(1λ, k = L, n =
|vk| + 2λ, ĵ). It plays the rest of the experiment as before. As in previous experiment, we say the
output of the experiment is 1 if and only if A wins and ĵ = j∗.

Experiment 3. This is same as previous experiment, except if A wins and ĵ = j∗, then the challenger
runs deB.Extract, the de-BARG somewhere extractor, as follows:

σ∗ = deB.Extract(td, {x∗j = (vk, j,m∗[j], τ∗)}j , π∗).

We say the output of the experiment is 1 if and only if σ∗ is a valid forgery for (τ∗, j∗,m∗[j∗])
w.r.t. challenge key vk.

Let exptAi (1λ) denote the output of the experiment i. Next, we prove the following sequence of
claims regarding the above experiments.

Claim 13.3. For every adversary A, for every λ ∈ N, we have that

Pr
[
exptA1 (1λ)

]
≥

Pr
[
exptA0 (1λ)

]
L

.

Proof. This is an information theoretic argument, and follows directly from the fact that the chal-
lenger samples ĵ as a random index, and the guess is correct with probability at least 1/L. Thus,
the output of the experiment 1 will be as 1 with probability at most L times smaller than the
probability in experiment 0.

69

Claim 13.4. If the batch argument scheme de-BARG satisfies index hiding, then for every PPT
A playing the above unforgeability game, there exists a negligible function negl(·) such that for all
λ ∈ N, we have that

Pr
[
exptA1 (1λ)

]
− Pr

[
exptA2 (1λ)

]
≤ negl(λ).

Proof. This follows directly from the index hiding property. Note that in both the experiments the
only difference is that in experiment 1, challenger uses ⊥ (dummy index) as the extraction index
in de-BARG, while in experiment 2, it uses ĵ which is sample randomly. A reduction algorithm can
simply sample a random index ĵ, and send this along with the dummy index to the index hiding
challenger. It receives a crs crs, and runs the rest of the experiment honestly. In the end, if A
outputs a valid forgery such that j∗ = ĵ then it guesses ⊥ was used, otherwise it guesses ĵ was used.
As discussed previously, the reduction algorithm can efficiently find j∗, thus if A can distinguish
between the two experiments with non-negligible probability, then the reduction algorithm wins in
the index hiding game with same probability.

Claim 13.5. If the batch argument scheme de-BARG satisfies somewhere argument of knowledge
property, then for every PPT A playing the above unforgeability game, there exists a negligible
function negl(·) such that for all λ ∈ N, we have that

Pr
[
exptA2 (1λ)

]
− Pr

[
exptA3 (1λ)

]
≤ negl(λ).

Proof. This follows directly from the somewhere argument of knowledge property. Note that the
only difference in the two games is the way the winning condition is defined. In experiment 2, it
is defined as the attacker finding an accepting batch proof π∗; while in experiment 3, it is changed
so that the attacker wins if the extracted witness σ∗ is a valid forgery. Observe that if the output
of the experiment is noticeably different, then A can be used to break somewhere argument of
knowledge property directly.

Claim 13.6. If the signature scheme S satisfies unforgeability, then for every A playing the above
unforgeability game, there exists a negligible function negl(·) such that for all λ ∈ N, we have that

Pr
[
exptA3 (1λ)

]
≤ negl(λ).

Proof. Suppose Pr
[
exptA3 (1λ)

]
= δ for some non-negligible probability δ = δ(λ). We now describe

a reduction algorithm B that uses A to break the unforgeability property of the signature scheme
S with probability at least δ.

The challenger corresponding to scheme S samples a verification-signing key pair, and sends vk
to the reduction algorithm B. B then samples a random index ĵ ← [L], and samples the crs as in
experiment 3. It sends crs, vk to the adversary. B then answers A’s signing queries by first sampling
a random tag τi for each query, and then forwarding them to the signature scheme challenger by
splitting the message bit-by-bit, and after receing the challenger’s response, it creates batch proof
πi honestly and sends back the proof πi and τi to A. Finally, A outputs a forgery, and sends it to
B.
B computes the forgery as σ∗ as in experiment 3. The reduction algorithm B finally submits

(τ∗, j∗,m∗[j∗]) and σ∗ as its forgery.
Note that B wins the unforgeability game with the challenger for signature scheme S with

probability δ. This is because, by definition of experiment 3, the experiment outputs 1 if and only
if this is a valid forgery w.r.t. challenge key vk. Thus, the claim follows.

70

Combining all the above claims, we obtain that Pr
[
exptA0 (1λ)

]
≤ negl(λ) as k is a polynomial

in the security parameter. Thus, proof of (plain) unforgeability follows

Redaction Unforgeability. This follows from the unforgeability of S and somewhere argument
of knowledge, index hiding, and zero-knowledge of de-BARG. Concretely, we have the following.

Lemma 13.7. If the base signature scheme S satisfies unforgeability and the BARG scheme
de-BARG is a somewhere argument of knowledge and satisfies index hiding and zero-knowledge,
then Sred satisfies redacted unforgeability.

Proof. The proof is nearly identical to the proof of Lemma 13.2, except the challenger now also
answers queries to the Redact and Request oracle. In order to answer such queries, we first use the
zero-knowledge property of the de-BARG scheme to replace the output of each Request oracle with
a simulated proof. Crucially, the challenger does not perform any action for a Sign or Redact query,
but it simply stored the query in its internal state and answers with a random handle to the query.
Whenever A makes a Request query, at that point the challenger answers with a simulated proof,
and stores the proof (along with the lazily sampled tag) in its memory for that handle. First, we
show that no PPT attacker can distinguish between the original security game where queries are
answered honestly, and this intermediate simulated game where the queries are answered lazily and
using a simulator. Once we make this change, we follow the proof strategy as in Lemma 13.2. Note
that since the queries are answered lazily and after simulation, thus the same definition of j∗ still
holds and proof goes as before.

Redaction Unlinkability. This follows from the deletion privacy of de-BARG. Concretely, we
have the following.

Lemma 13.8. If the BARG scheme de-BARG satisfies deletion privacy, then Sred satisfies redaction
unlinkability.

Proof. This follows immediately from the deletion privacy property of the de-BARG scheme. Sup-
pose there exists a PPT attacker A that breaks redaction unlinkability of the Sred scheme with
non-negligible probability ε = ε(λ). Then we construct another PPT attacker B that breaks dele-
tion privacy property of lv-BARG.

Briefly, the attacker A starts by outputting the message length L. The reduction algorithm
B samples a signing key pair (vk, sk) ← S.Setup(1λ), and sends (k = L, n = |vk| + 2λ) to the
de-BARG challenger. The challenger sends crs to B, and it then sends crs, vk to A. A then makes
polynomially many signing queries m1, . . . ,mq for some polynomial function q = q(λ). B answers
each query honestly, which is it samples a random tag τj , and creates L signatures on messages
(τj , i,mj [i]), and computes the final signature as σj = (πj , τj) where the batch proof πj is a batch
proof as computed in the scheme. Next, A outputs a redaction set S and two messages m∗0 and
m∗1. B then samples a random tag τ∗, and creates signatures as follows

∀i ∈ S, b ∈ {0, 1}, σi,b ← S.Sign(sk, (τ∗, i,m∗b [i]))

∀i /∈ S, b ∈ {0, 1}, σi,0 = σi,1 ← S.Sign(sk, (τ∗, i,m∗0[i]))

Note that by admissibility of the attacker, we know that m∗0
{S} = m∗1

{S}, thus m∗0[i] = m∗1[i] for
i /∈ S. Next, B sends the instance-witness pairs {(xi,b, ωi,b)}i,b to the challenger, where xi,b =

71

(vk, i,m∗b [i], τ
∗) and ωi,b = σi,b. Note that by our construction, we have that (xi,0, ωi,0) = (xi,1, ωi,1)

for i /∈ S. Thus, B’s choice of instance-witness pairs are admissible as per the deletion privacy
game. The challenger then sends a redacted proof πred, and B then sends (πred, τ∗) as the redacted
signature to A. Finally, A outputs its guess, and B forwards the same bit as its own guess.

We claim that if A wins with non-negligible probability, then so does B in the deletion privacy
game. This follows from a simple observation that since a tag τ is randomly selected during
the signing process (independent of the input message), thus we could prove a simple statistical
intermediate lemma where we argue that A’s advantage is identical even when the challenger uses a
single tag τ∗ to create original (unredacted) signatures for challenge messages. Next, since we can
argue in an additional intermediate step that A cannot distinguish in the cases where the actual
signatures on the unredacted portions of the challenge messages are the exavtly same signature.
This can be proved by either derandomizing the signing process (which follow w.l.o.g.), or from the
statistical fact that no (even unbounded time) adversary can distinguish between two i.i.d. random
variables. Note that the distribution of signatures σi,0 and σi,1 are i.i.d. since the tag value is the
same. This completes the proof of the lemma.

This completes the proof of our main theorem.

14 Application 3: Homomorphic Signatures

Finally, we provide new constructions for homomorphic signatures as a consequence of mutable
batch proofs for C-batchNP mutation operations. We start by describing a homomorphic signature
scheme that can evaluate all polynomial-size formulae (thus, all log-depth circuits) from any mu-
table batch proof for C-batchNP mutation class, where C contains all monotone circuits. Next, we
show how to modify the construction to support evaluation of all polynomial-size monotone circuits
using the same tool of mutable batch proofs.

14.1 Homomorphic signatures for log-depth circuits

Here we provide a construction for homomorphic signatures for the family of all monotone formulae
of fixed size. Our construction naturally provides many new desirable features for homomorphic
signatures such as the signatures can be aggregated as well as locally verified. This leads to much
smaller signatures than previously known. This is because our construction builds on mutable
batch proofs for C-batchNP which, as discussed in Remark 10.3, provides batch proving as well as
local verifiability of batch proofs.

Important notation. In order to explain our construction, we need to set up some useful no-
tation. Consider any boolean formula family C = {Ck}k∈N, where each boolean formula in Ck
take k-bits as inputs. Note that any log-depth (NC1) circuit can be written as a polynomial-sized
(non-monotone) boolean formulae. (See [GLW21, §8.2] for further discussion.) This is well-known
folklore transformation.

One of our main technique is to rely on another folklore approach to transform any non-
monotone boolean formulae can be turned into a monotone boolean formulae by introducing more
input variables. Concretely, it is known that, by using De Morgan’s identities, one can determin-
istically translate a non-monotone formula C with n-bit inputs into a monotone formula C¬ that
reads 2n-bits of inputs, but does not contain any negation gates. This property has been used in

72

many prior works such as attribute-based encryption systems [GPSW06]. (See [GLW21, §8.2] for
further discussion.)

The special property of C¬ is that each original input bit is now encoded as two inputs, thus
leading to doubling the input length. More formally, we know that

∀x ∈ {0, 1}k, C ∈ Ck, C(x) = C¬(x1, x1 ⊕ 1, . . . , xk, xk ⊕ 1).

Basically, if the ith input bit of C is zero, then the 2ith-bit of expanded input is 0, while (2i−1)th-bit
of expanded input is 1, and vice versa. In our homomorphic signature construction, we use such
“monotone formula representations” for every non-monotone formula.

Language Lvk
Instance: x̂ := (index i, message bit b).

Witness: ω̂ := signature σ w.r.t. vk.

Membership: ω̂ is a valid witness for x̂ ∈ Lvk if σ is a valid signature of (i, b) under vk.
That is, S.Verify(vk, (i, b), σ) = 1.

Figure 6: Language Lvk for the BARG.

Construction. Let S = (S.Setup,S.Sign,S.Verify) be any regular signature scheme, and mut-BARG =
(Setup′,Prove′,Verify′,Eval′,Post-Verify′) be a mutable batch proof for language Lvk (described
in Fig. 7) with mutation class monotone-batchNP. We construct homomorphic (aggregate) sig-
natures for all (non-monotone) formulae C below.

Setup(1λ, Ck)→ (vk, sk). It runs BARG setup to compute crs ← Setup′(1λ, 12k, 1n, C¬k), where n is
signature length in S, and C¬k denotes the monotone representation of Ck. It also samples a
key pair as (vk′, sk′)← S.Setup(1λ). Set vk = (crs, vk′) and sk = sk′.

Sign(sk, i, b)→ σ. Same as S.Sign. That is, σ ← S.Sign(sk, (i, b)).

Agg(vk, {(mi, σi)}i)→ σ̂. It computes the aggregated signature as a BARG proof with instance xi =
(i,mi), and corresponding witness ωi = σi for all i. Thus, it outputs σ̂ ← Prove′(crs, {(xi, ωi)}i).

Eval(vk,M = (mi)i, σ̂, C)→ σ′. Here we assume that the evaluator gets an aggregated signature,
instead of plain signatures for each message bit. This is not an additional assumption as the
evaluator could simply run the Agg algorithm first.

Let C¬ correspond to the monotone representation of C as we discussed above. Also, let
XM = ((1,m1), . . . , (k,mk)) and XM = ((1,m1 ⊕ 1), . . . , (k,mk ⊕ 1)). It runs BARG proof
evaluation to compute evaluated signature as σ′ ← Eval′(crs, C¬, {(dj/2e, Xj , σ̂)}j≤2k), where
j ∈ [2k] because C¬ has double the input length, and the instance list Xj is defined as:

Xj =

{
XM if mdj/2e = j mod 2,

XM otherwise.

In words, the instance list X2i−1 is set to be the input sequence of signed index-message pairs
XM when ith message bit mi is 1, else it is set as the complement of the signed index-message

73

pairs X∗. Similarly, X2i is set in the reverse manner. This ensure that the non-monotone
message gets correctly encoded into its monotone representation. The main observation is
that the mutated instance xC is simply the fixed sequence (C, (1, 0), (1, 1), (2, 0), . . . , (k, 1))
for every choice of M and C.

Verify(vk,m, σ′, C)→ 0/1. The verification algorithm simply runs the (post-mutation) verifier to
output Post-Verify′(crs, C, xC , σ

′), where xC = (C, (1, 0), (1, 1), (2, 0), . . . , (k, 1)).

Correctness and compactness. This follows directly from the correctness and compactness of
the underlying signature and mutable BARG scheme. The central fact we use is that for every j,
the dj/2eth instance in list Xj is (dj/2e, j mod 2), and that C(m) = C¬(m1,m1⊕1, . . . ,mk,mk⊕1)
for every message m.

Homomorphic unforgeability. Below we prove homomorphic unforgeability of our scheme.

Theorem 14.1. If the mutable BARG scheme mut-BARG satisfies non-adaptive soundness (Defi-
nition 4.2) and somewhere extractability (Remark 10.5), and the signature scheme S unforgeable
(Definition 11.1), then the above scheme is a homomorphic signature scheme satisfying circuit-
selective homomorphic unforgeability (Definition 11.11).

Proof. The proof is similar to the proof of Theorem 12.1, with minor changes. Let us first describe
the main difference. Experiment 0 is defined as the original homomorphic unforgeability experiment.
Next, in experiment 1, we use partial extractability property of our mutable batch proofs (which is
implied by the knowledge soundness of the underlying SNARG scheme) and extract the intermediate
sequence of witnesses which correspond to the local opening proofs for the appropriate group of
instances, and we abort the experiment if any of the individual extracted witnesses are invalid. As
mentioned above, in our mutable batch proof construction, this property follows from the knowledge
soundness property.

The rest of the proof is same as that of Theorem 12.1. That is, we define experiment 2, where
the challenger guesses the index of the instance for which the challenger did not create a signature
for. Such an index exists since otherwise the adversary is not an admissible adversary as per the
homomorphic unforgeability game. We say that if our guess is wrong, then we abort. One can
argue that this only causes a polynomial loss in the advantage. Next, we define experiment 3,
where we use the somewhere extractability feature as discussed in Remark 10.5. (Note that this
can be reduced to the index hiding of lv-BARGs used in our mutable BARG scheme.) Finally, we
define experiment 4, where we use such a somewhere extractor to find a forgery and break signature
unforgeability. This concludes the proof sketch. We want to highlight this analysis can only prove
circuit-selective homomorphic unforgeability since the extractor needs to know the exact circuit at
the beginning (refer to [BBK+23] for more details).

Privacy. Similarly, we can prove privacy of our mutable BARGs scheme.

Theorem 14.2. If the mutable BARG scheme mut-BARG satisfies mutation privacy (Defini-
tion 4.3), then the above scheme is a homomorphic signature scheme satisfying context hiding
(Definition 11.12).

Proof. The proof follow from a straightforward reduction to mut-BARG mutation privacy property.

74

Instantiating under LWE. Again by above, we obtain the following.

Corollary 14.3. Assuming the polynomial hardness of learning with errors (LWE), there exist
homomorphic signatures satisfying circuit-selective homomorphic unforgeability and context hiding
for all polynomial-size formulae (thus, NC1 circuits).

14.2 Homomorphic signatures for monotone circuits

Here we provide a construction for homomorphic signatures for the family of all monotone circuits.

Language Lvk
Instance: x̂ := index i.

Witness: ω̂ := signature σ w.r.t. vk.

Membership: ω̂ is a valid witness for x̂ ∈ Lvk if σ is a valid signature of (i, 1) under vk.
That is, S.Verify(vk, (i, 1), σ) = 1.

Figure 7: Language Lvk for the BARG.

Construction. Consider a monotone circuit family C = {Ck}k∈N, where each monotone circuit
in Ck take k-bits as inputs. Let S = (S.Setup,S.Sign,S.Verify) be any regular signature scheme,
and mut-BARG = (Setup′,Prove′,Verify′,Eval′,Post-Verify′) be a mutable batch proof for language
Lvk (described in Fig. 4) with mutation class C-batchNP. We construct homomorphic (aggregate)
signatures for monotone circuit class C below.

Setup(1λ, Ck)→ (vk, sk). It runs BARG setup to compute crs ← Setup′(1λ, 1k, 1n, Ck), where n is
signature length in S. It also samples a key pair as (vk′, sk′)← S.Setup(1λ). Set vk = (crs, vk′)
and sk = sk′.

Sign(sk, i, b)→ σ. Same as S.Sign. That is, σ ← S.Sign(sk, (i, b)).

Agg(vk, {(mi, σi)}i)→ σ̂. It computes the aggregated signature as a BARG proof with instance
xi = i, and corresponding witness ωi = σi, for all i such that mi = 1. Thus, it outputs
σ̂ ← Prove′(crs, {(i, σi)}i:mi=1).

Eval(vk,M = (mi)i, σ̂, C)→ σ′. Here we assume that the evaluator gets an aggregated signature,
instead of plain signatures for each message bit. This is not an additional assumption as the
evaluator could simply run the Agg algorithm first.

It runs BARG proof evaluation to compute evaluated signature as σ′ ← Eval′(crs, C, {(ji, Xi, σ̂)}i≤k),
where the index and instance list are defined as follows. If mi = 0, then ji = i,Xi =
(1, 2, . . . , k). Else if mi = 1, then Xi = XM where XM denotes the ordered list of all indices
i ∈ [k] such that mi = 1, and ji is the index of the i in that list. As in previous construction,
the main feature of defining indices and instance list this way is that the mutated instance
xC is simply the fixed sequence (C, 1, 2, . . . , k) for every choice of M and C.

Verify(vk,m, σ, C)→ 0/1. The verification algorithm simply runs the (post-mutation) verifier to
output Post-Verify′(crs, C, xC , σ

′), where xC = (C, 1, 2, . . . , k).

75

The correctness, compactness, homomorphic unforgeability, and privacy of the above construc-
tion follows similar to the previous construction. This gives the following result by combining
known results.

Corollary 14.4. Assuming the polynomial hardness of learning with errors (LWE), there exist
homomorphic signatures satisfying circuit-selective homomorphic unforgeability and context hiding
for all polynomial-size monotone circuits.

Acknowledgements

We thank Vinod Vaikuntanathan and Yael Kalai for initial discussions on the topic of local verifi-
cation of BARGs. We also thank anonymous reviewers.

References

[AB09] Shweta Agrawal and Dan Boneh. Homomorphic macs: Mac-based integrity for net-
work coding. In Applied Cryptography and Network Security: 7th International Con-
ference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009. Proceedings 7,
pages 292–305. Springer, 2009.

[ADKL19] Prabhanjan Ananth, Apoorvaa Deshpande, Yael Tauman Kalai, and Anna Lysyan-
skaya. Fully homomorphic nizk and niwi proofs. In Theory of Cryptography Confer-
ence, pages 356–385. Springer, 2019.

[AGP14] Prabhanjan Ananth, Vipul Goyal, and Omkant Pandey. Interactive proofs under
continual memory leakage. In Advances in Cryptology–CRYPTO 2014: 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part II 34, pages 164–182. Springer, 2014.

[AN11] Tolga Acar and Lan Nguyen. Homomorphic proofs and applications, 2011.

[BBK+23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and
Omer Paneth. Snargs for monotone policy batch np. In Annual International Cryp-
tology Conference, pages 252–283. Springer, 2023.

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya,
and Hovav Shacham. Randomizable proofs and delegatable anonymous credentials.
In Advances in Cryptology-CRYPTO 2009: 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, pages 108–
125. Springer, 2009.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–
1066, 2017.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In Shafi Goldwasser, editor, Innovations in Theoretical Computer Science
2012, Cambridge, MA, USA, January 8-10, 2012, pages 326–349. ACM, 2012.

76

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 111–120. ACM,
2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai, editor,
Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo,
Japan, March 3-6, 2013. Proceedings, volume 7785 of Lecture Notes in Computer
Science, pages 315–333. Springer, 2013.

[BCJP24] Maya Farber Brodsky, Arka Rai Choudhuri, Abhishek Jain, and Omer Paneth.
Monotone-policy aggregate signatures. Springer-Verlag, 2024.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of ex-
tractable one-way functions. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 505–514, 2014.

[BDI+99] Mike Burmester, Yvo G Desmedt, Toshiya Itoh, Kouichi Sakurai, and Hiroki Shizuya.
Divertible and subliminal-free zero-knowledge proofs for languages. Journal of cryp-
tology, 12:197–223, 1999.

[BF11] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over
binary fields and new tools for lattice-based signatures. In International Workshop
on Public Key Cryptography, 2011.

[BFKW09] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear sub-
space: Signature schemes for network coding. In Stanis law Jarecki and Gene Tsudik,
editors, Public Key Cryptography – PKC 2009, pages 68–87, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In PKC 2014. 2014.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably
encrypted signatures. In Eurocrypt, 2003.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Kalai. Non-interactive delegation and
batch np verification from standard computational assumptions. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 474–482,
2017.

[BISW17] Dan Boneh, Yuval Ishai, Amit Sahai, and David J Wu. Lattice-based snargs and their
application to more efficient obfuscation. In Advances in Cryptology–EUROCRYPT
2017: 36th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part III,
pages 247–277. Springer, 2017.

77

[BKP+23] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini
Vasudevan. Batch proofs are statistically hiding. Cryptology ePrint Archive, Paper
2023/754, 2023. https://eprint.iacr.org/2023/754.

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. Cryptology ePrint Archive,
2018.

[BSW12] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: homomorphic en-
cryption for restricted computations. In Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference, pages 350–366, 2012.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In ASIACRYPT 2013. 2013.

[BWW23] Eli Bradley, Brent Waters, and David J Wu. Batch arguments to nizks from one-way
functions. Cryptology ePrint Archive, 2023.

[CF13] Dario Catalano and Dario Fiore. Practical homomorphic macs for arithmetic circuits.
In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 336–352. Springer, 2013.

[CFW14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with
efficient verification for polynomial functions. In Annual Cryptology Conference, pages
371–389. Springer, 2014.

[CGJ+22] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng
Zhang. Correlation intractability and snargs from sub-exponential ddh. Cryptology
ePrint Archive, 2022.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas Ward. Marlin: Preprocessing zksnarks with universal and updatable srs. In
Advances in Cryptology–EUROCRYPT 2020: 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10–14, 2020, Proceedings, Part I 39, pages 738–768. Springer, 2020.

[CJJ21a] Arka Rai Choudhuri, Abhihsek Jain, and Zhengzhong Jin. Snargs for p from lwe. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 68–79. IEEE, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch
arguments for NP from standard assumptions. In Tal Malkin and Chris Peikert, edi-
tors, Advances in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part IV,
volume 12828 of Lecture Notes in Computer Science, pages 394–423. Springer, 2021.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and
transparent recursive proofs from holography. In Advances in Cryptology - EURO-
CRYPT 2020 - 39th Annual International Conference on the Theory and Applications

78

https://eprint.iacr.org/2023/754

of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I,
pages 769–793, 2020.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments
from signature cards. In Innovations in Computer Science - ICS 2010, Tsinghua
University, Beijing, China, January 5-7, 2010. Proceedings, pages 310–331, 2010.

[CW23] Jeffrey Champion and David J. Wu. Non-interactive zero-knowledge from non-
interactive batch arguments. Cryptology ePrint Archive, Paper 2023/695, 2023.

[DFH12] Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In Theory of Cryptography: 9th Theory of Cryptography
Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings 9,
pages 54–74. Springer, 2012.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-
interactive arguments for batch-np and applications. In 63rd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2022, 2022.

[DHLAW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. Cryp-
tography against continuous memory attacks. In 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science, pages 511–520. IEEE, 2010.

[DKS16] David Derler, Stephan Krenn, and Daniel Slamanig. Signer-anonymous designated-
verifier redactable signatures for cloud-based data sharing. In CANS, 2016.

[DPSS15] David Derler, Henrich C Pöhls, Kai Samelin, and Daniel Slamanig. A general frame-
work for redactable signatures and new constructions. In ICISC, 2015.

[DSY91] Alfredo De Santis and Moti Yung. Cryptographic applications of the non-interactive
metaproof and many-prover systems. In Advances in Cryptology-CRYPTO’90: Pro-
ceedings 10, pages 366–377. Springer, 1991.

[DSY12] Alfredo De Santis and Moti Yung. ” metaproofs”(and their cryptographic applica-
tions). Cryptology ePrint Archive, 2012.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM Journal of Computing, 29(1):1–28, 1999.

[FMNP16] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-key ho-
momorphic authenticators. In International conference on the theory and application
of cryptology and information security, pages 499–530. Springer, 2016.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In Advances in Cryptology–EUROCRYPT
2013: 32nd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings 32, pages 626–
645. Springer, 2013.

79

[GLW21] Rishab Goyal, Jiahui Liu, and Brent Waters. Adaptive security via deletion in
attribute-based encryption: Solutions from search assumptions in bilinear groups.
In ASIACRYPT, 2021.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, February 1989.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In CCS ’06, 2006.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Asi-
acrypt, volume 6477, pages 321–340. Springer, 2010.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in
Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part II 35, pages 305–326. Springer, 2016.

[GSWW22] Rachit Garg, Kristin Sheridan, Brent Waters, and David J Wu. Fully succinct batch
arguments for np from indistinguishability obfuscation. In Theory of Cryptography:
20th International Conference, TCC 2022, Chicago, IL, USA, November 7–10, 2022,
Proceedings, Part I, pages 526–555. Springer, 2022.

[GV22] Rishab Goyal and Vinod Vaikuntanathan. Locally verifiable signature and key ag-
gregation. In Advances in Cryptology - CRYPTO 2022 - 42nd Annual International
Cryptology Conference, 2022.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homo-
morphic signatures from standard lattices. In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 469–477, 2015.

[GVW19] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. Collusion resistant broad-
cast and trace from positional witness encryption. In PKC, 2019.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 99–108, 2011.

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. Snargs
for p from sub-exponential ddh and qr. In Advances in Cryptology–EUROCRYPT
2022: 41st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Trondheim, Norway, May 30–June 3, 2022, Proceedings, Part
II, pages 520–549. Springer, 2022.

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure func-
tion evaluation with long output. In Proceedings of the 2015 Conference on Innova-
tions in Theoretical Computer Science, ITCS 2015, 2015.

[JMSW02] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomorphic sig-
nature schemes. In CT-RSA, 2002.

80

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing, pages 723–732,
1992.

[KLV22] Yael Tauman Kalai, Alex Lombardi, and Vinod Vaikuntanathan. Snargs and ppad
hardness from the decisional diffie-hellman assumption. Cryptology ePrint Archive,
2022.

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch
arguments and ram delegation. 2023.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, CCS ’13,
pages 669–684, New York, NY, USA, 2013. ACM.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 1115–1124. ACM, 2019.

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere
statistical soundness, post-quantum security, and snargs. In Kobbi Nissim and Brent
Waters, editors, Theory of Cryptography - 19th International Conference, TCC 2021,
Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part I, volume 13042 of Lecture
Notes in Computer Science, pages 330–368. Springer, 2021.

[Lip13] Helger Lipmaa. Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In Advances in Cryptology-ASIACRYPT
2013: 19th International Conference on the Theory and Application of Cryptology
and Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part
I 19, pages 41–60. Springer, 2013.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium on Foun-
dations of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994,
pages 436–453. IEEE Computer Society, 1994.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Advances in Cryptology-
CRYPTO 2003: 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003. Proceedings 23, pages 96–109. Springer, 2003.

[NWW23] Shafik Nassar, Brent Waters, and David J Wu. Monotone policy bargs from bargs
and additively homomorphic encryption. Cryptology ePrint Archive, 2023.

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New real-
izations of somewhere statistically binding hashing and positional accumulators. In
Advances in Cryptology - ASIACRYPT 2015, 2015.

[PHGR16] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. Communications of the ACM, 59(2):103–112, 2016.

81

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch
arguments. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 1045–1056. IEEE, 2022.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, 2005.

[RRR16] Omer Reingold, Guy N Rothblum, and Ron D Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 49–62, 2016.

[SBZ01] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. Content extraction signatures. In
ICISC, 2001.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup.
In Advances in Cryptology–CRYPTO 2020: 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceed-
ings, Part III, pages 704–737. Springer, 2020.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 475–484, 2014.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Theory of Cryptography, Fifth Theory of Cryptography Con-
ference, TCC 2008, New York, USA, March 19-21, 2008, pages 1–18, 2008.

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard
bilinear group assumptions. IACR Cryptol. ePrint Arch., page 336, 2022.

A Preliminaries (Cont’d)

Here we recall more cryptographic concepts that we use in this work. First, we provide the standard
soundness definitions and witness indistinguishability definitions for BARGs. Later, we define non-
succinct non-interactive proofs.

A.1 BARGs: soundness and witness indistinguishability

Definition A.1 (adaptive soundness). A batch argument scheme BARG satisfies adaptive sound-
ness if for every stateful PPT attacker A, there exists a negligible function negl(·) such that for all
λ ∈ N, the following holds

Pr

 Verify(crs, {xi}i, π) = 1
∧ ∃i ∈ [k], xi /∈ L

:

(1k, 1n)← A(1λ)
crs← Setup(1λ, 1k, 1n)
({xi}i∈[k], π)← A(crs)

 ≤ negl(λ).

Definition A.2 (semi-adaptive soundness). A batch argument scheme BARG satisfies semi-adaptive
somewhere soundness if no PPT attacker has non-negligible advantage in the security game de-
scribed in Definition A.1, where the attacker commits to the cheating index i∗ at the beginning of

82

the game. That is, A outputs i∗ ∈ [k] before receiving crs, and it wins the game iff it creates an
accepting proof π where the i∗-th instance is not in the language L.

Definition A.3 (witness indistinguishability). A BARG scheme BARG satisfies witness indistin-
guishability if for every stateful PPT attacker A, there exists a negligible function negl(·) such that
for all λ ∈ N, the following holds

Pr

 A(π) = b

∧
(
∀(i, b) ∈ [k]× {0, 1},
ωi,b is a valid witness for xi ∈ L

)
:

(1k, 1n, i∗)← A(1λ), b← {0, 1}
(crs, td)← Setup(1λ, 1k, 1n, i∗)
{(xi, ωi,0, ωi,1)}i∈[k] ← A(crs)
π ← Prove(crs, {(xi, ωi,b)}i)

 ≤ 1

2
+ negl(λ).

A.2 Non-Succinct Non-Interactive Proofs in the Common Reference String
Model

A standard non-interactive proof system consists of the following polynomial time algorithms.

Setup(1λ, 1n)→ crs. The setup algorithm takes as input the security parameter λ, instance length
n, and outputs a crs crs.

Prove(crs, x, ω)→ π. The prover algorithm takes as input a crs, an instance x, and a witness ω. It
outputs a proof π.

Verify(crs, x, π)→ 0/1. The verification algorithm takes as input a crs, an instance x, and a proof
π. It outputs a bit to signal whether the proof is valid or not.

Completeness. A proof system is complete if for every λ, n ∈ N, crs crs ← Setup(1λ, 1n), any
instance x ∈ L ∩ {0, 1}n with corresponding witness ω, the following holds

Pr [Verify(crs, x, π) = 1 : π ← Prove(crs, x, ω)] = 1.

Soundness. A proof system is said to be computationally sound if an attacker can not create
accepting proofs of non-instances.

Definition A.4 (soundness). A proof system (Setup,Prove,Verify) is computationally sound if for
every stateful PPT attacker A, there exists a negligible function negl(·) such that for all λ ∈ N, the
following holds

Pr

 Verify(crs, x, π) = 1
∧ x /∈ L :

1n ← A(1λ)
crs← Setup(1λ, 1n)
(x, π)← A(crs)

 ≤ negl(λ).

If the soundness condition holds for computationally unbounded attackers, then we say the
scheme is statistically sound.

83

Witness Indistinguishability. A proof system is said to have (computationally) witness indis-
tinguishability property if an attacker can not distinguish between proofs created using two different
valid witnesses.

Definition A.5 (witness indistinguishability). A proof system (Setup,Prove,Verify) is computa-
tionally witness indistinguishable if for every stateful PPT attacker A, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr

 A(π) = b

∧
(
ω0, ω1 are valid
witnesses for x ∈ L

)
:

1n ← A(1λ)
crs← Setup(1λ, 1n)
(x, ω0, ω1)← A(crs)
b← {0, 1}, π ← Prove(crs, x, ωb)

 ≤ 1

2
+ negl(λ).

If the above condition holds for computationally unbounded attackers, then we say the scheme
is statistically witness indistinguishable.

(Multi-theorem) Zero-Knowledge. A proof system is said to be (computationally) zero-
knowledge if a proof for any accepting instance can be simulated using just the instance. And,
it is called multi-theorem zero-knowledge if no PPT distinguisher can distinguish between a poly-
nomial number of simulated and honestly computed proofs.

Definition A.6 (zero-knowledge). A proof system (Setup,Prove,Verify) is computationally zero-
knowledge if there exists a stateful PPT simulator S such that for every stateful PPT attacker A,
there exists a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr


A({πi,b}i) = b

∧
(
∀i ∈ [k], ωi is a valid
witness for xi ∈ L

)
:

1n ← A(1λ), b← {0, 1}
crs0 ← Setup(1λ, 1n)
crs1 ← S(1λ, 1n)
{(xi, ωi)}i∈[k] ← A(crsb)
∀i ∈ [k], πi,0 ← Prove(crs0, xi, ωi)
{πi,1}i ← Sim(crs0, {xi}i)

 ≤
1

2
+ negl(λ).

If the above condition holds for computationally unbounded attackers, then we say the scheme
is statistically zero-knowledge.

Knowledge Extractor. A proof system is said to have a knowledge extractor if there exists an
efficient extractor such that given access to the private random coins of the setup, it can extract a
valid witness from any accepting proof.

Definition A.7 (knowledge extractor). A proof system (Setup,Prove,Verify) has a knowledge ex-
tractor if there exists a PPT extractor E such that for every stateful PPT attacker A, there exists
a negligible function negl(·) such that for all λ ∈ N, the following holds

Pr

 Verify(crs, x, π) = 1

∧
(
ω = E(τ, x, π) is not a
valid witness for x ∈ L

)
:

1n ← A(1λ), τ ← {0, 1}λ
crs← Setup(1λ, 1n; τ)
(x, π)← A(crs)

 ≤ negl(λ),

where τ denotes the randomness used for running the setup algorithm, and we assume (w.l.o.g.)
that |τ | = λ.

84

If the above condition holds for computationally unbounded attackers, then we say the scheme
is statistically knowledge extractable. We remark that any NIZK scheme can be made to possess
an efficient knowledge extractor by using plain public-key encryption.

Remark A.8 (Multi-theorem setting). Observe that we only define the zero-knowledge property
in the multi-theorem setting, while other properties are defined only for the single-theorem setting.
This is because it is well known that by a standard hybrid argument, the single-theorem versions
of other properties are equivalent to their corresponding multi-theorem versions.

B From Soundness to Somewhere Extractability

In this section, we provide our general compiler for upgrading any BARG scheme into a somewhere
argument of knowledge. The construction relies on a (plain, non-extractable) BARG BARG =
(BARG.Setup,BARG.Prove,BARG.Verify) for language L̂ (described in Fig. 8), and a somewhere
extractable hash family SEH = (SEH.Setup,SEH.H,SEH.Open, SEH.Verify,SEH.Extract). Below we
describe our somewhere extractable BARG scheme seBARG = (Setup,Prove,Verify,Extract) for
language L.

Language L̂

Instance: x̂ := (instance x, index i, SEH key hk, hash value hω).

Witness: ω̂ := (witness ω w.r.t. L, hash opening seh.π).

Membership: ω̂ is a valid witness for x̂ ∈ L̂ if the following are satisfied:

– seh.π is a valid opening for x. Let Ii = {(i − 1) · m + 1, . . . , i · m} (i.e., coordinates
corresponding to ith instance). This requires that SEH.Verify(hk, hx, Ii, x, seh.π) = 1.

– ω is a valid witness for x. Namely, RL(x, ω) = 1 (where RL is L’s relation).

Figure 8: Language L̂ for the BARG.

Set notation. Throughout this section, we will use the shorthand notation Ii to denote the
set {(i − 1) ·m + 1, . . . , i ·m}. Here m is the length of a single witness corresponding to length-n
instances of language L. In words, Ii denotes the coordinates of the ith block of size m.

Setup(1λ, 1k, 1n, i∗)→ (crs, td). It runs the setup algorithms for BARG and SEH schemes where the
index i∗ is used to decide the subset of indices whose extraction is enabled by SEH scheme.
Namely, it generates the SEH hash key and trapdoor as

(seh.hk, seh.td)← SEH.Setup(1λ, k ·m, Ii∗),

where m is the length of witness corresponding to length n instances of language L and Ii∗ is
as defined above. It generates the BARG crs as

barg.crs← BARG.Setup(1λ, 1k, 1n̂),

85

where n̂ is the length of instances in language L̂ (i.e., n̂ is (n+dlog ke) plus the sum of lengths
of key seh.hk and hash value generated using SEH).

It outputs the seBARG crs and trapdoor as

crs = (barg.crs, seh.hk), td = seh.td.

Prove(crs, {(xi, ωi)}i∈[k])→ π. It parses the crs as above. It first hashes the sequence of witnesses
(ω1, . . . , ωk) using the SEH to obtain a digest/hash value hω. Namely, it runs as follows

hω = SEH.H(seh.hk, (ω1, . . . , ωk)).

It then generates the opening for each witness ωi as follows

∀i ∈ [k], seh.πi = SEH.Open(seh.hk, (ω1, . . . , ωk), Ii).

Next, it computes a BARG using the (non-extractable) BARG system where each instance
now additionally contains its index i, the hash key seh.hk and hash value hω, and the cor-
responding witness additionally contains the hash opening seh.πi. Formally, it generates the
batch proof as

barg.π ← BARG.Prove(barg.crs, {(x̂i, ω̂i)}i∈[k]),
where x̂i = (xi, i, seh.hk, hω) and ω̂i = (ωi, seh.πi) for every i ∈ [k].

Finally, it outputs π = (hω, barg.π).

Verify(crs, {xi}i∈[k], π)→ 0/1. It parses the crs and proof as above. Note that crs contains the
hash key seh.hk and proof contains the hashed value hω along with a BARG barg.π. The
verifier simply runs the (non-extractable) BARG verifier on barg.π where the instances now
also include seh.hk and hω. Concretely, it outputs the following

BARG.Verify(barg.crs, {x̂i}i∈[k], barg.π)

where x̂i = (xi, i, seh.hk, hω) for every i ∈ [k].

Extract(td, {xi}i, π)→ ω. It parses the trapdoor and proof as above, and runs the SEH extraction
algorithm to extract the witness ω as

ω = SEH.Extract(seh.td, hω, Ii∗).

Correctness and Compactness. We now show that the above somewhere extractable BARG
scheme satisfies completeness, correctness of extraction, and compactness if the underlying BARG
and SEH schemes satisfy appropriate correctness and compactness properties.

First, note that by the SEH correctness of opening we know that SEH.Verify(seh.hk, hω, Ii, ωi, seh.πi) =
1 for the opening seh.πi as computed by the prover. Therefore, whenever ωi is a valid witness for
xi (w.r.t. language L), then we have that ω̂i is a valid witness for x̂i (w.r.t. language L̂) for every
i. Thus, by completeness of BARG, the completeness of seBARG follows.

Second, note that by SEH correctness of extraction we know that SEH.Extract(seh.td, hω, Ii∗) =
ωi∗ for the digest hω as computed by the prover. Thus, the correctness of seBARG extraction
follows.

Finally, to argue compactness of the seBARG scheme, note that it is sufficient to show that
|x̂| and |ω̂| are both poly(λ, log k, n,m) as that implies compactness by BARG compactness. This
follows from the fact due to the compactness of SEH we get that |seh.hk|, |seh.πi|, |hω| are all
individually bounded as polynomials in λ, n and m. Thus, compactness of seBARG follows.

86

Security. Below we prove the security of our seBARG scheme.

Theorem B.1. If the (non-extractable) BARG scheme BARG satisfies semi-adaptive soundness
(Definition A.2), and the SEH scheme SEH satisfies index hiding and somewhere statistical bind-
ing (Definitions 3.3 and 3.4), then the above scheme seBARG is a somewhere extractable BARG
scheme satisfying index hiding, semi-adaptive soundness, and somewhere argument of knowledge
(Definitions 3.1, 3.2 and A.2).

Proof. The proof is divided into three parts where we individually prove the desired properties.

Index hiding. This follows directly from the index hiding property of the SEH scheme. Con-
cretely, we prove the following.

Lemma B.2. If the SEH scheme SEH satisfies index hiding, then seBARG also satisfies index
hiding.

Proof. This follows from a simple reduction to the SEH index hiding challenger. Suppose there
exists a PPT attacker A that breaks index hiding of the seBARG scheme with non-negligible prob-
ability ε = ε(λ). We can design a reduction algorithm B that break index hiding of the SEH scheme
with probability ε.

Briefly, the attacker A starts by outputting (1k, 1n, i∗0, i
∗
1). The reduction algorithm B simply

sends k ·m as the input length and sets Ii∗0 , Ii∗1 to the SEH challenger. (Note that the sets Ii∗0 , Ii∗1
are as defined in the construction.) The challenger sends a hash key seh.hk to B, and B then runs
the rest of the setup algorithm to sample a crs barg.crs ← BARG.Setup(1λ, 1k, 1n̂). B then sends
(barg.crs, seh.hk) as the crs to A. And, finally B outputs whatever A outputs.

Note that B wins the SEH index hiding game whenever A wins the seBARG index hiding since
B simulates the environment perfectly for A. Thus, the lemma follows.

Somewhere argument of knowledge. This follows directly from the somewhere statistical
binding property of the SEH scheme and semi-adaptive soundness of BARG. Concretely, we prove
the following.

Lemma B.3. If the SEH scheme SEH satisfies somewhere statistical binding and the BARG scheme
BARG satisfies semi-adaptive soundness, then seBARG satisfies somewhere argument of knowledge.

Proof. This follows from a simple case by case reduction to the SEH somewhere statistical binding
challenger and BARG semi-adaptive soundness challenger. Suppose there exists a PPT attacker A
that breaks somewhere argument of knowledge of the seBARG scheme with non-negligible proba-
bility ε = ε(λ). We divide the analysis in two cases.

Type 1 attacker: A outputs a sequence of instances {xi}i and a proof π such that Verify(crs, {xi}i, π) =
1 but x̂i∗ /∈ L̂. Note that a Type 1 attacker breaks the semi-adaptive soundness property of the un-
derlying (non-extractable) BARG scheme. This follows directly from a reduction to semi-adaptive
soundness of BARG.

Briefly, the attacker A starts by outputting (1k, 1n, i∗). The reduction algorithm B simply sends
(1k, 1n̂, i∗) to the BARG challenger, and the challenger sends the crs barg.crs to B. B then samples the
SEH hash key seh.hk along with trapdoor seh.td as in the setup, and sends (barg.crs, seh.hk) as the
crs to A. A then outputs a sequence of k instances x1, . . . , xk along with a proof π = (hω, barg.π).
B then submits {x̂i}i and barg.π as its soundness attack to the BARG challenger (here x̂i is as

87

defined in the description of the scheme). Note that whenever A is a successful type 1 attacker
on somewhere argument of knowledge, then B is a successful semi-adaptive soundness attacker
on BARG. This follows from the definition of a Type 1 attacker, and A’s advantage in breaking
somewhere argument of knowledge.

Type 2 attacker: A outputs a sequence of instances {xi}i and a proof π = (hω, barg.π) such
that Verify(crs, {xi}i, π) = 1 and x̂i∗ ∈ L̂, but Extract(td, {xi}i, π) is not a valid witness for xi∗ .
Note that a Type 2 attacker breaks the somewhere statistical binding property of the SEH scheme.
This relies on the fact that given x̂i∗ ∈ L̂, it holds that there is a witness ω̂i∗ of the form (ω∗, seh.π∗)
for instance x̂i∗ = (xi∗ , i

∗, seh.hk, hω). Since ω̂i∗ = (ω∗, seh.π∗) is a valid witness for x̂i∗ , thus we
get that ω∗ is a valid witness for xi∗ (as per language L) and seh.π∗ is a valid opening for ω∗

for set Ii∗ and hash value hω w.r.t. key seh.hk. That is, SEH.Verify(seh.hk, hω, Ii∗ , ω∗, seh.π∗) = 1.
Now by the somewhere statistical binding property of SEH, we know that it must be the case that
SEH.Extract(seh.td, hω) = ω∗. This results in a contradiction. Thus, A can not be a successful
Type 2 attacker even if is computationally unbounded.

Note that any successful somewhere argument of knowledge attacker A must be either Type 1
or 2. Thus, combining the above arguments, the lemma follows.

Semi-adaptive soundness. As noted in prior works [DGKV22, Remark 3.3], somewhere argu-
ment of knowledge property implies semi-adaptive soundness. Combining it with our somewhere
argument of knowledge lemma proved above, we get the following.

Lemma B.4. If the SEH scheme SEH satisfies somewhere statistical binding and the BARG scheme
BARG satisfies semi-adaptive soundness, then seBARG satisfies semi-adaptive soundness.

Note that the above proof of above lemma follows directly by combining proof of Lemma B.3
with [DGKV22, Remark 3.3]. We could alternatively prove it directly by following the same strategy
as for the proof of Lemma B.3.
This completes the proof of our main theorem.

C Semi-Adaptive Soundness to Adaptive Soundness

In this section, we show how to upgrade any polynomially-hard non-interactive batch argument
scheme with semi-adaptive soundness to (full) adaptive soundness by relying on exponential hard-
ness of a somewhere extractable hash function.

Our compiler is basically identical to our compiler from Appendix B, except the security pa-
rameters used for the underlying batch argument scheme and the hash function are set differently.
In a few words, the security parameter λh for SEH is set such that SEH is still secure even from
attackers running in time poly(2m, λ) (where m is the length of witnesses). Below we describe it
briefly for completeness.

Construction. Let BARG = (BARG.Setup,BARG.Prove,BARG.Verify) be a (non-extractable)
BARG scheme, and SEH = (SEH.Setup, SEH.H,SEH.Open,SEH.Verify,SEH.Extract) be a somewhere
extractable hash scheme. Below we describe our adaptively sound BARG scheme adaptive-BARG.
As in Appendix B, we will use the same language L̂ as described in Fig. 8, with the difference that
the security parameter for SEH is differently selected.

88

Setup(1λ, 1k, 1n, i∗)→ (crs, td). It runs the setup algorithms for BARG and SEH schemes where the
index i∗ is used to decide the subset of indices whose extraction is enabled by SEH scheme.
Namely, it generates the SEH hash key and trapdoor as

(seh.hk, seh.td)← SEH.Setup(1λh , k ·m, Ii∗),

where λh = λ ·m, and m is the length of the witness (corresponding to length n instances of
language L). It generates the BARG crs as

barg.crs← BARG.Setup(1λ, 1k, 1n̂),

where n̂ is the length of instances in language L̂ (i.e., n̂ is (n+dlog ke) plus the sum of lengths
of key seh.hk and hash value generated using SEH).

It outputs the crs and trapdoor as

crs = (barg.crs, seh.hk), td = seh.td.

Prove,Verify,Extract. The prover, verifier, and extraction algorithms are identical as in Appendix B.

Correctness and Compactness. The correctness and compactness argument is same as before
except, due to the change in selecting the security parameter λh, there is an additional polynomial
dependence on the witness length m.

Security. Below we prove the adaptive security of our adaptive-BARG scheme. Before providing
the main theorem, we state the stronger (sub-exponential) version of the index hiding security for
SEH hash functions that we need for proving security.

Definition C.1 (Sub-Exponential Index Hiding). A somewhere extractable hash scheme SEH
satisfies sub-exponential index hiding if for every admissible attacker A = (A1,A2), there exists a
negligible function negl(·) such that for all (large enough) λ1, λ2 ∈ N where λ1 > λ2, the following
holds

Pr

[
A2(st, hk) = b
∧ |I0| = |I1|

:
(st, N, I0, I1)← A1(1

λ1 , 1λ2), b← {0, 1}
(hk, td)← Setup(1λ1+λ2 , N, Ib)

]
≤ 1

2
+ negl(λ1 + λ2),

where attacker A = (A1,A2) is admissible as long as the running time of A1 is poly(λ1, λ2) and A2

is poly(λ1, 2
λ2).

In words, there are two security parameters λ1, λ2, and the attacker is allowed to run in time
exponential in λ2. This is a slightly weaker version of sub-exponential security definition for index
hiding, and is sufficient for our construction.

Theorem C.2. If the (non-extractable) BARG scheme BARG satisfies semi-adaptive soundness
(Definition A.2), and the SEH scheme SEH satisfies sub-exponential index hiding and somewhere
statistical binding (Definitions 3.4 and C.1), then the above scheme adaptive-BARG is a somewhere
extractable BARG scheme satisfying index hiding, adaptive soundness, and somewhere argument
of knowledge (Definitions 3.1, 3.2 and A.1).

Proof. The proof of index hiding and somewhere argument of knowledge follows directly from Lem-
mas B.2 and B.3. Also, note that sub-exponential index hiding security is not needed for proving
these properties. The proof of adaptive soundness is also similar, except now the reduction algo-
rithm for breaking index hiding security of SEH has to be designed more carefully.

89

Adaptive soundness. This follows from the sub-exponential index hiding security and some-
where statistical binding security of SEH, and semi-adaptive soundness of BARG. Concretely, we
prove the following.

Lemma C.3. If the SEH scheme SEH satisfies sub-exponential index hiding and somewhere statis-
tical binding, and the BARG scheme BARG satisfies semi-adaptive soundness, then adaptive-BARG
satisfies adaptive soundness.

Proof. Suppose there exists a PPT attacker A that breaks adaptive soundness of the adaptive-BARG
scheme with non-negligible probability ε = ε(λ). We claim show that there exists a PPT attacker
Âi∗ that break semi-adaptive soundness of adaptive-BARG with non-negligible probability δ = δ(λ)
for some i∗ ∈ [k].

Formally, for i∗ ∈ [k], let Âi∗ be the attacker that sends i∗ to the semi-adaptive soundness
challenger. After receiving the crs crs, it runs the attacker A with crs and outputs whatever A
outputs. We claim the following.

Claim C.4. Fix a non-negligible function ε. Assuming the SEH scheme SEH satisfies (sub-
exponential) index hiding security, if there exists a PPT attacker A whose advantage in the
adaptive-BARG adaptive soundness game is ε(λ), then there exists an index i∗ ∈ [k] and non-
negligible function δ such that the advantage of the PPT attacker Âi∗ (described above) in the
adaptive-BARG semi-adaptive soundness game is at least δ(λ).

Proof. This follows from a simple reduction to the SEH index hiding challenger. Suppose there
exists a PPT attacker A whose advantage in the adaptive soundness game is ε, but for all i∗ ∈ [k],
Âi∗ ’s advantage in the semi-adaptive soundness game is negligible.

Briefly, the adaptive soundness attacker A starts by outputting (1k, 1n). The reduction al-
gorithm B chooses two random indices i∗0 6= i∗1 ← [k], and submits k · m as the input length
and sets Ii∗0 , Ii∗1 to the SEH challenger. The challenger sends back hash key seh.hk, and B then

runs the rest of the setup algorithm to sample a crs barg.crs ← BARG.Setup(1λ, 1k, 1n̂). B then
sends (barg.crs, seh.hk) as the crs to A. And, A then outputs a sequence of instances {xi}i along
with a proof π. B then checks whether π is an accepting proof or not. That is, it checks
Verify(crs, {xi}i, π) = 1. If the check fails, then it aborts and guesses randomly. Otherwise, it
continues as follows.

For every i ∈ [k], B performs brute force search over all possible witness strings ωi ∈ {0, 1}m
to check whether xi ∈ L or xi /∈ L. If there does not exist an unsatisfying instance xi, then it
aborts and guesses randomly. Otherwise, if xi∗0 /∈ L, xi∗1 ∈ L, then it outputs 1 to guess that SEH
challenger used Ii∗1 . Similarly, if xi∗0 ∈ L, xi∗1 /∈ L, then it outputs 0 to guess that SEH challenger
used Ii∗0 . And, if xi∗0 , xi∗1 are both either YES or NO instances, then it aborts and guesses randomly.

Note that the running time of B is poly(2m, λ) due to the brute force search. Now note that
since Âi∗ ’s advantage is negligible for all i∗, thus if A creates an accepting (unsound) proof in the
above reduction such that xi∗0 /∈ L but xi∗1 ∈ L, then it must be the case that the SEH hask key
seh.hk is created for set Ii∗1 . And, similarly we can argue for the case xi∗0 ∈ L but xi∗1 /∈ L. Now
since i∗0 and i∗1 are sampled completely independently and uniformly at random, and A’s behavior
depends upon at most one of the indices (i.e., it is independent of the other index since only one
index is encoded in the hask key), thus whenever A’s creates an accepting unsound proof, then
with at least 1/(k − 1) probability, B does not abort. Therefore, if A’s advantage in the adaptive
soundness game is ε, and Âi∗ ’s advantage in the semi-adaptive soundness game is negligible (for

90

every i∗), then B’s advantage in the index hiding game is at least ε/(k − 1). Thus, the lemma
follows.

Claim C.5. If the SEH scheme SEH satisfies somewhere statistical binding and the BARG scheme
BARG satisfies semi-adaptive soundness, then adaptive-BARG satisfies semi-adaptive soundness.

Proof. This follows from the proof of Lemma B.4.

This completes the proof of our main theorem.

D Making BARGs witness indistinguishable

In this section, we describe the general approach to make a BARG proof system zero-knowledge.
We construct a witness hiding BARG scheme wh-BARG = (Setup,Prove,Verify) for language L. Our
construction relies on a (non-interactive, non-succinct) WI proof system Π = (Π.Setup,Π.Prove,
Π.Verify) for language L, and a somewhere extractable BARG scheme seBARG = (Setup,Prove,
Verify,Extract) for language L̂ (described in Fig. 9).

Language L̂

Instance: x̂ := (instance x, NIWI crs).

Witness: ω̂ := NIWI proof π.

Membership: ω̂ is a valid witness for x̂ ∈ L̂ if π is an accepting WI proof for instance x
w.r.t. crs. Namely,

Π.Verify(crs, x, π) = 1 implies that x̂ ∈ L̂ and ω̂ is a valid witness.

Figure 9: Language L̂ for the seBARG.

Setup(1λ, 1k, 1n, i∗)→ (crs, td). It runs the setup algorithms for seBARG and Π schemes where
the index i∗ is used to fix the extraction index in seBARG scheme. Namely, it generates
Π.crs← Π.Setup(1λ, 1k, 1n). Next, it generates the seBARG parameters as

(sebg.crs, sebg.td)← seB.Setup(1λ, 1k, 1n̂, i∗),

where n̂ is the length of instances in language L̂ (i.e., n̂ is n plus the length of crs Π.crs). It
outputs the wh-BARG crs and trapdoor as crs = (sebg.crs,Π.crs), td = sebg.td.

Prove(crs, {(xi, ωi)}i∈[k])→ π. It parses the crs as above. It first creates a WI proof for each instance
individually as

∀i ∈ [k], Π.πi ← Π.Prove(Π.crs, xi, ωi).

91

Next, it computes a BARG using the seBARG system where each instance now additionally
contains Π.crs, and the corresponding witness contains only the WI proof Π.πi. Formally, it
generates the batch proof as

sebg.π ← seB.Prove(sebg.crs, {(x̂i, ω̂i)}i∈[k]),

where x̂i = (xi,Π.crs) and ω̂i = Π.πi for every i ∈ [k]. Finally, it outputs π = sebg.π.

Verify(crs, {xi}i∈[k], π)→ 0/1. It parses the crs and proof as above. It simply runs the seBARG
verifier on sebg.π = π where the instances now also contain Π.crs. Concretely, it outputs the
following

seB.Verify(sebg.crs, {x̂i}i∈[k], sebg.π)

where x̂i = (xi,Π.crs) for every i ∈ [k].

Preserving local verifiability. We want to point out that if the underlying somewhere ex-
tractable BARG scheme is locally verifiable, then the upgraded witness hiding BARG scheme is
also locally verifiable. That is, if seBARG.LOpen and seBARG.LVfy algorithms exist satisfying the
corresponding properties, then using the following algorithms we can make our above construction
to be locally verifiable as well.

LOpen(crs, {xi}i, j, π)→ (auxj , π
′). It parses the crs and proof as above. It computes the auxiliary

information and updated proof using seBARG’s local opening algorithm directly. Namely, it
computes

(auxj , π
′) = seBARG.LOpen(sebg.crs, {x̂i}i, j, π),

where x̂i = (xi,Π.crs) for every i ∈ [k].

LVfy(crs, x, j, π, aux)→ 0/1. The local verifier parses the inputs as above, and simply runs the
seBARG local verifier on π and aux where the instance now also contain Π.crs. Concretely, it
outputs the following

seBARG.LVfy(sebg.crs, x̂ = (x,Π.crs), j, π, aux).

Remark D.1 (Proof-Independent Openings). Note that if the underlying BARG scheme seBARG
has proof-independent openings, then our transformation preserves it.

Preserving somewhere extractability. We want to point out that if the underlying non-
succinct Π scheme has a knowledge extractor, then the upgraded witness hiding BARG scheme
maintains its somewhere extractability property. That is, if a knowledge extractor Π.E exists, then
it can be used to extract the witness at location i∗ as follows.

Extract(td, {xi}i, π)→ ω. Here we assume that the trapdoor td also contains the random coins τ
used during Π.Setup. It first runs the seBARG extractor to obtain the witness ω̂ as

ω̂ = seB.Extract(td, {x̂i}i, π),

where x̂i = (xi,Π.crs) for every i ∈ [k]. Next, it runs the Π extractor to extract the actual
witness ω as

ω = Π.E(τ, xi∗ , ω̂).

92

Correctness and Compactness. Note that completeness and local correctness of our designed
BARGs follow directly from the completeness of Π proof system combined with completeness and
local correctness of seBARG (respectively). Additionally, extraction correctness follows directly
from the extraction correctness of seBARG and Π. Also, compactness of the wh-BARG scheme
follows directly from the compactness of seBARG scheme and the fact that the running time of
Π.Setup and Π.Prove is a fixed polynomial.

Security. Below we prove the security of our lv-BARG scheme.

Theorem D.2 (Index hiding, soundness, witness indistinguishability). If the somewhere extractable
BARG scheme seBARG satisfies index hiding, semi-adaptive soundness, and somewhere argument
of knowledge (Definitions 3.1, 3.2 and A.2), and the proof system Π satisfies soundness and witness
indistinguishability (Definitions A.4 and A.5), then the above scheme wh-BARG is a BARG scheme
satisfying index hiding, semi-adaptive soundness, and witness indistinguishability (Definitions 3.1,
A.2 and A.3).

Proof. The proof is divided into multiple parts where we individually prove the desired properties.

Index hiding. This follows directly from the index hiding properties of the seBARG scheme.
Concretely, we can prove the following.

Lemma D.3. If the seBARG scheme seBARG satisfies index hiding, then wh-BARG also satisfies
index hiding.

This follows from a simple reduction to seBARG index hiding.

Semi-adaptive soundness. This follows directly from the soundness property of the Π system
and somewhere argument of knowledge of seBARG. Concretely, we prove the following.

Lemma D.4. If the proof system Π satisfies soundness and the seBARG scheme seBARG satisfies
somewhere argument of knowledge, then wh-BARG satisfies semi-adaptive soundness.

Proof. This follows from a simple case by case reduction to the proof system soundness challenger
and the BARG somewhere argument of knowledge challenger. Suppose there exists a PPT attacker
A that breaks soundness of wh-BARG scheme with non-negligible probability ε = ε(λ). We divide
the analysis in two cases.

Type 1 attacker: A outputs a sequence of instances {xi}i and a proof π such that Verify(crs, {xi}i, π) =
1 but seB.Extract(sebg.td, {x̂i}i, π) = ω̂ is not a valid witness for x̂i∗ . Note that a Type 1 attacker
breaks the somewhere argument of knowledge property of the underlying seBARG scheme. This
follows directly from a reduction to somewhere argument of knowledge of seBARG.

Type 2 attacker: A outputs a sequence of instances {xi}i and a proof π such that Verify(crs, {xi}i, π) =
1 and seB.Extract(sebg.td, {x̂i}i, π) = ω̂ is a valid witness for x̂i∗ , but xi∗ /∈ L. Note that a Type
2 attacker breaks the soundness property of the Π proof system. This relies on the fact that given
ω̂ is a valid witness for x̂i∗ , then ω̂ is an accepting Π proof for instance xi∗ (w.r.t. language L).
This results in a contradiction that Π satisfies soundness. Thus, A can not be a successful Type 2
attacker.

Note that any successful soundness attacker A must be either Type 1 or 2. Thus, combining
the above arguments, the lemma follows.

93

Witness Indistinguishability. This follows directly from the witness indistinguishability prop-
erty of the Π system. Concretely, we prove the following.

Lemma D.5. If the proof system Π satisfies witness indistinguishability, then wh-BARG satisfies
witness indistinguishability.

Proof. This follows from a sequence of k − 1 intermediate hybrid experiments, where in the ith

intermediate hybrid, the challenger uses ω1,1, . . . , ωi,1, ωi+1,0, . . . , ωk,0 as the witnesses for creating
the batch proof. Now observe that the only difference between any two consecutive hybrid ex-
periments (say i − 1 and i) is that the ith witness is switched from ωi,0 to ωi,1. The reduction
algorithm can simply forward this to the witness indistinguishability challenger, and use attacker’s
guess to win the witness indistinguishability game w.r.t. Π. Alternatively, one could directly use
the multi-theorem version of the witness indistinguishability property to prove it directly.

This completes the proof of our theorem.

Theorem D.6 (Zero-Knowledge). If the proof system Π is zero-knowledge (Definition A.6), then
the above scheme wh-BARG satisfies BARG zero-knowledge property (Definition 7.4).

Proof. This follows from a straightforward reduction to the (multi-theorem) zero-knowledge prop-
erty of the Π proof system. Note that the reduction algorithm simply samples everything except the
Π crs Π.crs and proofs Π.πi (to be used as witnesses for x̂i), and it receives these from the proof sys-
tem challenger (where either they are simulated or computed honestly). If the attacker can break
zero-knowledge property for wh-BARG, then the reduction algorithm will break zero-knowledge
property of Π as well. Thus, the theorem follows.

Theorem D.7 (Somewhere extractability). If the somewhere extractable BARG scheme seBARG
satisfies somewhere argument of knowledge (Definition 3.2), and the proof system Π has a knowl-
edge extractor (Definition A.7), then the above scheme wh-BARG is a BARG scheme satisfying
somewhere argument of knowledge as well.

Proof. This follows from a simple case by case reduction to the proof system knowledge extraction
challenger and the BARG somewhere argument of knowledge challenger. Suppose there exists
a PPT attacker A that breaks somewhere argument of knowledge of the wh-BARG scheme with
non-negligible probability ε = ε(λ). We divide the analysis in two cases.

Type 1 attacker: A outputs a sequence of instances {xi}i and a proof π such that Verify(crs, {xi}i, π) =
1 but seB.Extract(sebg.td, {x̂i}i, π) = ω̂ is not a valid witness for x̂i∗ . Note that a Type 1 attacker
breaks the somewhere argument of knowledge property of the underlying seBARG scheme. This
follows directly from a reduction to somewhere argument of knowledge of seBARG.

Type 2 attacker: A outputs a sequence of instances {xi}i and a proof π such that Verify(crs, {xi}i, π) =
1 and seB.Extract(sebg.td, {x̂i}i, π) = ω̂ is a valid witness for x̂i∗ , but Π.E(τ, xi∗ , ω̂) = ω is not a
valid witness for xi∗ ∈ L. Note that a Type 2 attacker breaks the knowledge extraction property
of the Π proof system. This relies on the fact that given ω̂ is a valid witness for x̂i∗ , then ω̂ is an
accepting Π proof for instance xi∗ (w.r.t. language L). This results in a contradiction that Π has
a knowledge extractor. Thus, A can not be a successful Type 2 attacker.

Note that any successful somewhere argument of knowledge attacker A must be either Type 1
or 2. Thus, combining the above arguments, the lemma follows.

94

Theorem D.8 (Local soundness). If the somewhere extractable BARG scheme seBARG satisfies
local argument of knowledge with adversarial openings (Definition 5.3), and the proof system Π
satisfies soundness (Definition A.4), then the above scheme wh-BARG is a BARG scheme satisfying
semi-adaptive local soundness with adversarial openings.

Proof. This follows from a simple case by case reduction to the proof system soundness challenger
and the BARG local argument of knowledge challenger. Suppose there exists a PPT attacker A
that breaks local soundness of the wh-BARG scheme with non-negligible probability ε = ε(λ). We
divide the analysis in two cases.

Type 1 attacker: A outputs an instance x, proof π, and auxiliary information aux such
that LVfy(crs, x, i∗, π, aux) = 1 but sebg.LExtract(sebg.td, x, π, aux) = ω̂ is not a valid witness for
x̂ = (x,Π.crs). (Here sebg.LExtract is the local argument of knowledge extractor.) Note that
a Type 1 attacker breaks the local argument of knowledge property of the underlying seBARG
scheme. This follows directly from a reduction to somewhere argument of knowledge of seBARG.

Type 2 attacker: A outputs an instance x, proof π, and auxiliary information aux such
that LVfy(crs, x, i∗, π, aux) = 1 and sebg.LExtract(sebg.td, x, π, aux) = ω̂ is a valid witness for x̂ =
(x,Π.crs), but x /∈ L. Note that a Type 2 attacker breaks the soundness property of the Π proof
system. This relies on the fact that given ω̂ is a valid witness for x̂, then ω̂ is an accepting Π proof
for instance x (w.r.t. language L). This results in a contradiction that Π satisfies soundness. Thus,
A can not be a successful Type 2 attacker.

Note that any successful local soundness attackerAmust be either Type 1 or 2. Thus, combining
the above arguments, the lemma follows.

Theorem D.9 (Local extractability). If the somewhere extractable BARG scheme seBARG satisfies
local argument of knowledge with adversarial openings (Definition 5.3), and the proof system Π
has a knowledge extractor (Definition A.7), then the above scheme wh-BARG is a BARG scheme
satisfying local argument of knowledge with adversarial openings.

Proof. This is similar to the proof of Theorem D.8, with the only change that for showing that
there does not exist an appropriate Type 2 attacker we rely on the knowledge extractor for the
proof system Π.

Contents

1 Introduction 1

2 Technical overview 3
2.1 Identity Mutations . 5
2.2 Subset Mutations . 10
2.3 Monotone Policy batchNP Mutations . 12
2.4 Auxiliary results and related work . 16

3 Preliminaries 19
3.1 Non-interactive Batch Arguments . 19
3.2 Somewhere Extractable Hash . 20

4 Mutable Batch Arguments 22

5 Identity Mutations = Local Proof Opening 24
5.1 Specializing syntax and definition . 24

5.1.1 Correctness, succinctness, and security . 25
5.1.2 Instance Privacy . 26

6 Building locally verifiable BARGs 27
6.1 Correctness and succinctness . 29
6.2 Security . 30

7 Fully Private Locally Verifiable Batch Arguments 33
7.1 Preliminaries . 33
7.2 Witness hiding BARGs . 35
7.3 Designing fully private lv-BARGs . 35
7.4 Security . 38
7.5 Hiding witnesses within BARGs . 43

8 Subset Mutations = Deleting Proofs 44
8.1 Specializing syntax and definition . 44

8.1.1 Correctness, succinctness, and security . 45

9 Deletable BARGs via Private Local Verifiability 47
9.1 Construction . 47
9.2 Security . 49

10 Mutable Batch Proofs for C-batchNP mutation 52
10.1 Preliminaries . 52
10.2 Mutable proofs via locally verifiable BARGs and SNARGs 53

10.2.1 Instantiating from LWE . 55

i

11 Advanced Signature Schemes 56
11.1 Redactable Signatures . 56
11.2 Locally Verifiable Aggregate Signatures . 58
11.3 Homomorphic Signatures . 60

12 Application 1: Locally Verifiable Aggregate Signatures 62
12.1 Security . 63

13 Application 2: Redactable Signatures 67
13.1 Security . 68

14 Application 3: Homomorphic Signatures 72
14.1 Homomorphic signatures for log-depth circuits . 72
14.2 Homomorphic signatures for monotone circuits . 75

A Preliminaries (Cont’d) 82
A.1 BARGs: soundness and witness indistinguishability 82
A.2 Non-Succinct Non-Interactive Proofs in the Common Reference String Model 83

B From Soundness to Somewhere Extractability 85

C Semi-Adaptive Soundness to Adaptive Soundness 88

D Making BARGs witness indistinguishable 91

ii

	Introduction
	Technical overview
	Identity Mutations
	Subset Mutations
	Monotone Policy batchNP Mutations
	Auxiliary results and related work

	Preliminaries
	Non-interactive Batch Arguments
	Somewhere Extractable Hash

	Mutable Batch Arguments
	Identity Mutations = Local Proof Opening
	Specializing syntax and definition
	Correctness, succinctness, and security
	Instance Privacy

	Building locally verifiable BARGs
	Correctness and succinctness
	Security

	Fully Private Locally Verifiable Batch Arguments
	Preliminaries
	Witness hiding BARGs
	Designing fully private lv-BARGs
	Security
	Hiding witnesses within BARGs

	Subset Mutations = Deleting Proofs
	Specializing syntax and definition
	Correctness, succinctness, and security

	Deletable BARGs via Private Local Verifiability
	Construction
	Security

	Mutable Batch Proofs for CbatchNP mutation
	Preliminaries
	Mutable proofs via locally verifiable BARGs and SNARGs
	Instantiating from LWE

	Advanced Signature Schemes
	Redactable Signatures
	Locally Verifiable Aggregate Signatures
	Homomorphic Signatures

	Application 1: Locally Verifiable Aggregate Signatures
	Security

	Application 2: Redactable Signatures
	Security

	Application 3: Homomorphic Signatures
	Homomorphic signatures for log-depth circuits
	Homomorphic signatures for monotone circuits

	Preliminaries (Cont'd)
	BARGs: soundness and witness indistinguishability
	Non-Succinct Non-Interactive Proofs in the Common Reference String Model

	From Soundness to Somewhere Extractability
	Semi-Adaptive Soundness to Adaptive Soundness
	Making BARGs witness indistinguishable

