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Abstract

Byzantine broadcast is one of the fundamental problems in distributed computing. Many of
its practical applications, from multiparty computation to consensus mechanisms for blockchains,
require increasingly weaker trust assumptions, as well as scalability for an ever-growing num-
ber of users n. This rules out existing solutions which run in a linear number of rounds in
n or rely on trusted setup requirements. In this paper, we propose the first sublinear-round
and trustless Byzantine broadcast protocol for the dishonest majority setting. Unlike previous
sublinear-round protocols, our protocol assumes neither the existence of a trusted dealer who
honestly issues keys and correlated random strings to the parties nor random oracles. Instead,
we present a solution whose setup is limited to an unstructured uniform reference string and a
plain public key infrastructure (a.k.a. bulletin-board PKI).

Our broadcast protocol builds on top of a moderated gradecast protocol which parties can
use to reach weak agreement on shared random strings. Using these strings, we can then run
in an unbiased fashion a committee-based Byzantine protocol, similar to that of Chan et al.
(PKC 2020), which terminates in a sublinear number of rounds. To this end, we propose a
novel construction for committee election, which does not rely either on random oracles or on
a trusted setup, and uses NIZKs and time-lock puzzles. Our protocol is resilient against an
adaptive adversary who corrupts any constant fraction of parties.
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1 Introduction

In the problem of Byzantine broadcast, a sender distributes its input v to n parties. A protocol for
broadcast is deemed secure if it satisfies two properties in the presence of any t < n corruptions:
(1) consistency : all honest parties output the same value, and (2) validity : if the sender honestly
follows the protocol, then all honest parties output v. Broadcast is essential in ensuring a consistent
view between parties, and has important applications in multiparty computation, verifiable secret
sharing and state machine replication. To reduce the overhead of such applications, a long line
of works has focused on minimizing the round-efficiency of broadcast, i.e., how many synchronous
rounds the protocol runs for. By the famous work of Dolev and Strong [14], having t+1 synchronous
rounds is both necessary and sufficient to achieve broadcast deterministically. This severely limits
the practicality of such protocols as n grows large.

Fortunately, randomized protocols are known to bypass this lower bound. Thus, an active area of
research has studied robust and efficient randomized broadcast protocols for the most challenging
setting with a dishonest majority of n/2 < t < n corrupted parties. In this corruption regime,
the lower bound of Lamport, Shostak, and Pease [34, 29] asserts that some form of cryptographic
setup is necessary in order to achieve broadcast. With respect to such setup assumptions, existing
round-efficient protocols fall into one of two unsatisfactory categories.

Protocols of the first category [10, 40, 41] achieve o(n) rounds for any constant fraction of
corrupted parties. However, they rely on a trusted dealer who securely generates and distributes
cryptographic parameters during a setup phase (e.g., signing key pairs). Unfortunately, assuming
a trusted dealer is unacceptable for high-stake scenarios as it lies at odds with the primary goal of
distributed systems: to eliminate single points of failure.

Protocols in the second category work in the plain public key model. Rather than relying on
a trusted dealer, this model allows parties to generate their own secret and public keys. In this
manner, trusted setup is minimized to a public bulletin-board to which parties can post their public
keys and correctly read the other parties’ public keys before commencing protocol execution. The
only known protocols in this category are due to Garay et al. [21] and Fitzi and Nielsen [18].
However, both of these protocols achieve security only for a very small margin where the number t
of corrupted parties must satisfy t− n/2 ≤ o(n).

1.1 Our Contribution

In this work, we significantly improve over the state of the art. Concretely, we design the first
sublinear round broadcast protocol secure against an adaptive adversary controlling a majority of
t ≤ (1 − ϵ)n of the parties, for constant ϵ ∈ (0, 1), with setup assumptions of only plain public
key model and a uniform common reference string. Our technical approach can be summarized as
follows.

• Committee election without trusted setup. We follow the approach of [10] of electing a
small unpredictable committee which is responsible for voting on the sender’s bit. We devise
algorithms for a committee election scheme based on non-interactive proof systems and time-
lock puzzles, but without trusted setup, which allows parties to verify the membership of both
themselves and of other parties. We guarantee that at the time of election, this committee
contains at least one honest party and cannot be larger than O(λ) members, for a statistical
security parameter λ. This initial scheme describes algorithms, not protocols, and thus does
not deal with the consistency of views between honest parties, a limitation that we must
overcome in the next step toward our final goal.
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• Verifiable graded committee election. We augment our committee election scheme with
a flavor of graded broadcast channels [17, 21]. This, in turn, yields a graded committee election
with the same properties as above that has a round complexity sublinear in the number of
parties n. The committee election is graded in the sense that the confidence of the honest
parties over the members of the committee is quantified by a grade they assign to each member.
Our grading ensures that honest parties always assign honest parties the highest possible
grades, whereas grades for dishonest parties may differ by at most one among honest parties.

• Sublinear-round Broadcast. Building on top of our graded committee election, we provide
a broadcast protocol with O(λ) = o(n) round complexity. Our protocol compares favorably
to the Dolev-Strong protocol [14], as it reduces the round complexity from O(n) without
introducing trusted dealers.

Our solution relies on time-lock puzzles, but we believe this to be a minor restriction. Indeed,
many works have considered setup-free protocols under resource-restricted cryptography assump-
tions, for instance, Andrychowicz and Dziembowski [3] and Garay et al. [22, 23].

1.2 Technical Overview

We now provide a more detailed overview of our techniques.
Chan et al.’s Protocol. Our starting point is the protocol of Chan et al. [10] which achieves
sublinear round complexity against (1 − ϵ)n adaptive corruptions, for constant ϵ > 0, relying on
a trusted dealer. At a high level, it delegates the message signing steps in the Dolev-Strong [14]
protocol to an ad-hoc committee of roughly O(λ) parties.1 If at least one party in the committee is
honest, their protocol achieves O(λ) round complexity. For committee election, a verifiable random
function (VRF) is used, which allows a party P to evaluate a pseudorandom function F on a point v
privately, as y := F (sk, v), where sk is P ’s private key. The VRF also produces a proof π that can
be used to verify y against P ’s public key pk. Thus, each party can be independently elected a
committee member with λ/n probability if its VRF output y evaluated on, e.g., a fixed identifier
id, falls below a certain threshold τ , i.e., F (sk, id) < τ .

In [10], a trusted dealer generates the key pairs on behalf of all parties and securely distributes
them before the protocol execution. The approach as sketched above fails if parties generate their
VRF keys and register them to a public bulletin-board. Namely, a malicious party P can choose
its key to minimize its output when evaluated on the fixed identifier, thus becoming a committee
member with high probability. As such, an adversary controlling any constant fraction of the
parties can degrade Chan et al.’s protocol to O(n) rounds by electing all of them to the committee
(as consistency would be broken with fewer rounds).
Challenges of Removing the Trusted Dealer. One way of addressing the above issue is for
parties to agree on an unpredictable identifier id, but after registering their keys to the public
bulletin-board. Intuitively, this should thwart any attempt of generating VRF keys in a way that
minimizes the output when evaluated on id. For our purposes, this turns out to be rather simple
in the random oracle model. Assuming VRFs which themselves act as random oracles, parties can
set, for instance, id := H(pk1, ..., pkn) to obtain a suitably unbiased random string to be input to
the VRF. Here, H is a hash function modelled as a public and truly random function.

Obviously, this approach fails in the plain model. As there seems to be no way of locally
computing id without a random oracle, moving to the standard model introduces a circular issue:
how can parties agree on an unpredictable string id if their ultimate goal is to agree on the sender’s

1To counter adaptive corruptions, there is one committee per bit that could be input by the sender.
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output? To add to the difficulty, the round complexity of the resulting broadcast protocol now has
to account for the process of agreeing on id, in addition to other steps. Thus, agreement on id is
only helpful if it can be achieved in a round-efficient manner.

As an additional challenge, we also need to replace the VRFs in the above approach by a
plain-model election function which outputs uniform values when called on uniform inputs. This is
especially challenging given that corrupted parties can select their keys after honest parties keys.

Unbiased Randomness from VSS: A Recap. To break the circularity described above, our
approach follows the template of boosting a weak form of agreement—graded agreement—on an
unpredictable string (for committee election) to a strong form of agreement on an arbitrary sender
input (see [16, 25, 3, 23]). Compared to prior work, however, the setting of dishonest majority with
only a constant fraction of honest parties turns out to be a major challenge. In particular, this
disqualifies typical approaches such as verifiable secret sharing (VSS) [16, 25], which requires an
honest majority, or reducing the number of Byzantine parties to run an honest-majority broadcast
protocol [21, 18], which requires either t− n/2 ≤ o(n) or trusted setup.

Nevertheless, toward illustrating our own approach, it is helpful to recall VSS-based protocols for
the honest majority setting. To understand the difficulty of agreeing on an unbiased random string
id, consider first a naive protocol where parties locally generate random seeds and share them.
Then, parties combine them into an output. Setting aside for the moment the issue of reaching
agreement on these outputs, there is an obvious problem with bias: dishonest parties could observe
the honest parties’ strings and accordingly adjust or simply withhold their own strings, thus biasing
the outcome. If we were in an honest majority scenario, these issues could be overcome using,
e.g., parallel VSS, which each instance of VSS commits a party P to a value in such a way that
it can be forcibly revealed even if P does not publish it itself. To build intuition, we briefly recall
how VSS works: the dealer sends a share of its secret to each other party, along with information
for verification; if this information is malformed, honest parties distribute it to show the dealer
is malicious. Then, when reconstructing the secret of the dealer, only the valid shares submitted
by parties are used. Going back to our goal of distributed unpredictable string generation, each
party would act as a VSS dealer in the first round of the protocol. Then, the aggregation of all the
reconstructed secrets, happening in a second round (and based solely on the valid shares received in
the first round), would serve as the common unpredictable string id. Importantly, VSS guarantees
that the adversary is not capable of reconstructing the secrets of the honest parties before having
to commit its own secret. Moreover, the adversary cannot obtain valid shares that would bias
the result. Finally, honest majority ensures that the adversary’s committed secrets are always
reconstructed and are included in the aggregated value even without the adversary’s participation.
This prevents the adversary from biasing id by selectively aborting certain instances of VSS.

From VSS to Time-Lock Puzzles. Unfortunately, VSS with guaranteed output for honest parties
does not exist in the dishonest majority setting. Thus, our idea is to try to mirror a weaker property
of VSS-based approaches in a dishonest majority setting as follows. The adversary is allowed to
reconstruct honest parties’ secrets eventually, (which would not be allowed in VSS without a honest
majority or the dealer’s participation), but the adversary is still not capable to commit to a secret
that depends on the honest parties’ secrets. Intuitively, this should prevent the adversary from
biasing id, so long as honest parties agree on its final value before the adversary learns their secrets.

To this end, we use the idea of resource-restricted cryptography, where the restricted resource
is sequential time. Concretely, we assume the existence of a time-lock puzzle (TLP). Critically, a
TLP cannot be solved faster than within a certain predetermined time ∆, even when given access
to parallel computation. This suggests the following approach: first, have parties locally sample
random strings, one for each other party, time-lock encrypt these strings, and agree on the resulting
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TLPs instead of agreeing directly on the strings. Then, solve a batch of n puzzles (one from each
party) and compute from its solution the final identifier id that will be used as an input to the
election function. Intuitively, if ∆ is larger than the time it takes to agree on the puzzle, it should
be impossible for Byzantine parties to pick their contributions to the election function in a manner
that biases id. Moreover, honest parties can forcibly open any of the corrupted parties’ puzzles
without further interaction using the batch solve algorithm. This resembles the step of forcible
reconstruction in VSS-based approaches and eliminates any remaining avenues for the adversary to
bias the distribution of id.

Converting this approach into a working solution with a formal security proof, however, turns
out to be very challenging. While there are prior works [38, 36, 13] on random beacons using
time-lock puzzles or verifiable delay functions, they either require a trusted setup and/or additional
assumptions on the computational resources of Byzantine parties, an honest majority, broadcast,
or do not run in o(n) rounds.

As a result, we have to develop novel techniques in order to reach our objective, both for
achieving randomness and for achieving agreement.

Towards Committee Elections in the Plain Model. To illustrate the main ideas behind our
solution, let us assume broadcast channels, ignoring for now that we want to construct such a
channels in the first place.2 We also assume a predicate Pred that takes as input a value idj ∈ Zp

associated to a party Pj and outputs whether Pj is in the committee, such that Pred yields a secure
committee election if all idj ’s are uniform, independent, and cannot be biased. It turns out that
such a predicate can easily be constructed and reduces our task to generating the values idj .

In this scenario with broadcast channels, we can have parties broadcast special purpose one-time
public keys at the beginning of each committee election. It is acceptable for parties to reveal their
secret key to convince others they were elected. With this in mind, our first strawman approach is
that each party Pj defines its public key as Xj = gxj for a random secret key xj and sets idj := xj .
Of course, such idj is neither independent nor necessarily uniform for dishonest parties. To make
them uniform, we take inspiration from distributed coin flips and set

idj := xj +
∑
i∈[n]

Ti,j for every party Pj

where Ti,j ∈ Zp is a tag that Pi prepares for party Pj . In this way, each party contributes to the
other party’s idj . However, we still need to ensure that the tags themselves are independent. As
insinuated above, we solve this by having each party Pi broadcast a TLP of its tags Ti,j . Then, a
party Pj (batch) opens all received TLPs to determine their values idj .
Proving Security of Our Committee Election. One of the main technical challenges that
we overcome in this work is how to properly use the security of TLP to prove the security of our
committee election. Concretely, we want to show two properties: (i) the adversary cannot corrupt
all elected parties, and (ii) the committee does not grow too large.

To prove (i), we can avoid using the security of TLPs in the first place by letting the public
key of Pi be a perfectly hiding commitment for xi: Xi = gxihri . We can now argue that even
when the adversary corrupts t parties, with high probability one of the remaining n − t parties
is elected. Notably, this holds even if the adversary chooses all tags. Because commitments are
perfectly hiding, it means that from the view of the adversary, all uncorrupted xi are uniformly
random, and so is idi. We instantiate the predicate such that, with overwhelming probability, at
least one among n− t uniform values satisfies it.

2In the main body of the paper, we do not assume broadcast channels when building the solution; instead, we first
describe algorithms that parties run locally for the committee election, and then connect them through protocols.
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Proving (ii) requires, in essence, to argue that the adversary cannot significantly increase its
probability of winning. Intuitively, this should hold since if at least one honest tag Ti∗,j contributes
to a corrupted idj , then value idj is uniform and cannot be biased by the adversary. This intuition
crucially exploits the fact that the adversary has to fix its keys and tags before learning Ti∗,j . Clearly,
to prove this formally, we have to rely on the security of the TLP.

This turns out to be highly non-trivial. More concretely, we want to have a hybrid step in our
proof which replaces the puzzle of Ti∗,j with a puzzle of 0. The security definition of a TLP states
that the adversary can take arbitrary polynomial time to come up with two messages m0 and m1,
then gets a puzzle containing mb for a random bit b, and finally has to find b in time bounded by a
parameter ∆, which models the hardness of the puzzle. With this in mind, note that the reduction
interpolating the subsequent hybrids (one with a puzzle of Ti∗,j and one with a puzzle of 0) is the
adversary in the TLP game. The reduction therefore gets the puzzle (of Ti∗,j or of 0) and has to
determine the bit b. To do so, it would have to evaluate the winning condition and output the final
output of the game. This naive approach, however, is flawed: as the game runs much longer than
∆, the reduction would do so as well, meaning it is not a valid adversary in the TLP game. Indeed,
this is a general issue when composing timed cryptography in larger protocols.

To address this, we make several changes to our election protocol in order to enable the reduction
to evaluate the winning condition quickly. For that, the reduction needs to know the corrupted
party’s secret key xj and all tags Ti,j . We establish this by adding proofs of knowledge to (i) each
party’s public key, and (ii) all time-lock puzzles,3 such that the reduction can extract xj and all
Ti,j . Relying on the computational binding property of our public keys (which are commitments to
xj) and on the correctness of TLPs, we can argue that the extracted values are as good as the ones
obtained by finishing the game. Notably, the full formal proof involves two subsequent hybrids that
are not indistinguishable but for which we can show that the adversary’s winning probability does
not increase. Such distinguishable hybrids have been used before [40].

Removing the Broadcast Channels. Our sketch above on how to use a TLP as a “substitution”
for VSS in the dishonest majority setting implicitly assumed that parties could broadcast their
individual puzzles and keys Xi. As our goal is to construct a broadcast protocol, we need to find a
means of replacing any broadcast with a suitable (weaker) primitive.

Following classical works in the area of round-efficient agreement, we consider a weaker consensus
primitive commonly referred to as gradecast (GC). In GC, parties output a grade together with the
output. Intuitively, the grade indicates a party’s confidence in its output as being equal to the
sender’s value. Thus, if the sender is honest, every party should output the grade expressing the
highest possible confidence. If the sender is dishonest, parties’ grades can be lower and some parties
might not learn the output at all. In this case, we would still like to ensure that (i) even low grades
correspond to the same output across honest parties (if any), and (ii) grades of honest parties differ
by at most one. The solution, however, is not as straightforward as simply replacing all broadcast
channels with gradecasts. While for the distribution of their public keys parties can use gradecast,
in order to prevent bias on the ids, we need all Byzantine parties to compute their id on puzzle
solutions that include the contribution of at least one honest party. To this end, we propose to use
a generalized notion of moderated gradecast (Mod-GC), introduced in [25].

In GC, the sender’s behaviour fully determines the parties’ confidence in the output. Mod-GC
designates a different party M as a moderator responsible for relaying the GC output of the sender
to all parties. Parties now output a grade that reflects their confidence in M rather than in the
sender directly. While the honest grades’ properties closely mirror those of GC, Mod-GC enables a
more refined strategy against dishonest parties. The main idea is for each party M to moderate each

3This intuitively makes the puzzles non-malleable. Indeed, malleability would allow to bias the result.
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other party P ’s GC instance. Parties then assign M the minimum grade over all the instances it
moderated. This way, a party M who incorrectly forwards an honest party’s contribution is punished
with a lower grade. To ensure that honest parties do not punish each other for moderating GCs
received initially with low grades, our grading scheme takes into account both the grades of the
original senders P as well as the efforts of M in relaying all the GCs it moderated. The outcome
is a scenario in which, for all parties M , the honest parties attain graded agreement on a set
of TLPs associated with M . Now, they can derive from these puzzles (and M ’s claimed secret
key xM , validated using the graded public key XM ) a way to verify the identifier idM attributed
to M along with a grade gM , regardless of the senders’ behaviour in the GCs which M moderated.
Unpredictability follows because a dishonest party M can only obtain an idM that holds a positive
grade in the view of any honest party if idM was computed using the contributions of all honest
parties. In addition, all honest parties will have high grades in the view of the other honest parties
(the maximum grade or the maximum grade minus one). As mentioned above, soundness of proof
systems is a requirement to obtain consistency between honest parties’ views. Finally, the step where
honest parties batch solve the puzzles to compute their own id resembles the step of reconstruction
from VSS. Honest parties only use the puzzles with non-zero grades to compute id, which loosely
corresponds to using only the valid shares in a VSS-based approach.
Wrapping up. Now that all parties have unpredictable ids and associated grades in the view of
honest parties, we can use them in Chan et al.’s construction [10]. We set the maximum grade
equal to the number of stages in their protocol. There, if a party receives r signatures on a message
b ∈ {0, 1} in Stage r (consisting of two rounds), it accepts it as a possible output. If that party is on
the committee, it signs this message and forwards it to all parties so they can accept it in the next
stage. In our protocol, we additionally require that for a party P to accept a bit b in Stage r, all the
accompanying signatures must come from committee members who have an id with an associated
grade that depends on r. More concretely, for each additional stage of the protocol, parties accept
one additional (lower) grade than in the previous stage. By the consistency in the view of honest
parties on all grades, any signature that is accepted by one party P in Stage r will be accepted by
any other honest party P ′ in Stage r+1 and thus can safely be forwarded by P before accepting b.
The result is a sublinear-round broadcast protocol.
Open questions. While we significantly weaken the setup assumptions and obtain a trustless
sublinear-round broadcast protocol, the message communication complexity takes a hit compared
to the bulletin-PKI linear-round protocol of Dolev and Strong (which has O(n3) communication
complexity) or compared to the sublinear-round protocol with trusted setup of Chan et al. [10]
(which has O(n2) communication complexity). Using the gossiping techniques from Tsimos et
al. [39], we can bring down the communication to Õ(n4) at the cost of having the number of rounds
polylogarithmic in n. Reducing the communication complexity further is a valuable future research
problem.

1.3 Related Work

Our work, like most of the ones described here, considers an atomic send model (the adversary
is weakly adaptive, meaning it cannot perform after-the-fact removals) and uses property-based
definitions. In the case of a stronger adversarial model of non-atomic sends, where an adaptive
adversary can corrupt a party and revert or modify its send action before it reaches all the other
parties, Cohen et al. [11] investigate the feasibility of property-based and simulation-based adaptive
broadcast (also assuming TLPs).

We start with the related literature for broadcast protocols in the setup-free case apart from
a bulletin-board public key infrastructure (bulletin-PKI). The result of Pease, Shostak and Lam-
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port [34] disallows any broadcast protocol in the asynchronous setting tolerating n/3 or more cor-
ruptions, so we focus on the synchronous setting. Dolev and Strong [14] give a protocol against
an adaptive dishonest majority t < n with a linear number of rounds and O(n3) communication
complexity. The line of work [27, 26, 8] proposed protocols with reduced communication complexity
of down to Õ(n2) but for honest majority and with a linear number of rounds. Abraham et al. [2]
achieve expected constant rounds for Parallel Broadcast against a static adversary in the honest
majority setting with bulletin-PKI. Other works in the adaptive dishonest majority case [39, 33]
and in the bulletin-PKI model studied the amortized communication complexity of protocols over
a number of broadcast instances, but achieve a linear number of rounds.

We now survey the literature on synchronous broadcast protocols for a dishonest majority that
achieve sublinear round complexity. The first works obtained a sublinear number of rounds only
in a narrow case t/n − 1/2 ≤ o(n): Garay et al. [21] achieved O((2t − n)2) rounds, and Fitzi and
Nielsen [18] achieved O(2t− n) rounds, against a strongly adaptive adversary.

Chan et al. [10] was the first result achieving broadcast with sublinear rounds O( n
n−t) and Õ(n2)

communication in a dishonest majority t/n−1/2 ≥ ω(1). It requires a trusted setup for the common
random strings and keys against a weakly adaptive adversary. Wan et al. [41] further improved this
result by presenting a protocol for synchronous broadcast that achieves expected constant rounds
O(( n

n−t)
2) and Õ(n4) communication complexity, but still with trusted setup (in particular, this

avoids having maliciously generated keys for the VRF, which we treat in this work). The solution
requires building a trust graph which allows honest parties to identify the corrupted parties.

Wan et al. [40] tolerates stronger adversaries that can also erase messages, still with a sublinear
number of rounds. In [40], parties distribute during each round their real or dummy votes through
time-lock puzzles as a means of encryption against the adaptive adversary. In order to not have each
honest party solve a linear number of puzzles, parties probabilistically sample which puzzle to solve
based on the puzzles’ age and then multicast the solution and the validity proof. This guarantees
that after a logarithmic number of rounds, all honest puzzles are solved and their solutions are
received by all honest nodes. However, this solution does not guarantee that corrupt puzzles are
also solved or that honest parties have a consistent view of puzzles originating from the adversary.
This is the main reason this solution cannot be used in our case of emulating random beacons,
where an adversary can bias the result by observing the intermediate opened puzzles and deciding
to not allow some corrupt puzzles to be opened.

Hou et al. [24] describe a blockchain that tolerates dishonest majority, loosely based on the Chan
et al. broadcast protocol [10], proof of stake, proof of work in the random oracle model (ROM).

Graded broadcast, graded consensus, graded verifiable secret sharing, have been proposed in
various settings as a stepping stone to stronger primitives of Byzantine broadcast or Byzantine
agreement, see [16, 12, 25, 21] for instance. Recently, in the honest majority case, [19] generalized
graded consensus to the multi-dimensional case which deals with a vector of inputs.

Time-lock puzzles (TLP) [35], timed commitments [7] and verifiable delay functions (VDF) [6]
are cryptographic tools relying on time assumptions, which involve “slow functions” that can be
opened or evaluated only after an a priori chosen amount of time passes. Several constructions of
TLPs have been proposed [5, 32, 38, 1, 31, 15].

In the context of timing assumptions and broadcast, Das et al. [13] describe a Byzantine agree-
ment protocol with VDF in ROM, which achieves an expected constant round complexity without
trusted setup, tolerating t < n/2 adaptive corruptions. Their construction differs conceptually from
ours: Das et al. [13] generate a graded PKI with only two grades, then use VDFs both in this
construction and to elect a leader on which honest parties agree with high probability, in order
to augment a graded byzantine agreement into a full byzantine agreement. However, their con-
structions heavily rely on t < n/2 and on the ROM. Srinivasan et al. [37] give a compiler based
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on TLPs (using indistinguishability obfuscation) that achieves expected constant-round Byzantine
broadcast protocol against a strongly adaptive adversary for the dishonest majority setting, but
without removing the trusted setup.

The use of timed functions for multi-party unbiased randomness generation was first exemplified
by Lenstra et al. [30]. Constructing randomness from VDF/TLP with transparent setup in ROM,
but assuming broadcast, is also addressed by Bhat et al. [4], who tolerate t < n only if the adversary
is covert, and by Thyagarajan et al. [38] who tolerate t < n. Freitag et al. [20] propose a fair coin
flipping protocol that assumes either a public bulletin-PKI and a partially trusted setup called all-
but-one model (non-interactive but where parties need to solve all TLPs) or a trusted setup and
ROM (interactive but publicly verifiable).

1.4 Paper Organization

After recalling necessary preliminaries in Section 2, we construct our broadcast protocol in three
steps. First, in Section 3 we describe the cryptographic core of our protocol, namely, algorithms to
securely elect a committee without random oracles. We show two properties for these algorithms:
(1) the adversary cannot corrupt all committee members, and (2) the committee is never too large.
Roughly speaking, these properties hold from the perspective of a single party. In the second step,
in Section 4, we use (moderated) gradecast to design a distributed protocol for committee election
and we analyze the properties of these algorithms within the context of our distributed protocol.
Then, in Section 5, we present and analyze our full broadcast protocol. We conclude in Section 6.

2 Preliminaries

In this section, we fix notation, define necessary cryptographic primitives, and recall some mathe-
matical background.
Notation. We write x←$X to denote that x is sampled uniformly at random from a finite set
X. We write y ← A(x) when y is the output of a probabilistic algorithm A run on input x with
uniform coins. To make the coins explicit, we write y := A(x; ρ), in which case the algorithm
becomes deterministic. We denote the running time of an algorithm A by T(A). PPT stands for
probabilistic polynomial time. Throughout, we use negl to denote a negligible function, which is a
function that goes to zero faster than every inverse polynomial. Similarly, we use poly and polylog
to denote functions that are polynomial or polylogarithmic. Throughout the paper, log denotes the
natural logarithm.
Network. We consider n parties P1, . . . , Pn that have access to a bulletin-board public key infras-
tructure (bulletin-PKI). Every party generates a pair of keys for signing (the signature function can
be any signature function which does not require a trusted setup or a random oracle) and posts
the public key to the public bulletin-board before the protocol starts. The posted keys are not
guaranteed to have been generated correctly, but they are the same in the view of all parties. The
bulletin-board also has public parameters (not requiring a trusted setup to generate), for instance
common reference strings. The public bulletin-board is assumed to implement a one-time secure
read and write for the parties.

We consider a synchronous network, i.e., messages between parties are delivered with a finite,
known delay ∆r, and the local clocks of the parties are synchronized. Our protocols execute in
rounds: every round r of the protocol has length ∆r and parties start executing round r at time
(r− 1) ·∆r. We assume atomic send operations, i.e., parties can send a message to multiple parties
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simultaneously such that the adversary cannot corrupt them in between individual sends. The
number of rounds that a protocol takes to terminate is denoted as its round complexity.
Security Parameters. Throughout the paper we denote with κ the computational security param-
eter. We let λ be a statistical security parameter, which we assume to be smaller than κ. Naturally,
the number of parties n is polynomial, i.e., it satisfies n ≤ poly(κ) and n ≤ poly(λ). This also means
that we have n · negl(λ) = negl(λ) and n · negl(κ) = negl(κ). Similarly, we assume n ≥ ω(log λ). For
smaller n, the goal of sublinear-round broadcast is not interesting.
Threat model. We consider a Byzantine fault model, in which some fraction of the parties
t ≤ (1−ϵ)n, may be corrupted by an adversary, for a constant ϵ ∈ (0, 1). The adversary controls the
messages and current state of any corrupted party, and can coordinate the actions of all corrupted
parties. The adversary is adaptive and rushing, i.e., it can adaptively corrupt parties over the course
of a protocol execution and wait until all honest parties have sent their messages before making
a decision. Uncorrupted parties are called honest. The adversary cannot perform after the fact
removals, i.e., it cannot indefinitely prevent a message from being delivered once it is sent by an
honest party, even if the adversary corrupts it at some point after the send action.
Idealized Signatures. We use the notation Sigi(m) to denote a signature of party Pi using ski on
message m and SigVeri(s,m) to denote the verification of signature s on message m using public key
pki. Signatures should achieve correctness: for any message m, it holds that SigVeri(Sigi(m),m) = 1,
and unforgeability under chosen-message attack : for a pair of honestly generated keys (ski, pki), a
party that does not have access to ski, cannot generate a signature s for a new message m such
that SigVeri(s,m) = 1. As standard in the consensus literature, we assume idealized signatures that
satisfy correctness and unforgeability perfectly.
Assumption and Inequalities. We recall the discrete logarithm assumption and two useful
inequalities.

Definition 1 (Discrete Logarithm Assumption). Let GGen be an algorithm that outputs the de-
scription of a cyclic group G with generator g of prime order p. We say that the discrete logarithm
assumption holds relative to GGen if for any PPT algorithm A the following probability is negligible:

Pr [A(G, g, p, gx) = x | (G, g, p)← GGen(1κ), x←$Zp] .

Lemma 1 (Bernoulli’s inequality). For every x ∈ R and any positive exponent r > 0, it holds:

(1 + x)r ≤ exr. (1)

Lemma 2 (Chernoff Bound). Assume that X1, . . . , Xn are independent {0, 1} random variables, let
X :=

∑n
i=1Xi and µ := E [X]. Then, for any ζ ≥ 0, we have

Pr [X ≥ (1 + ζ)µ] ≤ e
− ζ2µ

ζ+2 .

Cryptographic Primitives. An NP relation is a relation R containing pairs (x,w) of statement
and witnesses that satisfies the following properties: (1) there is a polynomial q with |w| ≤ q(|x|) for
all (x,w) ∈ R, and (2) the relation is decidable deterministically in polynomial time. In addition,
we allow R to be parameterized implicitly by the security parameter and assume that |x| ≤ poly(κ)
for all (x,w) ∈ R. We define non-interactive proof systems.

Definition 2 (Non-Interactive Proof System). Let R be an NP relation. A non-interactive proof
system for R is defined to be a triple PS = (Setup,Prove,Ver) of PPT algorithms with the following
syntax:

11



• Setup(1κ)→ crs takes as input the security parameter and outputs a common reference string
crs.

• Prove(crs, x, w)→ π takes as input a common reference string crs, a statement x and a witness
w, and outputs a proof π.

• Ver(crs, x, π)→ b is deterministic, takes as input a common reference string crs, a statement
x and a proof π, and outputs a bit b ∈ {0, 1}.

Further, we require that the following completeness property holds: For any pair (x,w) ∈ R, we
have

Pr [Ver(crs, x, π) = 1 | crs← Setup(1κ), π ← Prove(crs, x, w)] = 1.

Most importantly, proof systems need to be sound. For our purpose, computational soundness is
enough. Such systems are often referred to as argument systems, but we use the term proof system
throughout.

Definition 3 (Soundness). Consider an NP relation R and a non-interactive proof system PS =
(Setup,Prove,Ver) for R. We say that PS is (computationally) sound, if for every PPT algorithm
A, the probability that the following game outputs 1 is negligible:

1. Run crs← Setup(1κ).

2. Run A on input crs and obtain a pair (x, π).

3. Output 1 and terminate if the following two conditions hold. Otherwise, output 0:

(a) We have Ver(crs, x, π) = 1.

(b) There is no witness w such that (x,w) ∈ R.

We require a proof system that is zero-knowledge and simulation-extractable, according to the
following definitions. Note that the definitions are weak in a sense that the adversary is non-adaptive.

Definition 4 (Zero-Knowledge). Consider an NP relation R and a non-interactive proof system
PS = (Setup,Prove,Ver) for R. We say that PS is zero-knowledge, if there are PPT algorithms
TrapSetup, Sim such that for every PPT algorithm A, the probability that the following game outputs
1 is negligibly close to 1/2:

1. Sample b←$ {0, 1}.

2. Generate a common reference string crs as follows:

(a) If b = 0, run crs← Setup(1κ).

(b) If b = 1, run (crs, trap)← TrapSetup(1κ).

3. Run A on input crs and obtain a state st and pairs (x1, w1), . . . , (xL, wL) of statements and
witnesses.

4. If there is a j ∈ [L] with (xj , wj) /∈ R, terminate and output 0.

5. Otherwise, for each j ∈ [L], compute πj as follows:

(a) If b = 0, run πj ← Prove(crs, xj , wj).
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(b) If b = 1, run πj ← Sim(trap, xj).

6. Run A on input st and π1, . . . , πL and obtain a bit b′.

7. Output 1 if b = b′. Otherwise, output 0.

In this case, we say that TrapSetup is the trapdoor setup algorithm and Sim is the zero-knowledge
simulator for PS.

Definition 5 (Simulation-Extractability). Let R be an NP relation and PS = (Setup,Prove,Ver)
be a non-interactive proof system for R. Assume that PS is zero-knowledge with trapdoor setup
algorithm TrapSetup and zero-knowledge simulator Sim. We say that PS is simulation-extractable, if
there is a PPT algorithm Ext such that for every PPT algorithm A, the probability that the following
game outputs 1 is negligible:

1. Generate (crs, trap)← TrapSetup(1κ).

2. Run A on input crs and obtain a state st and statements x1, . . . , xL.

3. For each j ∈ [L], run πj ← Sim(trap, xj).

4. Run A on input st and π1, . . . , πL and obtain pairs (x∗1, π
∗
1), . . . , (x

∗
T , π

∗
T ) of statements and

proofs.

5. If there are i ∈ [T ] and j ∈ [L] with x∗i = xj, then terminate and output 0.

6. For each i ∈ [T ], run w∗
i := Ext(trap, x∗i , π

∗
i ).

7. If there is an i ∈ [T ] such that Ver(crs, x∗i , π
∗
i ) = 1 and (x∗i , w

∗
i ) /∈ R, terminate and output 1.

8. Otherwise, output 0.

In this case, we refer to Ext as the knowledge extractor of PS.

There are constructions of non-interactive proof systems satisfying our notion with a common
random string, e.g., [28].

We now introduce time-lock puzzles with batch solving following [37, 15].

Definition 6 (Time-Lock Puzzles with Batch Solving). A time-lock puzzle with batch solving is a
tuple of PPT algorithms TLP = (Setup,Gen,Solve) with the following syntax:

• Setup(1κ)→ tlpar takes as input the security parameter and outputs parameters tlpar.

• Gen(tlpar, s)→ Z takes as input parameters tlpar and a solution s and outputs a puzzle Z.

• Solve(tlpar, (Zi)
L
i=1) → (si)

L
i=1 is deterministic, takes as input parameters tlpar and a list of

puzzles Zi and outputs a list of solutions si.

Further, we require that the following completeness property holds: for every tlpar ∈ Setup(1κ), every
L ∈ N, and every list of solutions s1, . . . , sL, and puzzles Zi ∈ Gen(tlpar, si) for all i ∈ [L], we have
Solve(tlpar, (Zi)

L
i=1) = (si)

L
i=1.

Definition 7 (CPA Security of TLPs). Let TLP = (Setup,Gen, Solve) be a time-lock puzzle with
batch solving and ∆ be a parameter. We say that TLP is ∆-CPA secure, if for every PPT algorithm
Apre and every PPT algorithm Aon such that Aon runs in time at most ∆, the probability that the
following game outputs 1 is negligibly close to 1/2:
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1. Sample b←$ {0, 1} and generate tlpar← Setup(1κ).

2. Run Apre on input tlpar to obtain a state st and two solutions s0, s1.

3. Generate Z ← Gen(tlpar, sb) and run Aon on input (st, Z).

4. Obtain a bit b′ ∈ {0, 1} from Aon and output 1 if b = b′. Else, output 0.

We assume that Setup and Gen run in time substantially faster than ∆, and that honestly running
Solve runs in time p1(κ,∆)+p2(κ, L) for polynomials p1, p2. Note that the running time of Solve does
not scale with ∆ · L. We can obtain time-lock puzzles with batch opening from any homomorphic
time-lock puzzles [32]. There exists a construction of CPA secure homomorphic time-lock puzzles
with transparent setup [38], without random oracles,4 based on the hardness of computing the order
of class groups of imaginary order [9]. More communication efficient constructions based on [37]
and [15] are imaginable.
Protocols. In the following, we implicitly assume the definitions are for protocols tolerating t
malicious parties, i.e., the conditions hold whenever there are at most t corrupted parties.

Introduced in the seminal work by Lamport et al. [29], broadcast ensures agreement of honest
parties on a sender’s message. We focus our exposition on binary broadcast, where input values are
bits, but it can be extended to multi-bit values.

Definition 8 (Broadcast). Consider a protocol executed by parties P1, . . . , Pn, where a designated
sender P ∗ ∈ {P1, . . . , Pn} initially holds an input x∗. We say that such a protocol is a broadcast
protocol if the following properties hold:

• Validity. If P ∗ is honest, then every honest party outputs x∗.

• Consistency. Every honest party outputs the same value x.

• Termination. Each honest party Pi outputs (xi) and terminates.

Gradecast, introduced by Feldman and Micali in [17] and generalized for an arbitrary grade by
Garay et al. [21], is a relaxation of broadcast, where honest parties are allowed to disagree by a
“small amount”.

Definition 9 (Gradecast). Consider a protocol executed by parties P1, . . . , Pn, where a designated
sender P ∗ ∈ {P1, . . . , Pn} initally holds an input x∗. We say that such a protocol is a g∗-gradecast
protocol if the following properties hold:

• Validity. If P ∗ is honest, then every honest party outputs (x∗, g∗).

• Soundness. Let Pi, Pj be two honest parties outputting (xi, gi) and (xj , gj), respectively. If
gi ≥ 2, then xi = xj and |gi − gj | ≤ 1. If gi = 1, then either xi = xj or gj = 0.

• Termination. Each honest party Pi outputs (xi, gi) where g ∈ {0, . . . , g∗} and terminates.

In this work, we will use the gradecast construction from Garay et al. [21]. We also define
moderated gradecast where a moderator M re-gradecasts the value it received from the sender in
gradecast P ∗. The goal is for the honest parties to use the two pieces of information coming from
the two gradecasts with different senders, to obtain “similar” outputs and to grade the moderator.

4Only the CCA secure construction in [38] requires ROM for concrete efficiency.
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Definition 10 (Moderated Gradecast). A protocol executed by parties P1, . . . , Pn, where a sender
P ∗ ∈ {P1, . . . , Pn} begins holding input x∗, and a moderator M ∈ {P1, . . . , Pn} moderates for the
sender P ∗, is a g∗-moderated gradecast protocol if the following notions hold:

• Validity. If P ∗ is honest and moderator M is also honest, every honest party Pi outputs
(x∗, g∗).

• M-Validity. If moderator M is honest, then every honest party Pi outputs (x, gi) for some
x and for gi ∈ {g∗ − 1, g∗}.

• Soundness. Let Pi, Pj be two honest parties outputting (xi, gi) and (xj , gj), respectively. If
gi ≥ 2, then xi = xj and |gi − gj | ≤ 1. If gi = 1, then either xi = xj or gj = 0.

• Termination. Each honest party Pi outputs (xi, gi) where gi ∈ {0, . . . , g∗} and terminates.

3 Algorithms for Committee Election

In this section, we construct the cryptographic core of our broadcast protocol, namely, algorithms
to run an unbiased committee election. We then formally specify two security games and prove that
no efficient adversary can win these games. Intuitively, they model that—under the assumption
that the outputs of the algorithms are distributed consistently—the resulting committee contains
at least one honest party and is not too large. Later, we will use various flavors of gradecast to turn
our committee election scheme into a full protocol.

3.1 Informal Description

Our committee election scheme CES consists of five algorithms. Before we formally specify these
algorithms, we informally introduce them and summarize how we envision using them, thereby also
introducing all relevant notation.
Setup. We assume parties have access to a common set of system parameters par generated
by an algorithm CES.Setup. These include the description of a cyclic group G with generator g
and prime order p, namely, (G, g, p) ← GGen(1κ). In addition, the parameters contain a group
element h←$G, time-lock parameters tlpar ← TLP.Setup(1κ), as well as common reference strings
crs ← PS.Setup(1κ) and c̃rs ← P̃S.Setup(1κ) as public parameters. Here, PS is a proof system for
relation

R := {(X, (x, r)) | X = gxhr},

and P̃S is a proof system for the relation

R̃ :=

{
((Z, (cj)

n
j=1), ((Tj , γj)

n
j=1, ρ))

∣∣∣∣ Z = TLP.Gen(tlpar, (Tj , γj)
n
j=1; ρ)

∧ ∀j ∈ [n] : cj = gTjhγj

}
.

Looking ahead, with PS parties will prove that their keys are well-formed, and with P̃S parties
prove that their time-lock puzzles are well-formed. We will elaborate on the rationale for defining
the relation R̃ like this below.
Predicates. We make use of a predicate Pred : Zp → {0, 1}. For now, we treat this predicate
abstractly and postpone a concrete instantiation to the very end of this section. For convenience,
we define the bias of the predicate and a bit b ∈ {0, 1} as

bias(Pred, b) := Pr [Pred(ν) = b | ν←$Zp] .
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We also define the tail of the predicate as

tail(Pred, n,B) := Pr [|{j ∈ [n] | Pred(νj) = 1}| > B | ν1, . . . , νn←$Zp] .

That is, the tail denotes the probability that among n uniform and independent values, more than
B of them satisfy the predicate.
Key Generation. Before running the committee election, each party Pi generates a key pair
(pki, ski) via a key generation algorithm CES.Gen. This is done as follows: the secret key ski
contains two random exponents xi←$Zp and ri←$Zp. The public key pki consists of a com-
mitment Xi := gxihri and a proof of well-formedness πi. Namely, this proof is computed as
πi ← PS.Prove(crs, Xi, (xi, ri)) and shows that the party computed Xi honestly. Looking ahead,
parties with invalid proofs will never be considered elected. For now, the reader may think of the
public keys as being posted on a public bulletin-board, i.e., all parties have a consistent view of
these keys. When we use our committee election scheme to construct a protocol, we will avoid
making this assumption by using a form of weak agreement.
Sampling Tags. To prevent the election from being biased by the adversary, all parties jointly
generate randomness. This is done using what we call tags and pretags. In more detail, we assume
that each party Pi generate pretagsi via an algorithm CES.Prepare. The set of all these pretagsi will
later help determine who is in the committee. Let us now explain how pretagsi is generated: party Pi

locally samples a list of tags Ti,j←$Zp, one tag for each other party Pj , j ∈ [n]. Then, Pi commits
to these tags by sampling γi,j←$Zp for all j ∈ [n] and setting ci,j := gTi,jhγi,j , and sets pretagsi to
consist of the commitments and time-lock puzzles of the tags. More concretely, Pi samples random
coins ρi for the algorithm TLP.Gen. It then computes a puzzle Zi := TLP.Gen(tlpar, (Ti,j , γi,j)

n
j=1; ρi)

and a proof π̃i ← P̃S.Prove(c̃rs, (Zi, (ci,j)
n
j=1), ((Ti,j , γi,j)

n
j=1, ρi)). Recall that π̃i proves that Zi is a

valid puzzle for the tags Ti,j that are committed in the commitments ci,j . That is, the proof links
the puzzles to the commitments. Intuitively, to ensure that malicious parties cannot make their
tags depend on other tags, we will make sure that all parties output their pretagsi within a certain
time interval that is related to the hardness of the puzzles.5

Winning the election. Informally, after the pretags are distributed, each party Pk will be asso-
ciated with a random value

idk = xk +
∑
i

Ti,k.

Notably, we let i range only over the indices for which pretagsi contains a proof π̃i that verifies.
Phrased differently, if a party provides an invalid proof, all tags provided by that party are treated
as zero. Therefore, for all tags that contribute to the sum, we can be sure that the commitments
and the puzzles were consistent (by the soundness of P̃S). A party Pk having access to the list
(pretagsi)

n
i=1 can therefore check if it has been elected into the committee as follows, modeled by

algorithm CES.TryElect: first, it batch solves all puzzles with valid proofs π̃i, obtaining the tags Ti,k

and the corresponding γi,k; second, it computes the value idk as above; it concludes that it has won
the election if and only if Pred(idk) = 1.
Convincing Others of Committee Membership. Say that a party Pk with public key pkj =
(Xk, πk) holding the list (pretagsi)

n
i=1 wants to convince a second party Pl that it has been elected

to the committee. First of all, if πk is invalid, Pl will reject immediately and not consider Pk as a
committee member. Otherwise, Pl expects Pk to provide its secret key skk = (xk, rk). Party Pl then
checks that (xk, rk) is indeed consistent with the commitment Xk, and that Pred(idk) = 1. Needless
to say, to compute idk, party Pl also needs the tags Ti,k (for all i for which π̃i is valid).

5Importantly, this relies on the synchronous model of communication.
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Note that, if we assume that parties have a consistent view of the (pretagsi)
n
i=1 and of pkk, then

by solving the puzzles for itself, Pl learns the tags Ti,k and does not need Pk to provide its solved tags
as proof of committee membership. However, since we need to avoid this strong assumption when
constructing our protocol in the subsequent sections, we also weaken the setup here. In particular,
we allow the possibility that corrupted parties provide different pretags to different honest parties.
We will go into details about how to solve this in Section 4, but for the moment, this translates
into the following. In order to verify that a party is in the committee, the verifying party Pl needs
to know the tags (and the secret key) for each such party Pk, and so Pl would need to resolve the
puzzles contained in the pretags for every party Pk that is claiming to be in the committee. This
naive solution would require each verifying party to solve Θ(n) batch puzzles, which is too costly.
Therefore, our goal is to avoid this. To do so, we rely on the soundness of P̃S: we know that the
output of a puzzle Zi is consistent with the commitments (ci,j)

n
i=1. Therefore, we let Pk provide

to Pl the tags Ti,k along with their openings γi,k. Party Pl can then check the correctness of the
tags by comparing its local view on ci,k with the provided Ti,k and γi,k. To summarize, party Pk

convinces party Pl of its membership in the committee by providing ticketk, which contains xk, rk
and Ti,k, γi,k for all indices i which have valid proofs π̃i. We model verifying such a claim and ticketk
by algorithm CES.VerElect.

3.2 Formal Definition

With our previous explanations in mind, we now define our committee election scheme CES by the
following algorithms:

• CES.Setup(1κ)→ par:

1. (G, g, p)← GGen(1κ), h←$G
2. tlpar← TLP.Setup(1κ)

3. crs← PS.Setup(1κ), c̃rs← P̃S.Setup(1κ)

4. par := (G, g, p, h, tlpar, crs, c̃rs)

• CES.Gen(par)→ (pki, ski):

1. xi←$Zp, ri←$Zp, Xi := gxihri

2. πi ← PS.Prove(crs, Xi, (xi, ri))

3. pki := (Xi, πi), ski := (xi, ri)

• CES.Prepare(par)→ pretagsi:

1. For all j ∈ [n]: Ti,j←$Zp, γi,j←$Zp, ci,j := gTi,jhγi,j

2. Sample random coins ρi for algorithm TLP.Gen

3. Zi := TLP.Gen(tlpar, (Ti,j , γi,j)
n
j=1; ρi)

4. π̃i ← P̃S.Prove(c̃rs, (Zi, (ci,j)
n
j=1), ((Ti,j , γi,j)

n
j=1, ρi))

5. pretagsi := (Zi, (ci,j)
n
j=1, π̃i)

• CES.TryElect(par, skk, (pretagsi)
n
i=1)→ (res, ticketk):

1. Parse skk := (xk, rk)

2. For all i ∈ [n]: Parse pretagsi = (Zi, (ci,j)
n
j=1, π̃i)
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3. ValidPre := {i ∈ [n] | P̃S.Ver(c̃rs, (Zi, (ci,j)
n
j=1), π̃i) = 1}

4. ((Ti,j , γi,j)
n
j=1)i∈ValidPre := TLP.Solve(tlpar, (Zi)i∈ValidPre)

5. idk := xk +
∑

i∈ValidPre Ti,k

6. ticketk := (xk, rk, (Ti,k, γi,k)i∈ValidPre)

7. If Pred(idk) = 0: return (0,⊥)
8. Else: return (1, ticketk)

• CES.VerElect(par, pkk, (pretagsi)
n
i=1, ticketk)→ res:

1. Parse pkk = (Xk, πk). If PS.Ver(crs, Xk, πk) = 0: return 0

2. For all i ∈ [n]: Parse pretagsi = (Zi, (ci,j)
n
j=1, π̃i)

3. ValidPre := {i ∈ [n] | P̃S.Ver(c̃rs, (Zi, (ci,j)
n
j=1), π̃i) = 1}

4. Parse ticketk = (xk, rk, (Ti,k, γi,k)i∈ValidPre)

5. If gxkhrk ̸= Xk: return 0

6. If there is an i ∈ ValidPre such that gTi,khγi,k ̸= ci,k: return 0

7. idk := xk +
∑

i∈ValidPre Ti,k

8. Return res := Pred(idk)

3.3 Committee Corruption Game

The first security property that we show informally states that no adversary can corrupt all members
of the committee. The game is strong in a sense that we allow the adversary to select all tags.
Also, for each honest party j, we allow the adversary to choose an entirely different set of pretags
(pretags

(j)
i )i. These are then used (1) by honest party j to check if it is in the committee, and (2)

by other honest parties to verify if party j is in the committee. To avoid clutter, the state of A is
kept implicit in the game. Formally, the committee corruption game for a number of parties n and
a corruption threshold t is defined as follows:

1. Setup. The game runs par← CES.Setup(1κ).

2. Initialization of Parties. In the initialization phase, the adversary can declare its initial
set of corrupted parties and learns the public keys of honest parties. More precisely:

(a) The game runs A on input par. Then, A declares a set Corr0 ⊆ [n]. If |Corr0| > t, the
game terminates and outputs 0.

(b) The game sets Corr := Corr0 and Hon0 := [n] \ Corr0.
(c) For each i ∈ Hon0, the game runs (pki, ski)← CES.Gen(par).

(d) The game gives all pki for i ∈ Hon0 to A.

(e) At any time from this point on, A gets access to a corruption oracle. On input i ∈ [n], if
i ∈ Corr or if |Corr| = t, then the oracle outputs ⊥. Otherwise, the oracle adds i to Corr,
and outputs ski.

3. Tag Phase. The game obtains pretags
(k)
i for all i ∈ [n] and k ∈ [n] from A.

4. Winning Condition. The game ends as soon as |Corr| = t. The adversary wins if none of
the remaining honest parties is elected:
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(a) Let Hon∗ := [n] \ Corr be the set of n− t remaining honest parties.

(b) For every k ∈ Hon∗, the game runs (resk, ticketk)← CES.TryElect(par, skk, (pretags
(k)
i )ni=1).

(c) The game defines the set of honest committee members as

HonComm :=
{
k ∈ Hon∗ | resk = 1 ∧ CES.VerElect(par, pkk, (pretags

(k)
i )ni=1, ticketk) = 1

}
.

(d) The game outputs 1 if HonComm = ∅. Otherwise, it outputs 0.

Next, we show that no efficient adversary can win the committee corruption game for the protocol
described above. That is, no efficient algorithm can corrupt all parties of the committee. We do
not need any assumptions on the time-lock puzzles here.

Lemma 3. Assume that PS is zero-knowledge (see Definition 4), that P̃S is sound (see Definition 3),
and that p > ω(log κ). Let A be a PPT algorithm in the committee corruption game for a number
of parties n and a corruption threshold t. Then, the probability that the committee corruption game
outputs 1 is at most negl(κ) + bias(P, 0)n−t.

Proof. Fix a PPT adversary A and let εA be the probability that the committee corruption game
outputs 1. Our goal is to upper bound εA. We do so by providing a sequence of hybrid games
H0, . . . ,H4. For each hybrid Hi, we denote the probability that it outputs 1 when run with adversary
A by εAi .
Hybrid H0. This is the committee corruption game. To fix notation, we recall it here. The
game first generates parameters par via algorithm CES.Setup. Recall that par include the group G
with generator g, a group element h←$G, time-lock parameters tlpar and common reference strings
crs and c̃rs for PS and P̃S, respectively. Next, the adversary gets par as input and declares its
initial set Corr0 ⊆ [n] of corrupted parties (with |Corr0| ≤ t. The set of initially honest parties is
Hon0 := [n] \ Corr0. For each such party i ∈ Hon0, the game computes a key pair (pki, ski) via
algorithm CES.Gen. To recall, we have pki = (Xi, πi) and ski = (xi, ri), where xi, ri are uniformly
chosen in Zp, Xi = gxihri , and πi is a proof for this equality computed using PS.Prove. At any
time during the game, A can corrupt a party i, thereby learning ski = (xi, ri). The set Corr gets
updated accordingly by inserting i. In the tag phase, A outputs pretags

(k)
i = (Z

(k)
i , (c

(k)
i,j )

n
j=1, π̃

(k)
i )

for all i ∈ [n] and all k ∈ [n]. The game continues until A has corrupted exactly t parties. Let
Hon∗ := [n] \ Corr be the set of n− t remaining honest parties. For each k ∈ Hon∗, the game runs
algorithm CES.TryElect. As in this algorithm, let

ValidPre(k) := {i ∈ [n] | P̃S.Ver(c̃rs, (Z(k)
i , (c

(k)
i,j )

n
j=1), π̃

(k)
i ) = 1}

and
((T

(k)
i,j , γ

(k)
i,j )

n
j=1)i∈ValidPre(k) := TLP.Solve(tlpar, (Z

(k)
i )i∈ValidPre(k)).

Then, to check the winning condition, the game computes

idk := xk +
∑

i∈ValidPre(k)
T
(k)
i,k

for each k ∈ Hon∗ as in CES.TryElect. Then, it defines the honest committee members as the
remaining honest parties k for which Pred(idk) = 1 and CES.VerElect outputs 1, concretely

HonComm =

{
k ∈ Hon∗

∣∣∣∣ Pred(idk) = 1 ∧Xk = gxkhrk ∧ ∀i ∈ ValidPre(k) : gT
(k)
i,k hγ

(k)
i,k = c

(k)
i,k

}
=

{
k ∈ Hon∗

∣∣∣∣ Pred(idk) = 1 ∧ ∀i ∈ ValidPre(k) : gT
(k)
i,k hγ

(k)
i,k = c

(k)
i,k

}
.
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Here, we have used the definition of CES.VerElect, that CES.VerElect and CES.TryElect define the
same set ValidPre(k) when they get the same list (pretags

(k)
i )ni=1 as input, and the fact that the Xk

have been computed honestly by the game. Finally, the game outputs 1 if HonComm = ∅. By
definition, we get

εA = εA0 .

Hybrid H1. We change how HonComm is defined. Namely, we now define it as

HonComm = {k ∈ Hon∗ | Pred(idk) = 1} .

Observe that if the definition differs from the definition in the previous hybrid, then there must be
an i ∈ [n] and a k ∈ Hon∗ such that i ∈ ValidPre(k) ∧ gT

(k)
i,k hγ

(k)
i,k ̸= c

(k)
i,k . In particular, for at least

one i∗ ∈ ValidPre(k), it must hold that

∃j ∈ [n] : gT̂i∗,jhγ̂i∗,j ̸= c
(j)
i∗,j

where T̂i∗,j and γ̂i∗,j are such that Z
(k)
i∗ ∈ TLP.Gen(tlpar, (T̂i∗,j , γ̂i∗,j)

n
j=1). Indeed, if there was no

such i∗, then by completeness of TLP there could never have been such an i. Hence, we can build a
PPT reduction that breaks soundness of P̃S by outputting the statement (Z

(k)
i∗ , (c

(k)
i∗,j)

n
j=1) and the

proof π̃(k)
i∗ it received from A in the tag phase. The proof verifies because i∗ ∈ ValidPre(k). By our

assumption that P̃S is sound, we get ∣∣εA0 − εA1
∣∣ ≤ negl(κ).

Hybrid H2. This hybrid is the same as H1, but we change the way the common reference string
crs and the proofs πi are generated. Namely, recall that they have been generated in H1 as

crs← PS.Setup(1κ), ∀i ∈ Hon0 : πi ← PS.Prove(crs, Xi, (xi, ri)).

Now, in H2, we generate them as

(crs, trap)← PS.TrapSetup(1κ), ∀i ∈ Hon0 : πi ← PS.Sim(trap, Xi),

where TrapSetup and Sim are the trapdoor setup algorithm and zero-knowledge simulator guaranteed
to exist by the zero-knowledge property. With this, we no longer need the witness (xi, ri) to generate
the proofs. We can easily bound the difference between using a reduction to the zero-knowledge
property of PS. The reduction gets crs from the game as input and simulates H1 until the proofs πi
have to be generated. Instead of generating them itself, the reduction outputs the statement-witness
pairs (Xi, (xi, ri)) for i ∈ Hon0 to the zero-knowledge game and obtains the proofs πi in return. It
continues simulating H1 and outputs whatever the hybrid would output. Clearly, the reduction is
PPT. Further, if b = 0 in the zero-knowledge game, then the reduction perfectly simulates H1, and
if b = 1 it perfectly simulates H2. By our assumption that PS is zero-knowledge, we get∣∣εA1 − εA2

∣∣ ≤ negl(κ).

Hybrid H3. We change how to generate element h ∈ G. Namely, from now on the game samples
ϑ←$Z∗

p and sets h := gϑ. Note that H2 and H3 only differ if h = g0 in H2. So we get

∣∣εA2 − εA3
∣∣ ≤ 1

p
≤ negl(κ).
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Hybrid H4. In this hybrid, we change how the elements Xi are computed. Recall that before, they
were computed as Xi = gxihri for all i ∈ Hon0. Also, observe that by the change in H2, the game
only needs (xi, ri) when party i is corrupted or to check the winning condition. In this hybrid, we
sample di←$Zp and set Xi := gdi for all i ∈ Hon0. When A calls the corruption oracle on input
i and the has to return (xi, ri), it samples xi←$Zp and computes ri := (di − xi)/ϑ. Note that
ϑ ̸= 0. Further, let Hon∗ be the final set of honest parties when the winning condition is checked,
i.e., Hon∗ := [n] \ Corr at the end of the game. For each i ∈ Hon∗, sample xi←$Zp before checking
the winning condition. Note that the joint distribution of the (Xi, xi, ri) does not change and so we
get

εA3 = εA4 .

Let us make explicit what we have achieved so far: for every party k ∈ Hon∗ that is not corrupted
when the winning condition is checked, the game first samples xk←$Zp, then defines

idk := xk +
∑

i∈ValidPre(k)
T
(k)
i,k

and then checks if Pred(idk) = 1 to see if the party is in the committee. The game outputs 1 if no
such party is in the committee. Note that all idk for k ∈ Hon∗ are uniform over Zp and independent,
because the xk are. Further, we know that |Hon∗| = n− t. We can therefore finish the proof with

εA4 ≤ Pr[HonComm = ∅] = Pr [∀k ∈ Hon∗ : Pred(idk) = 0] = Pr
ν
[Pred(ν) = 0]n−t = bias(Pred, 0)n−t.

3.4 Large Committee Game

The second property we prove is that the adversary cannot make the committee too large. This
holds even if the adversary controls all parties and can choose tags for each party independently.
Importantly, however, one of the tags for each party is chosen honestly by the game. We can for now
think of this tag as being the tag output by the party that later verifies committee membership.
Again, the state of A is kept implicit in the description of the game. More formally, the large
committee game for a number of parties n and a committee bound B is defined as follows:

1. Setup. The game runs par← CES.Setup(1κ).

2. Initialization of Parties. The adversary declares all keys. More precisely:

(a) The game runs A on input par.

(b) Then, A outputs pkk for all k ∈ [n].

3. Tag Phase. In the tag phase, the tags are chosen:

(a) The game runs pretags1 ← CES.Prepare(par) and sets pretags1,k := pretags1 for all k ∈ [n].

(b) The game continues running A on input pretags1.

(c) The game obtains pretagsi,k for all i ∈ [n] \ {1} and all k ∈ [n] from A. If the time
between this output and the previous step is larger than ∆′, the game terminates and
outputs 0.

4. Winning Condition. The adversary wins if too many parties are elected. More precisely:
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(a) The game runs A and gets a set Committee ⊆ [n] and ticketk for all k ∈ Committee.

(b) The game outputs 1 if the following two conditions hold. Otherwise, it outputs 0:

i. We have |Committee| > B.
ii. For all k ∈ Committee, we have CES.VerElect(par, pkk, (pretagsi,k)

n
i=1, ticketk) = 1.

We now show that no efficient adversary can win the large committee game, i.e., the committee is
never too large.

Lemma 4. Assume that PS and P̃S are simulation-extractable (see Definition 5), assume that the
discrete logarithm assumption holds relative to GGen, and assume that TLP is ∆-CPA secure, where
∆ is sufficiently larger than T(P̃S.Sim)+∆′+n ·T(P̃S.Ext). Let A be a PPT algorithm in the large
committee game for a number of parties n < p and a committee bound B. Then, the probability that
the large committee game outputs 1 is at most negl(κ) + tail(P, n,B).

Proof. Consider a PPT adversary A running in the large committee game. Let εA be the probability
that the large committee game outputs 1. We want to upper bound εA. To do so, we provide a
sequence of hybrid games H0, . . . ,H10. For each hybrid Hi, we denote the probability that it
outputs 1 when run with adversary A by εAi .
Hybrid H0. This is the large committee game. We recall the game to fix notation. Initially,
the game sets up parameters par via algorithm CES.Setup. To recall, par include the group G
with generator g, an element h←$G, time-lock parameters tlpar and common reference strings
crs and c̃rs for PS and P̃S, respectively. In the initialization of parties phase, the adversary gets
par as input and declares all public keys pkk = (Xk, πk) for all k ∈ [n], where Xk ∈ G and πk
is a proof. In the tag phase, the game generates a pretag pretags1 = (Z1, (c1,j)

n
j=1, π̃1) via algo-

rithm CES.Prepare. Precisely, by definition of CES.Prepare, these values are computed by sampling
T1,j←$Zp, γ1,j←$Zp, setting c1,j := gTi,jhγi,j for every j ∈ [n], and computing the puzzle Z1 :=
TLP.Gen(tlpar, (Ti,j , γi,j)

n
j=1; ρi) and the proof π̃i ← P̃S.Prove(c̃rs, (Z1, (c1,j)

n
j=1), ((T1,j , γ1,j)

n
j=1, ρ1))

for some random coins ρ1. The game also sets pretags1,k := pretags1 for all k ∈ [n], and we set
(Z1,k, (c1,j,k)

n
j=1, π̃1,k) := (Z1, (c1,j)

n
j=1, π̃1) accordingly. The adversary A then gets pretags1 and

within time ∆′, it has to output pretagsi,k for all i ∈ [n] \ {1} and all k ∈ [n], where we write
pretagsi,k = (Zi,k, (ci,j,k)

n
j=1, π̃i,k). To evaluate the winning condition, the game continues running

A until it outputs a set Committee ⊆ [n] and tickets ticketk for all k ∈ Committee. The game then
outputs 1 if and only if |Committee| > B and CES.VerElect(par, pkk, (pretagsi,k)

n
i=1, ticketk) = 1 for

all k ∈ Committee. Let us make explicit how CES.VerElect works here for such a k ∈ Committee:
The algorithm defines the set

ValidPrek :=
{
i ∈ [n]

∣∣∣ P̃S.Ver(c̃rs, (Zi,k, (ci,j,k)
n
j=1), π̃i,k) = 1

}
.

It parses ticketk = (xk, rk, (Ti,k, γi,k)i∈ValidPrek). Then, it outputs 1 if and only if the following four
conditions hold:

1. We have PS.Ver(crs, Xk, πk) = 1.

2. We have gxkhrk = Xk.

3. For every i ∈ ValidPrek, we have gTi,khγi,k = ci,k,k.

4. We have Pred(idk) = 1 for idk = xk +
∑

i∈ValidPrek Ti,k.
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By definition, we get
εA = εA0 .

Hybrid H1. We change how the game generates crs. Namely, while it has been generated as crs←
PS.Setup(1κ) in the previous hybrid, from now on it is generated with a trapdoor as (crs, trap) ←
PS.TrapSetup(1κ). We can easily bound the difference between H0 and H1 using the zero-knowledge
property of PS, see Definition 4. We omit giving the reduction formally. We get∣∣εA0 − εA1

∣∣ ≤ negl(κ).

Hybrid H2. We add a step to the game after the initialization of parties phase. To understand
this additional step, first recall that in the initialization of parties phase, the adversary A outputs
keys pkk = (Xk, πk) where Xk ∈ G and πk is a proof for all k ∈ [n]. Here is the additional step that
we add in H2: the game first defines the set6

Active := {k ∈ [n] | PS.Ver(crs, Xk, πk) = 1} .

It then extracts witnesses from the proofs πk for k ∈ Active, i.e.,

(x̂k, r̂k)← PS.Ext(trap, Xk, πk) for all k ∈ Active,

where trap is the trapdoor introduced in H1. Further, the game aborts if Xk ̸= gx̂khr̂k for some
k ∈ Active. The rest of the game remains unchanged. Note that the two hybrids only differ if the
game aborts, and if the game aborts a straightforward reduction can break simulation-extractability
(see Definition 5) of PS. Therefore, we get∣∣εA1 − εA2

∣∣ ≤ negl(κ).

Hybrid H3. We change how c̃rs and the proof π̃1 contained in pretags1 = (Z1, (c1,j)
n
j=1, π̃1) (as

computed in the tag phase) are generated. Recall that until now they have been generated as

c̃rs← P̃S.Setup(1κ), π̃1 ← P̃S.Prove(c̃rs, (Z1, (c1,j)
n
j=1), ((T1,j , γ1,j)

n
j=1, ρ1)).

From now on, we generate them using the trapdoor setup algorithm P̃S.TrapSetup and the zero-
knowledge simulator P̃S.Sim as

(c̃rs, ˜trap)← P̃S.TrapSetup(1κ), π̃1 ← P̃S.Sim( ˜trap, (Z1, (c1,j)
n
j=1)).

We can bound the distinguishing advantage of A between this hybrid and the previous hybrid using
the zero-knowledge property of P̃S, see Definition 4. The formal reduction is trivial and omitted.
We get ∣∣εA2 − εA3

∣∣ ≤ negl(κ).

Hybrid H4. In this hybrid, we use the knowledge extractor P̃S.Ext of P̃S to extract the tags
provided by the adversary. We now make this change more precise: recall that in the tag phase, the
game obtains pretags pretagsi,k = (Zi,k, (ci,j,k)

n
j=1, π̃i,k) for all i ∈ [n] \ {1} and all k ∈ [n]. Here are

the additional step that we add in H4, after receiving these pretags:

For each k ∈ [n], do the following:
6Note that every party that is in the committee has to be in Active, by definition of algorithm CES.VerElect.
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1. Define the set ValidPrek := {i ∈ [n] | P̃S.Ver(c̃rs, (Zi,k, (ci,j,k)
n
j=1), π̃i,k) = 1}. Note that

this is exactly as algorithm CES.VerElect will define this set when the game will evaluate
the winning condition, see H0.

2. Define the set Copiedk := {i ∈ ValidPrek | (Zi,k, (ci,j,k)
n
j=1) = (Z1, (c1,j)

n
j=1)} and note

that 1 ∈ Copiedk.
3. For all i ∈ Copiedk, set T̂i,k,k = T1,k.
4. For all i ∈ ValidPrek \ Copiedk, run

((T̂i,j,k, γ̂i,j,k)
n
j=1, ρ̂i,k)← PS.Ext( ˜trap, (Zi,k, (ci,j,k)

n
j=1), π̃i,k).

5. If there is an i ∈ ValidPrek such that gT̂i,k,khγ̂i,k,k ̸= ci,k,k, abort the game.

Intuitively, this means the game extracts all commitment preimages (i.e., tags) for pretags that have
valid proofs and have not been copied by the adversary. The rest of the game remains unchanged
for now. Clearly, the output of this hybrid only differs from the previous one if the abort happens.
For each fixed k∗ ∈ [n] and i∗ ∈ [n] \ {1}, we bound the probability that i∗ ∈ ValidPrek∗ \ Copiedk∗
and the abort happens for this pair (k∗, i∗). To this end, we using the simulation-extractability of
P̃S via the following reduction:

1. The reduction gets c̃rs as input. It runs the game in H3 until it has to provide the proof π̃1
to the adversary.

2. To provide π̃1, it outputs the statement (Z1, (c1,j)
n
j=1) to the simulation-extractability game.

It obtains a simulated proof π̃1 in return.

3. The reduction continues simulating H3 until in the tag phase A outputs pretagsi,k for all
i ∈ [n] \ {1} and all k ∈ [n]. It defines ValidPrek∗ and Copiedk∗ as above and aborts if
i∗ /∈ ValidPrek∗ or i∗ ∈ Copiedk∗ . Otherwise, it outputs (Zi∗,k∗ , (ci∗,j,k∗)

n
j=1) and π̃i∗,k∗ and

terminates.

If the abort happens for (k∗, i∗), the reduction breaks simulation-extractability. Further, the reduc-
tion is PPT. With a union bound over all pairs pair (k∗, i∗), we get∣∣εA3 − εA4

∣∣ ≤ negl(κ).

Hybrid H5. We change how the winning condition is evaluated: concretely, recall that to evaluate
the winning condition, the game obtains a set Committee ⊆ [n] and tickets of the form ticketk =
(xk, rk, (Ti,k, γi,k)i∈ValidPrek) for all k ∈ Committee from the adversary. Then, it checks the winning
condition as explained in H0. Especially, it defines

idk = xk +
∑

i∈ValidPrek

Ti,k for every k ∈ Committee.

In H5, we instead define them as

idk = x̂k +
∑

i∈ValidPrek

T̂i,k,k for every k ∈ Committee.

To recall, the x̂k have been extracted in hybrid H2 and the T̂i,k,k have been extracted in hybrid
H4. We argue that if the outputs of H4 and H5 differ, then we can break the discrete logarithm
assumption via an efficient reduction. To see this, note that if the outputs differ, then there has to
be some k ∈ Committee such that:
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1. x̂k ̸= xk or T̂i,k,k ̸= Ti,k for some i ∈ ValidPrek, because the outputs differ.

2. gxkhrk = Xk and gTi,khγi,k = ci,k,k for all i ∈ ValidPrek, due to the winning condition, see H0.

3. gx̂khr̂k = Xk and gT̂i,k,khγ̂i,k,k = ci,k,k for all i ∈ ValidPrek, due to the aborts in H2 and H4.

From this, it is easy to see that an efficient reduction can find the discrete logarithm of h with
respect to basis g. By the discrete logarithm assumption, we get∣∣εA4 − εA5

∣∣ ≤ negl(κ).

Hybrid H6. We change the winning condition making it easier for A to win. Concretely, as part
of algorithm CES.VerElect, the game now no longer checks that gxkhrk = Xk and gTi,khγi,k = ci,k,k
for every i ∈ ValidPrek. What remains are the checks that k ∈ Active and that Pred(idk) = 1, where
idk is defined as in the previous hybrid. Note that H5 and H6 are not indistinguishable, but one can
easily see that if A wins in H5, then it also wins in H6 with at least the same probability. Thus,
we get

εA5 ≤ εA6 .

Hybrid H7. We change the winning condition again. Recall that until now, game outputs one if
|Committee| > B, Committee ⊆ Active, and Pred(idk) = 1 for all k ∈ Committee. We now make it
easier for the adversary: the game outputs 1 if |Committee∗| > B for

Committee∗ := {k ∈ Active | Pred(idk) = 1} ,

Again, these two hybrids are not indistinguishable, but it is easy to see that

εA6 ≤ εA7 .

Note what we have now achieved: the winning condition of the game can be evaluated as soon as
the adversary has sent its puzzles and the game extracted the tags T̂i,j,k as described in hybrid H4.
This is because the winning condition does not depend on the final output of the adversary any
more. Also, recall that the adversary has to send its puzzles in time ∆′ after receiving puzzle Z1.
Thus, hybrid H7 can be run in time

T(P̃S.Sim) + ∆′ + n ·T(P̃S.Ext) + t ≤ ∆

after puzzle Z1 is defined, where t is the negligible amount of time it takes to define the sets ValidPrek
and Copiedk, and to compute the size of Committee∗ given all relevant x̂k and T̂i,k,k. Our next goal
is to remove all information the adversary gets about the tags T1,j .
Hybrid H8. We change how the game computes the puzzle Z1. While so far the game has generated

Z1 := TLP.Gen(tlpar, (T1,j , γ1,j)
n
j=1; ρ1),

we now generate it as
Z1 ← TLP.Gen(tlpar,0),

were 0 is an all-zero string of appropriate length. We can bound the difference between hybrids H7

and H8 using the ∆-CPA security of TLP: a reduction would get tlpar from the ∆-CPA game and
simulate H7 for the adversary. To define Z1, the reduction would output (T1,j , γ1,j)

n
j=1 and 0 to the

∆-CPA game and get Z1 in return. Then, it would evaluate the winning condition and return the
result to the ∆-CPA game. This works because (1) we do not use ρ1 elsewhere in H7, due to the
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change introduced in hybrid H3, and (2) the online phase of the reduction, i.e., the time between
receiving Z1 and outputting the output of the game takes time at most ∆, as explained above. By
the ∆-CPA security of TLP, we get ∣∣εA7 − εA8

∣∣ ≤ negl(κ).

Hybrid H9. We change the commitments c1,j for j ∈ [n] that the game sends in the tag phase. So
far, these commitments have been generated as

γ1,j←$Zp, c1,j := gT1,jhγ1,j for all j ∈ [n].

From now on, the game samples them at random, i.e., c1,j←$G for all j ∈ [n]. Note that due to the
change in H3 and the previous hybrid, the values γ1,j are only used to generate these commitments
and not elsewhere. Hence, assuming h is a generator of G, the distribution does not change. We
get ∣∣εA8 − εA9

∣∣ ≤ 1

p
≤ negl(κ).

Hybrid H10. We change idk to random. Namely, while idk has been computed as idk = x̂k +∑
i∈ValidPrek T̂i,k,k for every k ∈ Active until now, this hybrid instead samples idk←$Zp for all

k ∈ Active. We claim that this is a purely conceptual change, i.e., the values idk are already uniform
and independent in H9. To see this, recall the definition of the sets Copiedk ⊆ ValidPrek from H4

and let Γk := |Copiedk| for every k ∈ Active. Then, in H9, we get

idk = x̂k +
∑

i∈ValidPrek

T̂i,k,k = x̂k + Γk · T1,k +
∑

i∈ValidPrek\Copiedk

T̂i,k,k.

By the changes we have made in hybrids H3,H8, and H9, the adversary obtains no information
about the T1,k’s and therefore x̂k, Γk, and all T̂i,k,k for i ∈ ValidPrek \ Copiedk are independent of
T1,k. In Zp, Γ(k) is invertible as 1 ≤ Γk < p, so all idk’s are uniform and independent.

Finally, we bound the probability εA10: observe that the game in hybrid H10 outputs 1 if
|Committee∗| > B (see H7), i.e., there are more than B parties k in Active such that Pred(idk) = 1.
Due to the changes in the previous hybrids, all idk are uniform and independent. Hence, we can
conclude the proof with

εA10 ≤ tail(P, n,B).

Remark 1. For conciseness, from now on we hide the terms depending on the proof system and on
computations independent of the time-lock puzzle by using the notation

∆(∆′) := T(P̃S.Sim) + ∆′ + n ·T(P̃S.Ext) + t, (2)

where t is the negligible amount of time it takes to define the sets ValidPrek and Copiedk, and to
compute the size of Committee∗ given all relevant x̂k and T̂i,k,k, as in the proof of Lemma 4. In
particular, this shifts the focus on needing to define ∆′, which is the time by which the adversary
needs to submit all its pretags.

We also note that T(P̃S.Sim) and T(P̃S.Ext) are independent of a round duration ∆r. The same
holds for the additional time t above. As such, we have that (∆(∆′) − ∆′)/∆r = O(1), i.e., the
extra time apart from ∆′ in (2) takes a constant number of rounds. Looking ahead, we will select
∆′ to take a number of rounds that is sublinear in n, such that an honest party solving a TLP with
difficulty ∆(∆′) will be able to obtain the solution in a sublinear number of rounds.
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3.5 Predicate Instantiation

We now instantiate the predicate Pred : Zp → {0, 1} and the committee bound B. To use the
previous two lemmata in a meaningful way, we need that tail(Pred, n,B) and bias(Pred, 0)n−t are
negligible in λ. We let Pred(ν) output 1 if and only if ν < boundϵ,δ, where

pmine := min

{
1,

1

ϵn
log

(
1

δ

)}
, boundϵ,δ := pmine · p.

Here, p denotes the size of the field Zp, pmine roughly corresponds to the probability of a party being
elected, ϵ is a constant in (0, 1) denoting the fraction of honest parties (i.e. t = (1− ϵ)n), and δ is a
failure probability. Below, we will focus on the case where δ = exp(−ω(log λ)) and log(δ−1) ≤ ϵn.7

Further, we define the committee bound B as

B :=

⌈
3

ϵ
log

(
1

δ

)⌉
= O(λ/ϵ).

For this choice of parameters, we show that tail(P, n,B) and bias(P, 0)n−t are both negligible in the
security parameter.

Lemma 5. Consider the predicate Pred defined as above. Then, it holds that

bias(Pred, 0)n−t ≤ δ ≤ negl(λ).

Proof. By definition, we have bias(Pred, 0) = 1− pmine. If pmine = 1, then bias(Pred, 0) = 0, so the
statement holds trivially. We now focus on the other case. From Bernoulli’s inequality (Lemma 1),
we get

bias(Pred, 0)n−t = (1− pmine)
ϵ·n ≤ exp(−ϵn · pmine) = exp(− log(δ−1)) = δ,

where the first inequality follows from Bernoulli’s inequality.

Lemma 6. Consider the predicate Pred and the committee bound B as above. Then, it holds that

tail(Pred, n,B) ≤ δ ≤ negl(λ).

Proof. Let Xi, i ∈ [n] be Bernoulli random variables, denoting the event that Pred(idi) = 1. Since
idi are chosen independently and uniformly, the Xi’s are independent and identically distributed
with Pr[Xi = 1] = pmine. In that notation, tail(Pred, n,B) = Pr[

∑
i∈[n]Xi > B]. The expected

value of X :=
∑

i∈[n]Xi is E[X] = n · pmine.

E[X] = n · pmine = n ·min

{
1,

1

ϵn
log
(
δ−1
)}

=

{
n if log

(
δ−1
)
> ϵn

1
ϵ log

(
δ−1
)

if log
(
δ−1
)
≤ ϵn

.

The first case is not interesting, since it corresponds to the case where the committee is as large as
the total number of parties. This motivates our assumption of δ above, namely log(δ−1) ≤ ϵn, so
we are in the second case. We continue with Chernoff’s inequality (Lemma 2).

Pr[X > (1 + ζ) · E[X]] ≤ exp

(
−ζ2 · E[X]

2 + ζ

)
= exp

(
− ζ2

2 + ζ
· 1
ϵ
· log

(
1

δ

))
∗
≤ exp

(
− log

(
δ−1
))

= δ,

7I.e., pick δ such that δ ≥ exp(−ϵn) and δ = exp(−ω(log λ)), which can be done if ϵn > log λ.
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where ∗ holds if
ζ2

2 + ζ
· 1
ϵ
≥ 1. (3)

We want to pick a ζ that satisfies (3) for any value of ϵ ∈ (0, 1) and from it, define B0 := (1+ζ)·E[X],
such that Pr[X ≥ B0] ≤ δ.

The roots of (3) are (ϵ−
√
ϵ2 + 8ϵ)/2 and (ϵ+

√
ϵ2 + 8ϵ)/2 and inequality holds outside of the

roots. Since ζ ≥ 0, we only need ζ ≥ (ϵ +
√
ϵ2 + 8ϵ)/2. To account for any value of ϵ ∈ (0, 1), we

choose to set

B0 =

(
1 +

ϵ+
√
ϵ2 + 8ϵ

2

)
· E[X] =

2 + ϵ+
√
ϵ2 + 8ϵ

2
· 1
ϵ
· log

(
1

δ

)
=

2 + ϵ+
√
ϵ2 + 8ϵ

2ϵ
· log

(
1

δ

)
≤ 6

2ϵ
· log

(
1

δ

)
=

3

ϵ
· log

(
1

δ

)
.

Since it holds that for B ≥ B0, Pr[X > B0] ≤ Pr[X > B] ≤ δ, we can choose an integer B from
the maximum value of B0. Thus, we get B = ⌈3 log

(
δ−1
)
/ϵ⌉, obtaining the value of B in the

statement.

4 Graded Committee Election

In this section, we introduce a committee election scheme that also accounts for inconsistent views
between parties. This committee election scheme will be composed of both algorithms and proto-
cols. The main difficulty of adapting the algorithms from Section 3 into protocols stems from the
inconsistent views of the committee of different honest parties. In more detail, the reader may recall
from the previous section that a party can decide if it is in the committee based on an “identity”,
composed of its secret key and a set of so-called pretags. Other parties can then be convinced of
the committee membership using a ticket provided by the party claiming membership. However, in
Section 3, we assumed that the winning party and the verifying party agree on the set of pretags
and on the winning party’s public key. In this section, we show how to achieve this. The challenge
in doing so is to deal with inconsistencies and to ensure that the process of distributing keys and
pretags terminates.

Informally, in our proposed solution, parties will share their pretags and keys via several ap-
plications of a gradecast protocol. Recall that at the end of a gradecast protocol, parties hold an
output they think corresponds to the sender’s input as well as a grade associated to this output.
Importantly, the grades that honest parties hold at the end of gradecast will quantify how much
confidence they have that their outputs coincide. In particular, grades greater than 1 certify that
honest parties have the same view on the input pretags and hence, on the identities used for election.

Throughout, we call our solution a graded committee election scheme (GCES). It consists of the
GCES.Gen protocol in Figure 1, which is a gradecast on the public keys, and the GCES.Toss protocol
in Figure 2, which can be seen as a parallel moderated gradecast on the pretags. The final part
of the graded committee election consists parties locally running CES.TryElect and CES.VerElect on
appropriate inputs.

4.1 Graded Consensus on Pretags and Keys

We give a step-by-step description of the protocols, beginning with a strawman construction.
Strawman Construction. In this strawman construction, parties engage in a parallel gradecast
protocol where each party inputs their pretags. At the end of the gradecast protocol, each party
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Pi outputs for each party Pj a pretag and a grade (pretags
(i)
j , g

(i)
j ). Here, we use the superscript to

denote the receiving party and the subscript to denote the sending party. This is sufficient for party
Pi to be able to run CES.TryElect. As a result, Pi may hold an evidence of election in the form of
ticketi. Let us now explore how other parties can verify that Pi is part of the committee. Party Pi

will multicast its ticket. A party Pj will retrieve from memory its result of the parallel gradecasts
and check if the pretags it has corresponding to Pi are also consistent with the ticket multicast by
Pi. In other words, it would run CES.VerElect, ignoring for now the input corresponding to Pi’s
public key. To see why this strawman solution fails, assume that both Pi and Pj are honest and
there is a malicious party Pk not following the protocol. If there is any pretag from Pk for which, at
the end of the gradecast, Pi outputs grade 1 and Pj outputs grade 0, then Pj will not agree with the
committee election claim of Pi. In other words, when using a single instance of parallel gradecasts,
the adversary has full power in causing honest parties to disagree in their views of the committee
membership.
Distributing Pretags using Moderated Gradecast. To address this, we update the strawman
construction with a second step of parallel gradecasts where parties moderate the values they received
in the first step. The final set of pretags of a moderator Pj from the point of view of a party Pi

will be thus made up of pretags that Pj gradecast itself in the first step, but also of pretags Pj

gradecasts from other parties in the second step. Moreover, moderators will have their final grade
penalized by the difference in the outputs of their moderated gradecast and the initial gradecast.
This ensures that a moderator who honestly gradecasts a value sent by a malicious initial sender
will not be penalized by more than 1 in its final grade. Thus, malicious parties with positive grades
cannot arbitrarily cause two honest parties to disagree on their views of the committee membership.
We call this protocol GCES.Toss and detail it in Figure 2.
Distributing Keys using Gradecast. The verification of election outcome does not only depend
on the pretags and on the ticket of a party claiming membership, but also on a public key shared
by that party in advance of sharing the pretags, as specified in CES.VerElect. Therefore, honest
parties need to also account for inconsistencies in their views of the adversary’s public keys, which
are critical in validating the result of the election. To this end, we specify that parties have to
also run a gradecast protocol for their public keys as an initial step, that we call GCES.Gen, see
Figure 1. Note that here, a single gradecast is sufficient for sharing the public keys, since each
public key describes a quantity originating from a single party and is used only in the election
(and verification) of that party. In contrast, the pretags from each party are used to determine the
election of each other party, i.e., parties are elected based on an aggregated string that depends
on quantities originating from all parties, and, as described previously, require more steps to build
trust in the output. For both GCES.Gen and GCES.Toss, parties first read the system parameters
par← CES.Setup(1κ). In our instantiation, these parameters are transparent.
Graded Election and Verification. After a party Pi runs GCES.Gen and (the first two steps
of) GCES.Toss, it can determine if it is part of the committee in the following manner. In partic-
ular, Pi will have the secret key ski and (pretags

(i)
j,i )j∈[n] =: (pretags

(i)
j )j∈[n], where for pretags the

notation is as follows: the superscript denotes the receiving party Pi, and the subscripts denote
the original sender Pj and the moderator Pi in this order (or only the original sender Pj when
there is a single subscript). Then, each party Pi will run CES.TryElect from Section 3 on input
(par, ski, (pretags

(i)
j )j∈[n]) and will output (res, ticket), where if res = 0, then ticket = ⊥, else res = 1

and ticket contains the evidence of election.
Note that the results from GCES.Gen and GCES.Toss are not necessarily identical for honest

parties with respect to the party they want to verify membership for. To address this, a ticket con-
taining the secret key and the tags obtained from solving the puzzle need to be multicast by each
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party claiming election.8 Here, multicasting the ticket is sufficient (in contrast to requiring grade-
cast), because honest parties already have the necessary commitments and proofs which they can
use to validate the received ticket. Therefore, parties use CES.VerElect from Section 3 to verify the
election result claimed by another party. Honest party Pi will have the graded outputs of GCES.Gen
and GCES.Toss, and will be able to check the validity of Pj ’s claimed membership upon receiving
ticket

(i)
j from Pj . Concretely, Pi will run CES.VerElect on input (par, pk

(i)
j , (pretags

(i)
k,j)

n
k=1, ticket

(i)
j )

and output a bit res ∈ {0, 1}, where res = 1 if Pj is a member of the committee from Pi’s perspective
and res = 0 otherwise.9

Details on Gradecast. In our constructions, we use the GC protocol for gradecast, described
in [21], with a maximum grade g∗. This GC protocol takes 2g∗ + 1 rounds and has O(g∗(κ+ ℓ)n2)
communication complexity for input messages of size ℓ. In the gradecast protocol instantiation,
each message sent by a party in a round also carries its signature. In GCES.Toss, we want to
ensure that when a party moderates a puzzle of a different party, it does not moderate a dif-
ferent puzzle than the one it truly received. To this end, each puzzle gradecast by party Pi

also carries the signature of Pi. In other words, in Step 1 in GCES.Toss, Pi gradecasts the
message (pretagsi, Sigi(pretagsi)), and in Step 2, Pi gradecasts the message (m

(i)
j ,Sigj(m

(i)
j )) :=

((pretags
(i)
j ,Sigj(pretags

(i)
j )),Sigi((pretags

(i)
j , Sigj(pretags

(i)
j )). To not burden the notation, we do

not explicitly write all these signatures everywhere.

GCES.Gen(par)

Step 0: Each party samples their key pair.

Pi runs (pki, ski)← CES.Gen(par).

Step 1: Each party gradecasts their key.

1. Pi calls GC(pki, g
∗).

2. Pi receives (pk
(i)
j , g̃

(i)
j ) from the gradecast with sender Pj , where pk

(i)
j is the public key of Pj

from the view of Pi and g̃
(i)
j is the associated grade.

Step 3: Each party outputs the public parameters, its local key pair and public keys and associated
grades for all other parties.

Pi outputs
(
(pki, ski), (pk

(i)
j , g̃

(i)
j )j∈[n]\{i}

)
.

Figure 1: The key generation and distribution protocol.

Round Complexity. The number of rounds of GCES.Gen is determined by running n-parallel
instances of GC, which is 2g∗+1 rounds. GCES.Toss takes 4g∗+2 rounds, determined by running n-
parallel instances of GC followed by n2-parallel instances of GC (termination is proved in Section 4.2).
Communication Complexity. Let CCGC(ℓ, κ, g

∗) denote the total communication complexity of
the gradecast protocol for a message size ℓ. The total communication complexity of GCES.Gen is
CCGC(κ, κ, g

∗) = O(g∗ · κ · n2), assuming the size of a signature, a public key Xi and a proof πi is
O(κ). Assuming the size of a signature and a commitment (there are n of them) is O(κ) and the size
of a puzzle on n tags and of the corresponding proof is O(κn), the total communication complexity

8As mentioned in Section 3, we aim for each party to only have to solve a single batch puzzle, namely, its own
(done in CES.TryElect). Otherwise, given that solving a batch puzzle is a sequential action, evaluating n distinct
batch puzzles would automatically refute the claim of a sublinear number of rounds. Multicasting the ticket which
contains the solved puzzle thus resolves this issue.

9Note that Pi does not need to check here again whether pretags(i)i,j = pretagsi; we will only be interested in verifying
membership claims coming from parties with a positive grade, which means this check at Pi already happened.
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GCES.Toss(par)

Step 0: Each party generates their pretags.

pretagsi ← CES.Prepare(par).

Step 1: Each party gradecasts their pretag.

1. Pi calls GC(pretagsi, g
∗).

2. Pi receives from gradecast from sender Pj (pretags
(i)
j , g

(i)
j ), where g

(i)
j is the grade.

Step 2: Each party acts as moderator.

1. For each j ∈ [n] \ {i} for which Pi participated in a gradecast with sender Pj , let m
(i)
j :=

(pretags
(i)
j , Sigj(pretags

(i)
j )).

2. Pi calls GC(m
(i)
j , g∗), for all j ∈ [n] \ i.

3. Pi outputs (m
(i)
k,j , g

(i)
k,j), for each moderator Pj and for each initial sender Pk, k ∈ [n] \ {j}

where m
(i)
k,j contains the puzzle, commitments and proof gradecasted by Pj for Pk, and g

(i)
k,j is

the respective grade.a

Step 3: Each party decides its output value and grade for each moderator.

1. Pi sets for each moderator Pj and initial sender Pk the pretag: pretags
(i)
k,j = (Z

(i)
k,j , C

(i)
k,j , π

′(i)
k,j) ∈

m
(i)
k,j .

b

2. Pi sets for each moderator Pj and initial sender Pk the grade:

G
(i)
k,j =

{
g
(i)
k,j , if pretags(i)k,j = pretags

(i)
k ,

min{g(i)k,j , g
∗ − g

(i)
k } , otherwise.

3. Pi sets its general grade for each moderator Pj as G
(i)
j := mink∈[n]{G(i)

k,j} and outputs for each
j ∈ [n]: ((pretags

(i)
k,j)

n
k=1, G

(i)
j ).

aThe notation is as follows: the superscript denotes which party receives/observes the value, in
this case Pi. The subscripts denotes the order of relays. In this case it is k, j, since moderator Pj

relays a value sent by party Pk in the first step.
bWe use the membership operator here to obscure the signatures that were part of m(i)

k,j .

Figure 2: GCES.Toss protocol (or Parallel Moderated Gradecast).

of GCES.Toss for n parties with inputs of length O(κn) is n2 · CCGC(κn, κ, g
∗) = O(g∗κn5). Using

gossiping for the parallel moderated gradecast as in [39], one can reduce the total communication
complexity of GCES.Toss to Õ(g∗κn4).

In the remainder of this section, we analyze the agreement and security properties of GCES.
In particular, Section 4.2 proves that the two protocols, GCES.Gen and GCES.Toss, terminate with
outputs for honest parties satisfying a graded form of consensus over the quantities of interest,
the public keys and the pretags. These properties are then used in Section 4.3 and Section 4.4 to
prove that an adversary has only limited influence on the resulting committee in terms of size and
composition.

4.2 Agreement Properties

Note that GCES.Gen is essentially a parallel gradecast protocol, so for each of the gradecast instances,
the properties from Definition 9 are trivially satisfied. We now show that GCES.Toss satisfies
some generalized properties of the moderated gradecast protocols, namely Graded Validity, Graded
Agreement and Termination, defined in the subsequent lemmata.
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We first start with some helper results. Consider one moderator Pj and one sender Pi running
the subprotocol in Figure 2 starting from Step 1. We show that this is an instance of a moderated
gradecast protocol, which we call Mod-GC(pretagsi), which satisfies Validity, M-validity, Soundness
and Termination against an adaptive adversary controlling t ≤ (1− ϵ)n parties.

Proposition 1. Let a1, b1, a2, b2, g such that |a1−a2| ≤ 1, |b1− b2| ≤ 1 and g ≥ max{a1, a2, b1, b2}.
Let Gi = min{ai, g − bi}, for i = 1, 2. Then, |G1 −G2| ≤ 1.

Proof. We have the following cases:
Case 1. a1 ≤ g − b1 and a2 ≤ g − b2. Then |G1 −G2| = |a1 − a2| ≤ 1.
Case 2. g − b1 ≤ a1 and g − b2 ≤ a2. Then |G1 −G2| = |g − b1 − (g − b2)| = |b2 − b1| ≤ 1.
Case 3. g−b1 ≤ a1 and a2 ≤ g−b2. Then |G1−G2| = |g−b1−a2|. Notice that a2+b2 ≤ g ≤ a1+b1,
so b2 − b1 ≤ g − b1 − a2 ≤ a1 − a2. Both the lower and upper bound can take values in [−1, 1],
which constrains |G1 −G2| = |g − b1 − a2| ≤ 1.
Case 4. a1 ≤ g − b1 and g − b2 ≤ a2. This mirrors case 3.

Lemma 7. (Moderated Gradecast) Let Mod-GC be the subprotocol in Figure 2 from Step 1 to Step
3.2, for a single pair of sender Pi and moderator Pj. Then, Mod-GC is a moderated gradecast
protocol as in Definition 10.

Proof. We show that Mod-GC satisfies validity, M-validity, soundness, and termination.

Validity and M-validity : Let Pm be the honest moderator and let Pj be an honest party. Pm

will gradecast the value obtained from sender Pi correctly, thus g
(j)
i,m = g∗. If Pi is also honest,

then pretagsi = pretags
(j)
i = pretags

(j)
i,m, which implies G

(j)
i,m = g∗. Thus, all honest parties Pj

output the same tuple (pretagsi, g
∗), and validity holds. However, if Pi is dishonest, then it could

be that pretags
(j)
i ̸= pretags

(j)
i,m. If that is the case, then Pi gradecasts different values to Pm and

Pj in Step 1, so from the consistency of GC we have g
(j)
i ≤ 1. Therefore, honest party Pj has

G
(j)
i,m = min{g(j)i,m, g∗ − g

(j)
i } ≥ g∗ − 1. Finally, since Pm is honest, all honest parties receive (and

output) the same message from Pm, pretags(j)i,m = pretags
(m)
i , and M-validity holds.

Soundness: For any moderator Pm and a sender Pi, let Pj , Pk be two honest parties obtaining
(pretags

(j)
i,m, G

(j)
i,m) and (pretags

(k)
i,m, G

(k)
i,m) respectively. We have the following cases:

Case 1. pretags
(j)
i,m = pretags

(j)
i and pretags

(k)
i,m = pretags

(k)
i . Then, G(j)

i,m = g
(j)
i,m and G

(k)
i,m = g

(k)
i,m,

which originate both from the same gradecast and thus, by the soundness of GC, |G(j)
i,m−G

(k)
i,m| ≤ 1.

If both G
(j)
i,m, G

(k)
i,m are greater or equal to 1, then by GC soundness pretags

(j)
i,m = pretags

(k)
i,m.

Case 2. pretags
(j)
i,m = pretags

(j)
i and pretags

(k)
i,m ̸= pretags

(k)
i . Then, G(j)

i,m = g
(j)
i,m and G

(k)
i,m =

min{g(k)i,m, g∗ − g
(k)
i }. Also, either g

(k)
i,m ≤ 1 or g

(m)
i ≤ 1, since one of the two gradecasts has two

honest parties outputting different messages. Therefore,

- if g
(k)
i,m ≤ 1, then G

(k)
i,m ≤ 1 and by GC soundness, |g(j)i,m − g

(k)
i,m| ≤ 1. There are two subcases.

Subcase 1): g
(k)
i,m = G

(k)
i,m, which immediately implies |G(j)

i,m − G
(k)
i,m| ≤ 1. If both G

(j)
i,m, G

(k)
i,m are

greater or equal to 1, then by the moderator’s GC soundness pretags
(j)
i,m = pretags

(k)
i,m. Subcase 2):

g
(k)
i,m = 1 and G

(k)
i,m = 0, meaning that g

(k)
i = g∗. By the initial GC soundness, we also have

g
(j)
i ∈ {g∗ − 1, g∗} and pretags

(j)
i = pretags

(k)
i . To obtain |G(j)

i,m − G
(k)
i,m| ≤ 1, we need to show it

cannot hold that g(j)i,m = 2. If g(j)i,m = 2, then pretags
(k)
i,m = pretags

(j)
i,k , which is also equal to pretags

(j)
i ,

contradicting the assumption that pretags
(k)
i,m ̸= pretags

(k)
i .
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- if g
(k)
i ≤ 1, then there are again two subcases. Subcase 1): g

(k)
i,m = g∗, in which case G

(k)
i,m ∈

{g∗ − 1, g∗} and G
(j)
i,m ∈ {g∗ − 1, g∗} and by the moderator’s GC soundness, pretags(j)i,m = pretags

(k)
i,m.

Subcase 2): g
(k)
i,m ≤ g∗ − 1, in which case G

(k)
i,m = g

(k)
i,m, and by GC soundness, it holds that |G(j)

i,m −
G

(k)
i,m| ≤ 1, as well as that if both G

(j)
i,m, G

(k)
i,m are greater or equal to 1, then pretags

(j)
i,m = pretags

(k)
i,m.

Case 3. pretags
(j)
i,m ̸= pretags

(j)
i and pretags

(k)
i,m ̸= pretags

(k)
i . Then G

(j)
i,m = min{g(j)i,m, g∗ − g

(j)
i }

and G
(k)
i,m = min{g(k)i,m, g∗−g

(k)
i }, and we can use Proposition 1 to get that |G(j)

i,m−G
(k)
i,m| ≤ 1. If both

G
(j)
i,m, G

(k)
i,m are greater or equal to 1, then following the soundness of the appropriate GC instance

in the four cases in Proposition 1, i.e., the sender’s or the moderator’s, we obtain pretags
(j)
i,m =

pretags
(k)
i,m.

To finish the proof of soundness for Mod-GC, we need to consider the case where where G
(j)
i,m = 1

and pretags
(j)
i,m ̸= pretags

(k)
i,m. Then, by the soundness property of GC for sender Pm gradecasting

its value pretags
(m)
i , we know that pretags

(j)
i,m ̸= pretags

(k)
i,m implies g

(j)
i,m = 0 or g

(k)
i,m = 0. Assume

g
(k)
i,m ̸= 0, then g

(j)
i,m = 0 which would lead to G

(j)
i,m = 0, contradiction. Thus, G(k)

i,m = 0 and the proof
is complete.

Termination: Each honest party generates a value and an accompanying grade for every moder-
ator, by construction, regardless of the adversary’s behaviour.

We are now ready to prove the properties of the GCES.Toss protocol.

Lemma 8 (Graded Validity of GCES.Toss). If party Pj is honest, then every honest party Pi outputs
((pretags

(i)
k,j := pretags

(j)
k )nk=1, G

(i)
j ) for G

(i)
j ∈ {g∗ − 1, g∗}.

Proof. Since each Mod-GC instance called by an honest moderator Pj achieves M-validity, it holds
that for any honest moderator Pj , any honest party Pi outputs (pretags

(j)
k , G

(i)
k,j) for any sender Pk,

with G
(i)
k,j ∈ {g

∗, g∗ − 1}. This implies that all honest parties will also have G
(i)
j ∈ {g∗, g∗ − 1}.

Finally, all honest parties form their output strings with all pretags(j)k for k ∈ [n] since all associated
grades are strictly positive when the moderator is honest. Again, by M-validity of Mod-GC, another
honest party Pm will have pretags

(m)
k,j = pretags

(j)
k for all k ∈ [n], implying the result for any honest

moderator Pj .

Lemma 9 (Graded Agreement of GCES.Toss). If Pi, Pj are two honest parties outputting
((pretags

(i)
k,m)nk=1, G

(i)
m ) and ((pretags

(j)
k,m)nk=1, G

(j)
m ), respectively, for any Pm, then it holds that |G(i)

m −
G

(j)
m | ≤ 1. Moreover, if G(i)

m > 1, then pretags
(i)
k,m = pretags

(j)
k,m, for all k ∈ [n], otherwise if G(i)

m = 1,

then either pretags
(i)
k,m = pretags

(j)
k,m, for all k ∈ [n], or G

(m)
j = 0.

Proof. Let α such that mink∈[n]{G
(i)
k,m} = G

(i)
α,m. Similarly, let β such that mink∈[n]{G

(j)
k,m} = G

(j)
β,m.

Suppose without loss of generality that G
(j)
β,m ≥ G

(i)
α,m. This implies also that G

(j)
α,m ≥ G

(i)
α,m, since

otherwise, G(j)
α,m < G

(j)
β,m, contradiction. Then, |G(j)

m −G
(i)
m | = |mink∈[n]{G

(j)
k,m}−mink∈[n]{G

(i)
k,m}| =

|G(j)
β,m − G

(i)
α,m| = G

(j)
β,m − G

(i)
α,m ≤ G

(j)
α,m − G

(i)
α,m = |G(j)

α,m − G
(i)
α,m| ≤ 1, from the soundness part of

Lemma 7.
If both G

(i)
m , G

(j)
m are greater or equal to 1, then all G(i)

k,m ≥ 1 and G
(j)
k,m ≥ 1 and then by the

soundness of Mod-GC, it holds that for all parties Pk, pretags
(i)
k,m = pretags

(j)
k,m. To finish the proof,
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consider a case where G
(i)
m = 1 and some there exists some k ∈ [n] for which pretags

(i)
k,m ̸= pretags

(j)
k,m.

Thus, from the soundness of Mod-GC, G(i)
k,m = 0 or G

(j)
k,m = 0. Assume G

(j)
k,m ̸= 0, then G

(i)
k,m = 0

which would lead to G
(i)
m = 0, contradiction. Thus, G(j)

k,m = 0, meaning that G(j)
m = 0 and the proof

is complete.

Lemma 10 (Termination of GCES.Toss). After running GCES.Toss, any honest party Pi terminates
with output ((pretags(i)k,j)

n
k=1, G

(i)
j ) for every j ∈ [n].

Proof. This follows immediately from the termination of all Mod-GC instances and the fact that the
sampling in Step 0 is guaranteed to return a result.

We will need to use the fact that all honest tags have to be present in the adversary’s identity id
in order to be eligible for election. To this end, we prove that each value to which an honest party
associates a strictly positive grade correctly uses the tags from the honest parties.

Lemma 11. If a party Pj is graded as G
(i)
j ≥ 1 by an honest party Pi in Toss, then pretags

(i)
k,j

contains the puzzle pretagsk from each honest party Pk.

Proof. Recall that the final grade for a party Pj is set by honest party Pi as G(i)
j = mink∈[n]{G

(i)
k,j}.

The fact that G
(i)
j ≥ 1 means that for all k ∈ [n], G(i)

k,j ≥ 1. For each index k corresponding to an

honest party Pk, it means that honest party Pi has observed pretags
(i)
k,j = pretags

(i)
k , which implies

that the honest value pretags
(i)
k = pretagsk was included in G

(i)
j . To see why party Pi could not have

observed pretags
(i)
k,j ̸= pretags

(i)
k and set G

(i)
k,j = min{g(i)k,j , g

∗ − g
(i)
k } > 0, note that since g

(i)
k = g∗,

the rule from Step 3 in Protocol 2 specifies that G
(i)
k,j = 0.

Using the agreement properties we have now shown, we will show security properties of the
committee elected via the process described in Section 4.1. These properties mirror those of the
committee games from Section 3. Specifically, recall that in Section 3, we did not explicitly discuss
different committee views for the honest parties. In the current section, since two different honest
parties might hold different views on the pretags and public keys that define the committee, we
explicitly consider each party’s committee view separately. Recall that the properties we need are
that (i) the adversary cannot corrupt the entire committee and (ii) the adversary cannot elect more
than B parties in the committee. For the moment, we only prove these properties for parties with
a strictly positive grade assigned. Later, we will ensure that the views of different honest parties
regarding the committee are aligned during the broadcast protocol for all grades’ values.

4.3 Graded Committee Corruption Game

The graded committee corruption game is executed between n parties. We can think of it as an
extension of the committee corruption game (see Section 3.3), differing in two major ways; 1) the
previous use of the public bulletin-board for anything else than signing keys and the common view
assumption at the challenger are replaced by different flavors of gradecast, which leads to: 2) each
party has a different view of whether another party is in the committee or not. The current game
aims to capture that all honest parties still have consistent views about the honest committee
members, leading to the equivalent of Lemma 3 in this setting. The graded committee corruption
game is defined as follows:
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1. Corruptions. A can corrupt a party at the beginning of any round of the simulated protocols;
before the game simulates a round, A can select additional parties to corrupt. Throughout,
the game simulates all honest parties and queries A during the respective steps of the protocol
for the actions of dishonest parties.

2. Setup. The game and A execute protocol GCES.Gen(par). As a result, for each honest party
(at that time) Pi the game obtains

(
(pki, ski), (pk

(i)
j , g̃

(i)
j )j∈[n]\{i}

)
.

3. Toss phase. The game and A execute protocol GCES.Toss(par). As a result, for each hon-
est party (at that time) Pi the game obtains ((pretags

(i)
k,j)k∈[n], G

(i)
j )j∈[n], where pretags

(i)
j :=

pretags
(i)
j,i for each j ∈ [n].

4. Winning Condition. A wins the game if no honest party is elected unanimously :

(a) Let Hon∗ be the set of remaining honest parties.

(b) The game runs (resk, ticketk) ← CES.TryElect(par, skk, (pretags
(k)
i )i∈[n]) for each honest

party Pk.

(c) The game defines the set of honest committee members as

HonComm :=

k ∈ Hon∗

∣∣∣∣∣∣ resk = 1 ∧ ∀i ∈ Hon∗ :
(
g̃
(i)
k = g∗ and G

(i)
k ≥ g∗ − 1

)
∧(

CES.VerElect(par, pk
(i)
k , (pretags

(i)
j,k)j∈[n], ticketk) = 1

) .

(d) The game outputs 1 if HonComm = ∅. Otherwise, it outputs 0.

Intuitively, if the graded committee corruption game outputs 0, then it is guaranteed that at least
one honest party will be in the committee and can convince any honest party that it is in the
committee by sharing its ticket. We now show that this is the case for efficient adversaries.

Lemma 12. Assume that the conditions for Lemmata 3 and 5 hold. Assume also that GC is a g∗-
gradecast protocol for n parties with corruption threshold t (see Definition 9). Then, the probability
that the graded committee corruption game outputs 1 is at most negl(κ) + negl(λ).

Proof. Let A be a PPT adversary and εA denote the probability that the graded committee cor-
ruption game outputs 1. We aim to upper bound εA. We do so by providing a sequence of hybrid
games. For each hybrid Hi, we denote the probability that it outputs 1 when run with adversary
A by εAi .
Hybrid H0. With this we denote the graded committee corruption game. Therefore, by definition

εA = εA0 .

Hybrid H1. We change setup, i.e., how the public keys are distributed. Specifically, recall that
until now, the game would run (pki, ski) ← CES.Gen(par) for each honest party Pi, and then run
a gradecast, i.e., party Pi would call GC(pki, g

∗). Then, each honest party Pi would receive an
output (pk

(i)
j , g̃

(i)
j ) from the gradecast with sender Pj . Now, in H1, we directly set pk

(i)
j := pkj and

g̃
(i)
j := g∗ for honest sender Pj and honest receiver Pi. By gradecast’s validity property, we get

εA0 = εA1 .
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Hybrid H2. We change how HonComm is defined. Recall that so far, this set has been defined as

HonComm :=

k ∈ Hon∗

∣∣∣∣∣∣ resk = 1 ∧ ∀i ∈ Hon∗ :
(
g̃
(i)
k = g∗ and G

(i)
k ≥ g∗ − 1

)
∧(

CES.VerElect(par, pk
(i)
k , (pretags

(i)
j,k)j∈[n], ticketk) = 1

) .

From H2 on, we instead define HonComm as

HonComm :=
{
k ∈ Hon∗

∣∣∣ resk = 1 ∧ CES.VerElect(par, pkk, (pretags
(k)
j )j∈[n], ticketk) = 1

}
.

We claim that the two definitions are equivalent for these two hybrids. Indeed, if k ∈ HonComm
in H2, then trivially k ∈ HonComm in H1. Conversely, assume that k ∈ HonComm in H1, so, by
definition, Pk is honest. Due to the change in H1, we know that for all honest parties Pi, it holds
that g̃

(i)
k = g∗ and pk

(i)
k := pkk. From the graded validity property (see Lemma 8), we get that

for an honest moderator Pk, the game obtains with respect to each honest receiver Pi the values
(pretags

(i)
j,k)j∈[n] = (pretags

(k)
j )j∈[n] and G

(i)
k ≥ g∗ − 1. Thus, k ∈ HonComm in H2. So, we have

εA1 = εA2 .

Reduction to the Committee Corruption Game. Finally, one can easily bound εA2 via a
reduction to the committee corruption game of Lemma 3. We sketch the reduction:

1. The reduction gets as input from the committee corruption game par ← CES.Setup(1κ). It
then starts to simulate hybrid H2 for A. After A made its initial corruptions, the reduction
declares the set of initially corrupted parties to the committee corruption game.

2. The reduction gets from the committee corruption game a public key pki for every honest
party Pi and uses them to simulate the setup of H2. It also gets access to a corruption oracle,
which it uses whenever A decides to corrupt a party.

3. Recall that in the tag phase of the committee corruption game, the reduction has to output
n2 pretags. To do so, the reduction runs the toss phase of the graded committee corruption
game. Then, for each honest Pk, the reduction outputs pretags

(k)
i for each j ∈ [n], and for

each other k ∈ [n] it outputs some default values. Note that these are not relevant for the
committee corruption game.

The reduction perfectly simulates H2 for A and is efficient. Further, the committee corruption game
outputs 1 whenever H2 does, which is primarily due to the change in H2. Then, via Lemmata 3
and 5, we obtain that

εA2 ≤ negl(κ) + negl(λ).

4.4 Graded Large Committee Game

The graded large committee game is executed between n parties. It extends the large committee
game from Section 3.4, where, similarly to Section 4.3, honest parties might have different views on
whether a party is in the committee. The current game captures that even so, the adversary cannot
select—within an acceptable time frame depending on the difficulty parameter of the puzzles—
pretags such that the committee exceeds size B in the view of any honest party. The difficulty
parameter of the puzzles should be determined by the first two steps of GCES.Toss, which correspond
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to two sequential runs of GC with grade g∗. In particular, let ∆′ = (4 ·g∗+2) ·∆r be the duration of
these steps. Then, the difficulty of the puzzle is ∆(∆′) as in Remark 1. The graded large committee
game is formally written as follows:

1., 2., 3. The same steps as in the graded committee corruption game.

4. Winning Condition. A wins the game if there exists an honest party Pi for which too many
parties are elected in its view:

(a) Let Hon∗ be the set of remaining honest parties.

(b) The game runs A and gets, for every i ∈ Hon∗, a set Committee(i) ⊆ [n] and ticket
(i)
j for

all j ∈ Committee(i).
(c) The game outputs 1 if the following two conditions hold for at least one i ∈ Hon∗:

i. We have |Committee(i)| > B.
ii. For all j ∈ Committee(i), it holds that:

g̃
(i)
j ≥ 1, G

(i)
j ≥ 1, and CES.VerElect(par, pk

(i)
j , (pretags

(i)
k,j)k∈[n], ticket

(i)
j ) = 1.

Otherwise, the game outputs 0.

Lemma 13. Assume that the conditions for Lemmata 5 and 6 hold. Assume also that GC is a
g∗-gradecast protocol for n parties with corruption threshold t (see Definition 9). Finally, assume
that the conditions for Lemma 4 hold, where TLP is ∆(∆′)-CPA secure, for ∆′ := (4 · g∗ + 2) ·∆r.
Then, the probability that the graded large committee game outputs 1 is at most negl(κ) + negl(λ).

Proof. Let A be a PPT adversary and εA denote the probability that the graded large committee
game outputs 1. We aim to upper bound εA. We do so by providing a sequence of hybrid games.
For each hybrid Hi, we denote the probability that it outputs 1 when run with adversary A by εAi .
Hybrid H0. With this we denote the graded large committee game. Therefore, by definition

εA = εA0 .

Hybrid H1. We change setup, i.e. how the public keys are distributed. Specifically, recall that in
the previous hybrid, for each honest party Pi, the game runs (pki, ski)← CES.Gen(par) and then a
gradecast in which party Pi calls GC(pki, g

∗). Then, each honest party Pi would receive an output
(pk

(i)
j , g̃

(i)
j ) from the gradecast with sender Pj . Now, in H1, the game directly sets pk

(i)
j := pkj and

g̃
(i)
j := g∗ for honest Pi and Pj . Further, for each dishonest sender Pj at that point Pj , recall that

honest party Pi obtains (pk(i)j , g̃
(i)
j ) from the gradecast. The game outputs 0 if the values and grades

do not satisfy the soundness property of Definition 9. Therefore, assuming hybrid H1 outputs 1,
we know that for each such j, we are in one of the following three cases:

• For every honest pair Pk, Pl and dishonest party Pj it holds that pk
(k)
j = pk

(l)
j =: pkj , or

• there is at least one honest party Pk for which g̃
(k)
j = 1. In this case, fix the minimal such k

and set pkj := pk
(k)
j . We know that for every honest party Pl for which pk

(l)
j ̸= pk

(k)
j it holds

that g̃
(l)
j = 0; or

• we have g̃
(k)
j = 0 for every honest party Pk. In this case, note that Pj cannot be part of any

winning committee. For convenience, let pkj be a default public key in this case.
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For the first and second cases, for every honest party Pi and dishonest party Pj we set pk
(i)
j = pkj

and g̃
(i)
j = 1. The new game is not indistinguishable from H0 but is at least as likely to output 1,

since it defines a superset of cases that satisfy the winning condition. Therefore,

εA0 ≤ εA1 .

Hybrid H2. We now equalize the honest parties’ view on honestly generated pretags: Assuming
that hybrid H1 outputs 1, then for any honest party Pk, we can observe (via Lemma 11) that for
any moderator Pl (honest or dishonest) one of the following holds, where pretagsk denotes the value
that the game generates when executing Step 1 of GCES.Toss with respect to honest party Pk:

• For any pair of honest parties Pi, Pj , we have pretags
(i)
k,l = pretags

(j)
k,l = pretagsk. In that case,

set pretagsk,l := pretagsk; or

• For any honest party Pi for which pretags
(i)
k,l ̸= pretagsk, it holds that G

(i)
l = 0. In this case,

note that Pl cannot be part of winning committee Committee(i).

We set for all honest parties Pi, Pk and all moderators j: pretags
(i)
k,j = pretagsk and reset G

(i)
j = 1,

if G(i)
j was 0 before. This new game is not necessarily indistinguishable from the previous, but is at

least as likely to output 1 (previous winning pretags are still winning now). So, we have

εA1 ≤ εA2 .

Hybrid H3. We now equalize the honest parties’ view on pretags coming from dishonest parties.
Therefore, note that assuming hybrid H2 outputs 1, we know that for any dishonest party Pk and
moderator Pl one of the following holds:

• For any pair of honest parties Pi, Pj , we have pretags
(i)
k,l = pretags

(j)
k,l . In that case, set

pretagsk,l := pretags
(i)
k,l; or

• There is at least one honest party Pi for which G
(i)
k,l = 1. In this case, fix the minimal such

i and set pretagsk,l := pretags
(i)
k,l. We know from the soundness property in Lemma 7 that

for every honest party Pj for which pretags
(j)
k,l ̸= pretagsk,l it holds that G

(j)
k,l = 0 and thus

G
(j)
l = 0; or

• We have G
(i)
l = 0 for every honest party Pi. In this case, note that Pl cannot be part of any

winning committee.

For the first and second cases, for all honest parties Pi and all moderator j, we set pretags
(i)
k,j =

pretagsk,j and G
(i)
j = 1. This new game is not indistinguishable from the previous one, but is at

least as likely to output 1 (previous winning pretags are still winning now). So, we have

εA2 ≤ εA3 .

Hybrid H4. We change the winning condition. Recall that the winning condition before was the ex-
istence of i ∈ Hon∗ such that (1) ∀j ∈ Committee(i): CES.VerElect(par, pk(i)j , (pretags

(i)
k,j)k∈[n], ticket

(i)
j )

= 1 and g̃
(i)
j ≥ 1, G(i)

j ≥ 1, and (2) |Committee(i)| > B. Now we set the game to output 1 if there
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exists i ∈ Hon∗: (1) ∀j ∈ Committee(i): CES.VerElect(par, pkj , (pretagsk,j)k∈[n], ticket
(i)
j ) = 1, and

(2) |Committee(i)| > B. By our previous changes, all grades are set to 1 in H3 and all pretags are
equalized for the honest parties, the two hybrids are equivalent. Thus, we have

εA3 = εA4 .

Reduction to the Large Committee Game. One can clearly bound εA4 via a reduction to the
large committee game of Lemma 4. The reduction internally simulates hybrid H4 for the adversary,
and its goal is to win in the large committee game. We sketch the reduction below.

1. The reduction samples a random party and starts simulating hybrid H4 for the adversary as
explained below. If at point this party is corrupted, the reduction aborts. For convenience,
we denote this party as P1, to match the notation of the large committee game.

2. The reduction gets as input from the large committee game par← CES.Setup(1κ). Recall that
it has to output public keys pki for every i ∈ [n]. To do so, the reduction simulates the setup
of hybrid H4 for the adversary. Note that due the change in hybrid H1, pki is defined for
every i ∈ [n]. The reduction outputs these pki.

3. In the tag phase of the large committee game, the reduction gets as input pretags1 and has to
output n · (n− 1) pretags, within bounded time ∆′ = (4 · g∗ +2) ·∆r. To do so, the reduction
runs the toss phase of the graded large committee game, rigged with pretags1 specifically for
P1. Recall that the toss phase incurs exactly the execution of GCES.Toss(par), which takes
4 ·g∗+2 rounds, where each round consists of ∆r timesteps. Therefore, the reduction receives
the outcome of GCES.Toss(par) within (4 · g∗ + 2) ·∆r = ∆′ time. Then, for each party Pk,
for all k ∈ [n], the reduction outputs

(a) pretagsi,k = pretagsi for each i ∈ [n] \ {1} that is honest (per hybrid H2) and
(b) pretagsj,k according to hybrid H3 for each dishonest party Pj .

4. Finally, the reduction has to output Committee and a ticket ticketk for all k ∈ Committee.
To do so, the reduction continues running the adversary until it outputs Committee(1) and
tickets ticket(1)k for all k ∈ Committee(1). The reduction simply sets and outputs Committee :=

Committee(1) and ticketk := ticket
(1)
k .

Clearly, the reduction is PPT, and as already explained, it satisfies the time constraints of the large
committee game. Further, perfectly simulates H4 for A assuming it guessed correctly and does not
abort. If H4 outputs 1, then there is at least one honest party for which the winning condition
of the large committee game holds. As the view of the adversary does not depend on the guessed
party, we get εA4 ≤ nε′, where ε′ is the probability that the reduction wins the large committee
game. By Lemmata 4 and 6, we get

εA4 ≤ nε′ ≤ negl(κ) + negl(λ).

5 Our Broadcast Protocol

We now construct our sublinear broadcast protocol. Our protocol follows the committee-based
protocol of Chan et al. [10]. The main difference is that we do not assume a trusted setup of keys
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and of public parameters. Instead, parties rely on a bulletin-PKI (only for the signature public
keys), an unstructured common random string, and a graded protocol, which generates keys and
tags, and can be seen as an online setup phase that issues graded random identifier strings and
proofs of the validity of these identifiers. These identifiers are then used to correctly and verifiably
elect bit-specific committees. We need bit-specific committees instead of a single committee to
prevent the adaptive adversary from corrupting a party who voted for one bit and make it also vote
for the other bit.

However, we do not exactly obtain the equivalent of a trusted setup from Section 4, as the
only guarantees that parties have are related to the grades of these random strings, where the
maximum grade is denoted as g∗ and the minimum grade can be 0. This can be seen as a graded
mining functionality, with the terminology of mining from Chan et al. [10], taken to mean consistent
committee election and membership verification. Below, we describe how to use the grades to our
advantage over a number of rounds, in order to obtain true agreement between parties.

5.1 Voting and Vote Distribution

Let us first review in more detail the broadcast protocol of Chan et al.: a party checks if it is in
the committee for the bit b via an (ungraded) ideal mining functionality, which also allows other
parties to validate this statement. This mining functionality is instantiated via an adaptively se-
cure VRF (in [10] implemented with non-interactive zero-knowledge proofs with trusted setup and
commitment schemes). This enables parties to secretly but verifiably self-elect in a committee for a
specific bit and only reveal their membership after they have performed their committee task, thus
achieving security against an adaptive adversary. The protocol is composed of stages, each stage r
having two rounds: distribution and voting. For a fixed number of rounds, each party observing
a batch of r valid signatures from the committee members of b, which can be interpreted as votes,
echoes this batch to all parties (distribution round). A party that is in the committee adds its vote
if it observes a batch of r votes on the bit b for the first time, and multicasts the updated batch
of r + 1 signatures (voting round). Chan et al. show that it is possible to achieve consistency with
overwhelming probability even if the number of rounds is constant and the committee size is also
constant, against a constant corrupted fraction.

In our case, there is a key difference with respect to the mining functionality from Chan et al.,
which is that the verification performed by other parties on the membership of one party will return
a binary answer and a grade in {0, . . . , g∗}. This mining functionality does not necessarily return
the same grade to all parties, but the returned grades to two honest parties can differ by at most
one. However, dishonest parties might try to convince honest parties to accept their membership
despite having lower grades. To address this, we will interconnect the validity of the membership at
a given round with the grade associated to the party that wants to prove is a committee member,
such that the parties in which the honest parties do not have confidence can only vote in the very
last round or not at all. Specifically, we set the maximum grade g∗ that can be returned by the
gradecast protocols to be equal to the number of rounds the Chan et al. protocol requires. We also
say that a batch of r signatures is valid only if there are r signatures from parties on which the
verification predicate returns 1 and which have a sufficiently large grade, greater than g∗−2r+1 (we
will define this more formally below). A symmetric way to view this is that at each Round ρ, the
value of the grades have to be at least g∗−ρ, and the number of signatures has to be at least half of
the round number. This ensures that parties that have a grade of 1 can only submit their signatures
in the last possible round and parties that have grade of 0 cannot submit their signatures at all.

Since the grades obtained by the honest parties might differ by one (honest parties can be graded
by g∗ or g∗ − 1), an honest party Pi might accept a batch with r signatures, i.e., all grades for the
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signers that Pi has are at least g∗−2r+1, but another honest party Pj might not accept it if it has a
lower grade g∗− 2r for one of the same signers. To avoid this, in Stage r, in the distribution Round
2r−1, where parties just echo what they received, honest parties accept r-batches with grade at least
g∗−2r+1. At the end of voting Round 2r however, where committee parties multicast their votes af-
ter seeing a valid batch for that round (with grades at least g∗−2r), committee parties are allowed to
have a lower grade of at least g∗−2r, in order to be picked up in the distribution round of Stage r+1.

5.2 Broadcast Protocol Description

With these ideas in mind, we now describe our broadcast protocol in more detail.
Preparing Committee Election. There will be one committee for each value (0 or 1) that may
be broadcasted. Therefore, the protocols GCES.Gen and GCES.Toss will produce strings for two bits,
and the inputs of the algorithms CES.TryElect and CES.VerElect will be parametrized by the bit b.
In the previous section, we preferred to describe GCES.Gen and GCES.Toss for a single committee
for clarity purposes; in this section, we slightly abuse the previous notation to accommodate two
committees. We emphasize that GCES.Gen and GCES.Toss are run a single time, not twice in
parallel.

Parties read the transparent system parameters par and first execute the key generation and
distribution protocol GCES.Gen from Figure 1 to receive keys that correspond to each committee.
In particular, each party Pi obtains the output(

(pkbi , sk
b
i)b∈{0,1},

(
(pk

(i),b
j )b∈{0,1}, g̃

(i)
j

)
j∈[n]\{i}

)
← GCES.Gen(par). (4)

In the GCES.Toss protocol from Figure 2, parties will compute their pretags twice, namely, one set
for each bit b. As such, each party Pi will obtain the output((

(pretags
(i),b
k,j )nk=1, G

(i)
j

)n
j=1

)
← GCES.Toss(pp). (5)

To recall, Pj is the moderator.
Note that in both GCES.Gen and GCES.Toss, although there are two (sets of) strings gradecast,

one for every bit, the final grade is the same for both. In other words, if a party submits incorrect
messages for one bit but not for the other, it will be penalized in both cases.

A party Pi can then run algorithm CES.TryElect algorithm for a specific bit b ∈ {0, 1}, namely,
it can run: (

resb, ticketbi

)
← CES.TryElect

(
par, skbi , (pretags

(i),b
j )j∈[n]

)
. (6)

Finally, to verify that a party Pj is in the committee for bit b, Pi will run CES.VerElect:

resbj := CES.VerElect
(
par, (pretags

(i),b
k,j )k∈[n], ticket

(i),b
j

)
. (7)

That is, in verifying the committee claim of Pj , the verifying party Pi uses the values (pretags(i),bk,j )k∈[n]

that it obtained as an output in Toss for Pj , but the values ticket(i),bj that party Pj provided to con-
vince Pi that it is in the committee.
Tracking Committee Membership. Each party Pi maintains two variables, named res0i and
res1i . The role of the variable resbi is to store the local view of whether Pi is in the committee for bit
b ∈ {0, 1}. Recall that as part of CES.TryElect, for the bit b, the party Pi checks (once) whether it
is in the committee for b and sets the variable resbi . In particular, at the beginning of the broadcast
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protocol, Pi checks the value of resbi for each bit b. During the later stages of broadcast, once they
receive the first vote on b, Pi uses resbi to decide whether it will also send a vote on b or not. Once
this check for b is done, Pi sets resbi = ⊥ to internally record this and not check (and vote) again.

The main part of the broadcast protocol can start after the amount of time it took for each honest
party Pi to obtain the result of its committee election for each bit (res0i , res

1
i ). Recall that ∆r denotes

the duration of a round and that the time an honest party takes to solve a puzzle of difficulty ∆(∆′) is
p1(κ,∆)+p2(κ, n) (Definition 7 and Remark 1). Based on Lemma 13, the difficulty parameter ∆(∆′)
is set based on the duration of two gradecast protocols, i.e., on ∆′ := (4g∗+2)·∆r rounds. We obtain
this value of ∆′ by instantiating the predicate Pred as in Section 3.5 and setting the maximum grade
in the gradecast protocols g∗ to be twice the committee bound, g∗ = 2 · ⌈3 log

(
δ−1
)
/ϵ⌉ = O(λ/ϵ).

For convenience, we define qh := (p1(κ,∆) + p2(κ, n) − ∆′)/∆r, which the additional number of
rounds an honest party takes to solve the batch puzzle compared to ∆′ (in reality, this slow-down is
very small and is definitely sublinear in the number of parties). We also set the number of the rest
of the rounds in the broadcast protocol to also be g∗, which is sublinear in the number of parties.
Intuitively, Lemma 5 and Lemma 6 guarantee that for this choice of parameters, the generated
bit-specific committees contain at least one honest party, and at most g∗/2 dishonest parties with
overwhelming probability. More details on the total number of rounds and the security properties
are given at the end of this section.
Verifying Membership, Valid Batches and Certificates. Our protocol consists of stages,
where each stage is composed of two rounds. We denote the stage number by r for r ∈ {1, . . . , g∗/2}.
Then round 1 of stage r will be the 2r− 1’th round, and round 2 of stage r will be the 2r’th round.

Each party collects batches of signatures. We will refer to a signature Sigj(b) from party Pj

as a j-signature. Parties (except for the sender) will send the previously collected signatures in a
batch batch, as well as proofs of the committee elections for the bit b in a certificate called cert. In
particular, a new batch batch′b constructed from another batch batchb, using a signature Sigi(b) from
a party Pi whose signature was not in batchb, is denoted as batch′b := batchb∥Sigi(b), where ∥ means
concatenation. Similarly, a new certificate constructed from another certificate certb, using a ticket
ticketbi corresponding to a party Pi whose ticket was not in certb, is denoted as cert′b := certb∥ticketbi .
To address the difference in grades in the two rounds, we define (r, 1)-batches and (r, 2)-batches.
For notation purposes, we will use ballot to denote a batch and its associated certificate. For clarity,
we prefer to define separately the validity of the batches and of the certificates, rather than lumped
in a single definition of a valid ballot.

Definition 11 (Batches, Certificates, and Ballots). A batch consists of a number of votes, which
are signatures associated to distinct parties. A certificate consists of a number of tickets coming from
distinct parties. For a batch for bit b, batchb, consisting of a number of signatures (Sigj(b))j, we say
certificate certb is associated to batchb if it consists of tuples (ticketbj)j for every j-signature present
in batchb, for parties j ∈ [n]. Finally, we call a pair of one batch and its associated certificate a
ballot.

We define a valid certificate only with respect to a certain batch. In our protocols, the verification
of signatures is performed implicitly.

Definition 12 (Validity of Certificates). We say that a certificate certb is a valid certificate for a
batch batchb from the view of a verifying party Pi if for all valid j-signatures in batchb not coming
from the sender, it holds that:

CES.VerElect
(
par, (pretags

(i),b
k,j )k∈[n], ticket

(i),b
j

)
= 1,
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where for party Pi we used the notation (ticket
(i),b
j )j = certb for all j-signatures in batchb, and(

(pretags
(i),b
k,j )k∈[n]

)
j

are from Pi’s state.

Definition 13 (Validity of Batches and Ballots). We say that a batch batchb, consisting of a tuple
of form (Sigj(b))j, j ∈ [n], in Stage r for a bit b, is a valid (r, 1)-batch from the perspective of a
verifying party Pi if:

(i) It contains at least r valid distinct signatures and one of the signatures is from the sender Ps;

(ii) For every valid j-signature Sigj(b), it holds that G
(i)
j ≥ g∗ − 2r + 1, and g̃

(i)
j ≥ g∗ − 2r + 1,

where G
(i)
j , g̃

(i)
j are from Pi’s state;

(iii) It has associated a valid certificate certb (Pi receives both batchb and certb).

Similarly, a batch is considered a valid (r, 2)-batch by party Pi if (i), (iii) hold as above and also

(ii)’ For every valid j-signature Sigj(b), it holds that G
(i)
j ≥ g∗ − 2r, and g̃

(i)
j ≥ g∗ − 2r, where

G
(i)
j , g̃

(i)
j are from Pi’s state.

Moreover, a ballot is valid if its batch is valid and its certificate is a valid certificate for that batch.

Further, each party Pi will also maintain a set Extractedi, initialized to the empty set. A party
Pi adds a bit b to their set Extractedi in a round if it receives a valid batch and a valid certificate
on b for that round. With these definitions, the full broadcast protocol is described in Figure 3.

5.3 Proof of Broadcast Properties

We now show that ΠBC is a broadcast protocol as defined in Definition 8. Our setup assumptions
are the existence of a bulletin-PKI and a uniform common random string, and our computational
assumptions are the hardness of discrete logarithm and the security of time-lock puzzles and zero-
knowledge proofs.

Theorem 1. Consider a PPT adversary who can adaptively corrupt (1− ϵ)n parties, for a constant
ϵ ∈ (0, 1). Then, under the assumptions above, the protocol ΠBC given in Figure 3 satisfies the
properties of a broadcast protocol except with probability negl(λ) + negl(κ).

The proof ties together all the results based on committee elections, graded consensus on the
committees, and on the valid ballot creation and verification. We will write the proof of Theorem 1
as three separate lemmata, each proving a property of the broadcast protocol: Lemma 16 for validity,
Lemma 17 for consistency, and Lemma 18 for termination. For validity and consistency, we first
show some helper results.

Lemma 14. Consider a Stage r < g∗/2, a bit b and a ballot (batchb, certb) that is (r, 1)-valid for
honest party Pi. Then, (batchb, certb) will be (r, 2)-valid for any honest party Pj.

Proof. We will prove that if an honest party Pi accepted a ballot in Round 2r − 1 and forwarded
it, then an honest party Pj will accept the same ballot in Round 2r.

Since batchb is considered valid by party Pi, it means it is accompanied by a valid certificate
certb, and according to Definition 13, the following hold:

(i) It contains at least r valid distinct signatures and one of the signatures is from the sender Ps;
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ΠBC: Sublinear-round, plain PKI Broadcast

Let g∗ := 2
⌈
3 log

(
δ−1

)
/ϵ
⌉
= O(λ/ϵ).

Rounds −6g∗ − 3− qh
a to −1 :

1. Each party Pi performs (4), (5), (6) and stores their outputs. In particular, it stores
(res0i , ticket

0
i , res

1
i , ticket

1
i ) as its own election result for committees 0 and 1.

Stage 0:

1. (Round 0) Each party Pi initializes Extractedi = ∅.
The designated sender Ps sends (bs, Sigs(bs),⊥) to all parties, where bs is the sender’s input
bit.

Stage r = 1 to g∗/2− 1:

1. (Round 2r − 1) Each party Pi accepts a message b /∈ Extractedi, i.e., sets Extractedi ←
Extractedi ∪ {b}, only if it is accompanied by some valid ballot (batchb, certb), where batchb is
a valid (r, 1)-batch and certb is a valid certificate for batchb.

Pi then multicasts (b, batchb, certb) to all parties.

2. (Round 2r) Each party Pi ̸= Ps checks all bits b that it received on whether they are accom-
panied by a valid ballot (batchb, certb), where batchb is a valid (r, 2)-batch and certb is a valid
certificate for batchb.
For each bit b, Pi checks if resbi = 1, and if so:

- sets Extractedi ← Extractedi ∪ {b};
- constructs a (r + 1, 1)-batch batch′b := batchb∥Sigi(b), cert′b := certb∥ticketbi .

Pi then sets resbi = ⊥ and sends (b, batch′b, cert
′
b) to all n parties.

Stage r = g∗/2:

1. (Round g∗ − 1) Each party Pi accepts each message b /∈ Extractedi, i.e., sets Extractedi ←
Extractedi ∪ {b}, that is accompanied by a valid (g∗/2, 1)-batch and a valid certificate for that
batch.
Pi then outputs either the message b′ ∈ Extractedi if |Extractedi| = 1, or a canonical message
otherwise.

aqh is the extra number of rounds over 4g∗ + 2 that an honest party takes to solve a puzzle with
difficulty (4g∗ + 2) ·∆r (negligible in practice).

Figure 3: Broadcast protocol for designated sender Ps and parties P1, . . . , Pn.

(ii) For every valid k-signature Sigk(b) ∈ batchb, it holds that G
(i)
k ≥ g∗ − 2r + 1; and g̃

(i)
k ≥

g∗ − 2r + 1, where G
(i)
k , g̃

(i)
k are from Pi’s state.

(iii) certb is valid.

Now assume honest party Pj receives (b, batchb, certb) during the second round of Stage r and
checks whether batchb is a valid (r, 2)-batch. We show that all three properties according to Defi-
nition 13 will hold for Pj .

(i) It holds trivially from the fact that batchb is a (r, 1)-valid batch and the signing public keys
are posted on the bulletin-PKI.

(ii)’ For all signatures Sigk(b) ∈ batchb, from the graded agreement property of GC in GCES.Gen

and GCES.Toss, it holds that |g̃(i)k − g̃
(j)
k | ≤ 1 and |G(i)

k −G
(j)
k | ≤ 1. Since G

(i)
k ≥ g∗ − 2r + 1,

it also holds that G
(j)
k ≥ g∗ − 2r, for any r < g∗/2, and similarly g̃

(j)
k ≥ g∗ − 2r.
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(iii) From item (ii), it holds that g̃(i)k , g̃
(j)
k , G

(i)
k , G

(j)
k are always strictly positive for r ≤ g∗/2−1 (in

particular, the minimum grade is at least 2). Then, from the graded agreement of GCES.Toss,
it holds that pretags

(i),b
l,k = pretags

(j),b
l,k for all k, l ∈ [n] : Sigk(b) ∈ batchb. The same argument

holds for pk(i)k = pk
(j)
k for all k ∈ [n] : Sigk(b) ∈ batchb. Therefore, it follows that since certb is

valid for Pi, it is also valid for Pj (since Pj will perform the same checks on the same values
of pretags and public keys, contained in batchb, and tickets, contained in certb, as Pi did).

Lemma 15. Consider a Stage r < g∗/2, a bit b and a batch batchb (with certificate certb) that is
(r, 2)-valid for honest party Pi for which resbi = 1 and Sigi(b) ̸∈ batchb. Then, the ballot (batch′b, cert′b)
with batch′b := batchb∥Sigi(b) and cert′b := certb∥ticketbi will be (r + 1, 1)-valid for any honest party
Pj.

Proof. For a party Pi in the committee for bit b (i.e. resbi = 1), that receives a valid (r, 2)-batch in
Stage r, we prove that its updated batch will be (r+1, 1)-valid for all honest parties in Stage r+1.

Since batchb is considered (r, 2)-valid by party Pi, it means that the following hold for batchb
according to Definition 13:

(i) It contains at least r valid distinct signatures and one of the signatures is from the sender Ps;

(ii)’ For every valid k-signature Sigk(b) ∈ batchb, it holds that G
(i)
k ≥ g∗ − 2r; and g̃

(i)
k ≥ g∗ − 2r,

where G
(i)
k , g̃

(i)
k are from Pi’s state.

(iii) certb is valid.

Now assume honest party Pj receives (b, batch′b, cert
′
b) during the first round of Stage r + 1 and

checks whether batch′b is a valid (r + 1, 1)-batch. We show that all three properties according
to Definition 13 will hold for Pj .

(i) First, since Pi is honest and by assumption Sigi(b) /∈ batchb, then Pj will accept Sigi(b) as
a valid, distinct signature. Moreover, given that the signing public keys are posted on the
bulletin-PKI, all signatures that were valid for Pi are valid for Pj . Therefore, it holds that
batch′b = batchb∥Sigi(b) contains at least r+1 distinct signatures and one of them is from the
sender Ps from property (i) of batchb above.

(ii) For all signatures Sigk(b) ∈ batchb, from the graded agreement property of GC in GCES.Gen

and GCES.Toss, it holds that |g̃(i)k − g̃
(j)
k | ≤ 1 and |G(i)

k − G
(j)
k | ≤ 1. Since G

(i)
k ≥ g∗ − 2r, it

holds that G(j)
k ≥ g∗−2r−1 = g∗−2(r+1)+1. Furthermore, since Pi is honest, from graded

validity of GCES.Toss it holds that for every honest party Pj : G
(j)
i ≥ g∗−1 = g∗−2(1+1)+1.

Similarly, it holds that g(j)k ≥ g∗−2r−1 = g∗−2(r+1)+1, and moreover, honest party Pj will
have for honest party Pi that g̃(j)i = g∗. To conclude, for any honest party Pj it holds that for
every valid k-signature Sigk(b) ∈ batch′b: G

(j)
k ≥ g∗− 2(r+1)+1, and g̃

(j)
k ≥ g∗− 2(r+1)+1.

(iii) From item (ii), for all r ≤ g∗/2 − 1, it holds that g̃
(i)
k , g̃

(j)
k , G

(i)
k , G

(j)
k are strictly positive (in

particular, the minimum grade is at least 1). Then, from the graded agreement property of
GCES.Toss, it holds that pretags(i),bl,k = pretags

(j),b
l,k for all k, l ∈ [n] : Sigk(b) ∈ batchb. The same

argument holds for pk
(i)
k = pk

(j)
k for all k ∈ [n] : Sigk(b) ∈ batchb. Therefore, it follows that

since certb is valid for Pi, it is also valid for Pj (since Pj will perform the same checks on the
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same values of pretags and public keys, contained in batchb, and tickets, contained in certb, as
Pi did). Finally, from the graded validity of GCES.Toss it holds that pretags(j),bk,i = pretags

(i),b
k ,

for all k ∈ [n]. So, ticketbi is valid for Pj with respect to pretags
(i),b
k , since resbi = 1. Therefore

cert′ is a valid certificate for batch′.

Proof of Theorem 1. We now prove Theorem 1. To this end, we show validity, consistency, and
termination of our protocol in Figure 3.

Lemma 16. Protocol ΠBC achieves validity with probability 1− negl(κ).

Proof. In Stage 0, the sender Ps sends (bs,Sigs(bs),⊥) to all parties. By Round 1, all honest parties
have a valid (1, 1)-batch for bs and add bs to their extracted sets. Since Ps is honest, the security
of the signature scheme ensures that no malicious party can inject another validly signed message,
so parties only elect themselves in a single committee for bs and will not accept as valid any batch
batchb̄s . Thus, validity holds, unless with negligible probability of the adversary forging the sender’s
signature.

Lemma 17. Protocol ΠBC achieves consistency with probability 1− negl(λ)− negl(κ).

Proof. Let Pi, Pj be two honest parties. Assume without loss of generality that Pi adds a value
b ∈ Extractedi before Pj . We show that by the end of the protocol b ∈ Extractedj . This is sufficient
to prove consistency, since it implies that by the end of the protocol Extractedi = Extractedj (set
equality). Therefore the outputs of Pi, Pj for the broadcast protocol will match. We distinguish
two cases.
Case 1. Pi adds b during Stage r∗ = g∗/2: In that case, Pi must have received a valid (g∗/2, 1)-
ballot for b. According to Definition 13, the batch in the ballot must contain valid signatures
from at least g∗/2 parties and for each such party Pk it must hold that g̃

(i)
k ≥ 1 and G

(i)
k ≥ 1.

Furthermore, the batch is accompanied by a valid certificate certb for it, i.e. a set of values ticketbk,
for each Pk whose signature is in the batch. To prove consistency, we need that at least one of the
signatures must have come from an honest party Ph with probability 1 − negl(λ) − negl(κ). This
is true because, first, by Lemma 13, the committee cannot be larger than B = g∗/2 except with
negligible probability—else there exists a direct reduction that wins the graded honest committee
game with non-negligible probability—therefore the ballot contains the signatures of all parties
in the committee, and there cannot exist be a distinct valid ballot from g∗/2 parties. Secondly,
by Lemma 12, the adversary cannot corrupt the entire committee before the honest committee
members reveal themselves, except with negligible probability—else there exists a direct reduction
that wins the graded committee game with non-negligible probability—so the ballot contains a
signature from at least an honest party Ph.

We now show that the honest committee member Ph would have sent its ballot to all parties by
Round 1 of Stage r∗. If Ph added its own signature to a batch at Round 2 of a Stage r < r∗ − 1
(and thus sent the updated ballot to all parties), then according to Lemma 15, Pi would have added
b during r + 1, which contradicts our assumption. So, Ph added its own signature to a batch at
Round 2 of Stage r∗ − 1 and sent the updated ballot to all parties, including honest party Pj . So,
by Lemma 15, it must hold that b ∈ Extractedj .
Case 2. Pi adds b during Stage r < g∗/2: First note that if Pi has resbi = 1 then, in the second
round of Stage r, Pi would send an updated ballot to all parties. By Lemma 15, any honest party
Pj would add b ∈ Extractedj in Round 1 of Stage r + 1.
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Now assume that Pi adds b during Round 1 of Stage r < g∗/2 and resbi = 0. Pi would then
send the valid (r, 1)-ballot for b to all parties. By Lemma 14, any honest party considers that ballot
to also be (r, 2)-valid. Then, by Lemma 12, at least one honest party Ph would have resbh = 1
with probability 1 − negl(λ) − negl(κ); otherwise, the adversary would have to corrupt the entire
committee before the honest committee members reveal themselves.

The honest committee member Ph however would have sent its ballot to all parties and all honest
parties Pj would add b ∈ Extractedj by Round 1 of Stage r + 1.

Therefore, in any case b ∈ Extractedj .

Lemma 18. Protocol ΠBC terminates.

Proof. Termination holds by the termination of GCES.Gen, GCES.Toss and CES.TryElect, which act
like an online setup, and by construction of the subsequent g∗/2 stages.

Combining Lemmata 16 to 18, the proof of Theorem 1 is completed.

Round Complexity. Next, we give a bound on the round complexity of our protocol.

Theorem 2. Consider a PPT adversary who can adaptively corrupt (1− ϵ)n parties, for a constant
ϵ ∈ (0, 1). Then, the protocol ΠBC (Figure 3) has round complexity O

(
1
ϵ log

(
1
δ

))
.

Proof. Recall that qh = (p1(κ,∆) + p2(κ, n) − ∆′)/∆r is the additional number of rounds (the
slowest) honest party takes to solve the batch puzzle compared to ∆′/∆r, for ∆′ = (4g∗ + 2) ·∆r,
and is a small constant number. Then, the first step of the broadcast protocol, before Stage 0, takes
6g∗+3+ qh rounds, as follows. GCES.Gen has to be ran before GCES.Toss and takes 2g∗+1 rounds;
GCES.Toss takes 4g∗ + 2 rounds, but after the first 2g∗ + 1 of GCES.Toss, honest parties can start
CES.TryElect, which involves solving a batch puzzle with time complexity ∆′, so the total number
of rounds is 2g∗ + 1 +∆′/∆r + qg = 6g∗ + 3 + qh.

Stage 0 takes one round and the subsequent g∗/2 stages take a total of g∗ − 1 rounds. As
a result, the round complexity of broadcast in terms of g∗ and qh is 7g∗ + 3 + qh. For g∗ =
2 · ⌈3 log

(
δ−1
)
/ϵ⌉ = O(λ/ϵ) as described above, the broadcast protocol has round complexity

O
(
log
(
δ−1
)
/ϵ
)
. For δ = exp(−ω(log λ)) negligible in the security parameter, we obtain a round

complexity of O(λ/ϵ).

Communication Complexity. The communication complexity of broadcast is dominated by the
GCES.Toss protocol, which is executed once for every broadcast instance. Therefore, O(CCGen +
CCToss + g∗ · κ · n3) = O(κ · n5 · log

(
δ−1
)
/ϵ). For δ = exp(−ω(log λ)) negligible in the security

parameter, we obtain a total communication complexity of O(κ · λ · n5/ϵ). Using the version of
GCES.Toss with gossiping, the total communication complexity reduces to Õ(κ · λ · n4/ϵ).

6 Conclusion and Open Problems

We have constructed a synchronous, binary broadcast protocol, secure against adaptive adversaries
who can corrupt up to t = (1−ϵ)n parties. Our setup assumptions are limited to the plain public key
model and a uniform common random string, and our computational assumptions are the discrete
logarithm assumption and the existence of time-lock puzzles. Our protocol is the first to achieve
broadcast in this model, while obtaining round complexity sublinear in n. This shows that sublinear-
round broadcast protocols are achievable even without trusted setup. There are several remaining
open questions, such as obtaining a similar protocol with improved communication efficiency or for
messages of larger sizes.
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