
Spec-o-Scope: Cache Probing at Cache Speed
Gal Horowitz

Tel-Aviv University

Tel-Aviv, Israel

galhorowitz1@mail.tau.ac.il

Eyal Ronen

Tel-Aviv University

Tel-Aviv, Israel

eyalronen@tauex.tau.ac.il

Yuval Yarom

Ruhr University Bochum

Bochum, Germany

yuval.yarom@rub.de

ABSTRACT
Over the last two decades, microarchitectural side channels have

been the focus of a large body of research on the development of

new attack techniques, exploiting them to attack various classes

of targets and designing mitigations. One line of work focuses

on increasing the speed of the attacks, achieving higher levels of

temporal resolution that can allow attackers to learn finer-grained

information. The most recent addition to this line of work is Prime+

Scope [CCS ’21], which only requires a single access to the L1

cache to confirm the absence of victim activity in a cache set. While

significantly faster than prior attacks, Prime+Scope is still an order

of magnitude slower than cache access. In this work, we set out to

close this gap.

We draw on techniques from research into microarchitectural

weird gates, software constructs that exploit transient execution

to perform arbitrary computation on cache state. We design the

Spec-o-Scope gate, a new weird gate that performs 10 cache probes

in quick succession, which forms the basis for our eponymous

attack. Our Spec-o-Scope attack achieves an order of magnitude

improvement in temporal resolution compared to the previous state-

of-the-art of Prime+Scope, reducing the measurement time from

≈ 70 cycles to only 5 — only one cycle more than an L1 cache

access. We experimentally verify that our attack can detect timing

differences in a 5 cycle resolution. Finally, using our Spec-o-Scope

attack, we are able to show the first microarchitectural side-channel

attack on an unmodified AES S-box-based implementation, which

uses generic CPU features and does not require manipulation of

the operating system’s scheduler.

1 INTRODUCTION
Sharing computer hardware between multiple workloads is a par-

adigm deployed over a wide range of computing devices, from

personal devices, such as mobile phones to cloud servers. Workload

isolation, enforced by the operating system in collaboration with

the underlying hardware platform, is a key enabler of the paradigm.

It enables processing secret or sensitive information on a device

that also executes untrusted workloads that may be malicious.

Since their introduction over 20 years ago [37, 38], cache timing

attacks, which exploit the timing difference between cache hits

and misses, are a prominent threat to isolation. Cache attacks can

bypass many security boundaries, including between processes [31,

32], containers [45], virtual machines [16, 43, 44], browser ses-

sions [30, 36], and trusted execution environments [4, 28]. They

can be deployed remotely [21], in a cloud [14, 27], or from the

browser [22, 23, 36] and leak encryption keys [26, 31, 32, 37, 43],

user interface actions [12, 23, 24], and more [4, 35, 41].

Much research has focused on cache attack resolution, i.e., the

frequency at which the cache can be probed. Cache timing attacks

typically execute code that measures the time it takes to execute

a code sequence and infer the cache state from this timing. The

length of time it takes to execute the code limits the speed at which

the attack can repeat. Moreover, the accuracy of some attacks dete-

riorates significantly when the attack is repeated too frequently [2].

Low attack resolution prevents the attacker from distinguishing

events that occur within a short time interval and from determining

the exact time at which victim events occur. To improve attacks,

some works slow the victim down, through competition on mi-

croarchitectural resources [1, 2], operating system scheduling [13],

or by exploiting operating system control [28, 39]. Finally, some

attacks focus on improving the attack resolution by devising faster

attacks [4, 11, 34].

To the best of our knowledge, the fastest cache probing attack

is Prime+Scope [34]. The attack relies on the interaction between

cache levels, where eviction from the last level cache (LLC) or

the cache directory [20, 42] causes eviction from the L1 cache.

By carefully arranging data in the caches, Prime+Scope ensures

that a victim access to a location that fits in a monitored LLC set

would result in an eviction of a specific cache line from the L1 of

the attacker. Thus, probing the cache in the Prime+Scope attacks

boils down to scoping, or repeatedly measuring the access time

to a memory location that is cached in the L1 cache, achieving a

reported probing rate of once per approximately 70 cycles.

While the probing speed of Prime+Scope attack is impressive,

we note that it is more than an order of magnitude slower than

the 4 or 5 cycles reported for accessing cached data [9]. Thus, in

this paper, we ask the following question: Can we perform a cache
probing attack at a rate commensurate with cache speed?

Our Contribution
We answer the question in the affirmative. We present the Spec-

o-Scope attack, which builds on Prime+Scope but achieves a rate

of one probe per five cycles for a small number of probes, and an

average sustained speed of 10 cycles for longer sequences.

To achieve this rate, we use weird gates [8, 18] as a cache probing

mechanism. Weird gates use a race condition between speculatively

executed instructions to perform logical operations on cache state,

i.e., whether specific memory locations are cached or not. Katzman

et al. [18] show how using weird gates to transfer cache state be-

tween locations can decouple the cache probing from measuring

the cache state. Following their approach, we split the Prime+Scope

attack into two phases. The first phase uses repeated activation of

a weird gate to scope the monitored location and store the results

as the cache state of other memory locations. The second phase

uses time measurements to observe the stored state. We experiment

with multiple mechanisms to cause speculative execution in the

weird gate, and demonstrate that by using the gate construction of

Kaplan [17], we can reduce the probing rate at the scoping phase

to once per 54 cycles.

https://orcid.org/0009-0006-5983-1652
https://orcid.org/0000-0002-6013-7426
https://orcid.org/0000-0003-0401-4197

Gal Horowitz, Eyal Ronen, and Yuval Yarom

We then turn our attention to fundamental aspects of weird gates.

We observe that the operation of weird gates can be represented in

terms of instruction chains – subsequences of the instruction stream

whose last instruction has a data dependency on all preceding

instructions. We propose a new type of instruction chain and a

new way of composing chains, allowing us to construct a gate that

computes multiple functions of its inputs in a single invocation.

Finally, we build the Spec-o-Scope gate, which instead of comput-

ing a function of different inputs, computes a function of repeated

probes of the same input. Specifically, our Spec-o-Scope gate con-

struction can perform up to 10 repeated probes of an input location.

The gate produces 10 outputs that identify a probe that resulted in a

cache miss, if such a cache miss happens during the gate execution.

The total latency of the gate is about 100 cycles. Thus, repeated

invocation of the gate achieve an average probe speed of 10 cycles.

Moreover, the core of the gate is a sequence of 10 probe operations

that happen within five cycles of each other.

To demonstrate the utility of our Spec-o-Scope gates, we use

them against two implementations of AES. Similar to Prime+Scope,

we show an efficient attack against a T-tables-based implementa-

tion, requiring ≈ 7000 traces for a full-key recovery, which can be

collected in less than one second. More significantly, we present an

efficient full-key recovery attack on an S-box implementation of

AES, which is considered much more resilient to cache attacks [3].

Our attack is based on the one presented by Cheng et al. [7] but

without their requirement for modifying the AES code by adding

arguably artificial attack gadgets. We also do not require interrupt-

ing the run of the encryption code by exploiting non-trivial control

of the operating system as in other previous attacks [3, 28] or the

availability of the now deprecated Intel TSX [5]. Our attack requires

≈ 10 000 traces, which can be collected in less than 3 seconds.

In summary, in this work we make the following contributions:

• We analyze the Prime+Scope attack and identify that measuring

the time limits the attack rate (Section 3).

• We show that a naive use of weird gates can improve the scope

rate of Prime+Scope, albeit not by a large margin (Section 4).

• We investigate the construction of weird gates, defining abstrac-

tions to represent gate structures, and identifying new construc-

tions (Section 5).

• Building on our new gate constructions, we design the Spec-o-

Scope gate, which achieves an order of magnitude improvement

over Prime+Scope (Section 6).

• We demonstrate the utility of Spec-o-Scope by attacking both

T-Table and S-Box-based implementations of AES (Appendix A

and Section 7). To the best of our knowledge, our attack is the first

successful Prime+Probe-based attack on the S-box implementa-

tion that does not require non-trivial control of the operating

system [3, 5, 28] or modification of the original code [7].

• Finally, we open-source the code for our experiments and at-

tacks.
1

Ethical Disclosure
We have disclosed this new attack technique to Intel. As we do

not identify new leakage sources, and current published counter-

measures and best practices are still effective against the attack, no

restrictions on public disclosure are required.

1
https://github.com/eyalr0/Spec-o-Scope

2 BACKGROUND AND RELATEDWORK
2.1 Cache Attacks
Memory caches. To bridge the gap between slower memory and

faster CPUs, modern processors employ caches — small banks of

fast memory that store recently and frequently used memory lines.

When the processor needs to access memory, it first checks in the

cache. In case of a cache hit, data is served from the cache, reducing

the access time. In the case of a cache miss, the CPU needs to wait

for the data. Data brought in a cache miss is typically stored in

the cache. Due to the cache’s limited capacity, storing new data

may necessitate evicting old data from the cache. Caches typically

use a variant of the least recently used (LRU) policy for deciding

which memory location to evict. To facilitate management, caches

are typically set-associative. That is, the cache and the memory

are partitioned into sets, such that a memory location can only be

cached in its corresponding set. Moreover, to achieve a balance

between size and speed, modern processors employ a hierarchy of

caches, ranging from the fast but small L1 cache to the larger but

slower last level cache (LLC).

Cache attacks. When the cache is shared between multiple work-

loads, the state of the cache depends on prior execution of all work-

loads. Cache attacks measure access time to memory to distinguish

cache hits from misses, observing the cache state to leak informa-

tion on prior execution of co-resident workloads. For example, the

Prime+Probe attack [26, 31, 32] first fills a cache set with attacker

data and then accesses the data, measuring access time. A slow ac-

cess time indicates that the accessed data is no longer in the cache,

presumably evicted due to a victim’s access to a memory address

in the same set.

Prime+Scope. Prime+Scope [34] is a variant of Prime+Probe

that achieves a high probing rate by combining three observations.

First, Prime+Scope observes that instead of checking all of the data

inserted by the attacker into the cache set, the attacker only needs

to monitor the eviction candidate, i.e., the memory location that

will be evicted next from the cache. Second, Prime+Scope relies

on the inclusive nature of the LLC, which ensures that the content

of the LLC is a superset of the content of the L1. Thus, evicting a

memory location from the LLC also evicts it from the L1. Finally,

Prime+Scope uses the observation that cache hits in the L1 cache

do not affect the replacement policy in the LLC. Exploiting these

observations, Prime+Scope first performs a sequence of accesses to

memory that ensures that the LLC eviction candidate of a monitored

set is cached in the L1. It then repeatedly measures the access time

to this eviction candidate, which we denote as scope address. A

victim access to a memory location in the monitored set will result

in evicting the eviction candidate from the LLC, and consequently

also from the L1, allowing the attacker to detect the event. However,

as long as the victim does not cause an eviction in the monitored

set, the attacker only needs to measure the access time to a memory

location that is cached in the L1 cache. Thus, Prime+Scope reduces

the time it takes to monitor an LLC cache set from a few thousand

cycles [15, 26] to about 70 cycles.

2.2 Weird Gates
To improve resource utilization, modern processors do not neces-

sarily execute instructions in the order they are specified in the

https://github.com/eyalr0/Spec-o-Scope

Spec-o-Scope: Cache Probing at Cache Speed

program. Instead, the processor keeps track of the data dependen-

cies between instructions and executes instructions as soon as their

inputs are ready. Because in many cases the processor cannot de-

termine the program order before executing previous instructions,

processors often speculate on the outcome of instructions. One

prominent cause of speculation is the prediction of branch instruc-

tion outcomes. However, speculation is not limited to control flow,

and can be the result of the assumption that instructions will not

cause faults. To handle possible misprediction, the processor retires

instructions in order, committing their outcome to the architectural

state. This allows the processor to verify that it catches mispredic-

tions before it commits to the outcome of instructions that were

speculatively executed. While transient instructions, that execute

speculatively as a result of a misprediction, do not change the archi-

tectural state of the processor, their execution can leave traces in the

microarchitecture. This behavior has been exploited for mounting

multiple transient-execution attacks [19, 25].

Recent work on transient execution has demonstrated that it can

be used for performing computation on cache state [8, 17, 18, 40].

In a nutshell, these works treat the cache state, i.e., whether a

memory location is cached or not, as a Boolean variable. They then

implement logical gates, called weird gates [8], that operate on this

cache state.

Listing 1 shows an example of a weird NOT gate, which uses mis-

prediction of a return instruction to force transient execution [17].

The gate consists of a call to a helper function (Line 3), followed by

code that eventually accesses the output address (Lines 4–5) before

returning. The helper function changes its return address to skip

the code that follows the call. The calculation of the return address

uses the value of *in, which is known to be zero.

1 void NOT_gate(int *out, int *in) {
2 tin = *in;
3 mispredict_ret(real_return + tin);
4 tout = fixed_delay(); // returns 0
5 tout = *(out + tout);
6 lfence();
7 real_return:
8 return;
9 }
10

11 void mispredict_ret(ret) {
12 set_return_address(ret);
13 return;
14 }

Listing 1: Return-based NOT gate.

Figure 1 shows the operation of the gate. If *in is not cached, as

in the right-hand side of the figure, computing the return address

takes a long time, and *out is accessed speculatively. Conversely,

if *in is cached (left-hand side of Figure 1), the return address

is computed quickly, and speculative execution terminates before

executing the access to *out. Thus, after executing the gate, the

cache state of *out will be the logical inverse of the state that *in
had before the gate.

Start

Access

in

Set

return

address

Misprediction

detected

Delay

Access

out

Start

Access

in

Set

return

address

Misprediction

detected

Delay

Access

out

Figure 1: Operation of the NOT gate. Left when *in is cached,
right when it is not. Shaded instructions are never executed.
(Not even transiently.)

This construction of weird gates can be based on other specu-

lation mechanisms. Previously demonstrated gates exploit branch

misprediction [8, 18, 40] and return misprediction [17]. Wang et al.

[40] also show how to build weird gates based on assuming that

instructions do not fail. Last, Evtyushkin et al. [8] demonstrate that

intentionally aborting optimistic transactions in Intel Transactional

Synchronization Extension (TSX) can also be used for constructing

weird gates.

2.3 Cache Attacks on AES
The AES block cipher has been extensively used to demonstrate

cache attacks [13, 15, 16, 29, 31, 32] and as such have become a

ubiquitous target for cache attacks.

Traditionally, a T-Tables based implementation of AES is at-

tacked. Although specified using a 256-byte S-Box table, AES is in-

stead commonly implemented using four 1024-byte T-Tables which

significantly accelerate the encryption by combining multiple op-

erations into a table lookup. Although slower, S-box-based im-

plementations of AES are generally considered less vulnerable to

side-channel attacks [3].

There are previous works on attacking AES S-box-based imple-

mentations, but they all require a relatively strong threat model.

Some attacks are based on the ability of the adversary to interrupt

the target’s code execution frequently [3], the availability of special

hardware features [5] (the now deprecated Intel TSX instruction set

extension), or a combination of both [28] (targeting code running

inside Intel SGX). The recent Evict+Spec+Time attack by Cheng

et al. [7] targets a modified version of AES code, to which they

added a non-standard secret-independent memory access attack

gadget.

2.4 Threat Model
Ourwork follows the threat model and assumptions made by Purnal

et al. [34], Kaplan [17], and Katzman et al. [18]. We assume that an

adversary can run unprivileged code concretely with the target code
on the same physical processor (not necessarily on the same core).

We assume the processor has a shared leveled cache structure, and

Gal Horowitz, Eyal Ronen, and Yuval Yarom

that it supports out-of-order (OoO) and speculative execution. For

our attacks on AES, we assume a multi-core system with at least 3

cores, so that our two attack threads and our target code can each

run on a separate core without interrupting each other (note that

we don’t require hyperthreading). Following [33], we also require

an inclusive cache hierarchy for our Prime+Scope based LLC attack.

3 SPEC-O-SCOPE OVERVIEW
In this paper, we investigate the temporal resolution of cache at-

tacks. Our starting point is the current state-of-the-art Prime+Scope

attack [34]. We observe that it has a temporal resolution of approx-

imately 70 cycles [34]. However, the cache-sampling step of the

attack consists of a single access to a memory line that is cached

in the L1 cache, whose typical latency is only 4 cycles [10]. Thus,

the attack incurs an order of magnitude overhead over the core

operation.

1 uit32_t scope(char *address) {
2 uint32_t start = rdtscp();
3 char t = *address;
4 uint32_t end = rdtscp();
5 return end - start;
6 }

Listing 2: Scope code from the Prime+Scope attack.

To understand the source of this overhead, we look at a typical

implementation of the scope step of the Prime+Scope attack, in

Listing 2. The code is pretty straightforward. To measure the access

time to the scope address address, it queries the time stamp counter

before the memory access (Line 2) and after it (Line 4). Subtracting

the time stamp values yields the access time.

By timing a sequence of 10 000 calls to the rdtscp instruction

and repeating this experiment 50 000 times, we find that on aver-

age, rdtscp takes 32.12 cycles. As each call to scope requires two
executions of rdtscp, we observe that measuring the execution

time of the memory access makes the bulk of the overhead.

In this work, we aim to reduce the time measurement overhead.

Considering the weight of the time measurement in the overhead,

the intuitive approach is to replace the use of rdtscp for time

measurement. For that, we first adapt the technique of Katzman

et al. [18] to decouple the sampling of the cache state from the

time measurement. They use “weird” gates that operate directly

on the logical state of the cache, i.e. whether a memory address

is cached or not, to divide each iteration of a cache attack into

two steps. In the sampling step, the attacker uses a NAND gate to

probe the target cache set, and store the result of the probe as the

logical cache state of another memory location. In the lifting step,

the attacker measures the time it takes to access the store address,

to identify whether it is cached or not. Separating the attack into

two steps allows Katzman et al. [18] to overcome the limitation of

a slow timer.

We can use a similar approach with the Prime+Scope attack.

In each iteration of the sampling step, we copy the cache state

from the cache line we access (which we denote the scope address)

and store it in a dedicated set of cache lines (which we denote the

store addresses). After the sampling iterations are done, we start

the lifting step. We iterate over the store addresses and measure

the access time to each address, thus learning the original cache

states of the scope address in the different scope iterations. The

downside of this approach is that, as in the Prime+Scope attack,

once the victim has accessed the monitored set, the attacker needs

to reset the state of the cache to capture further accesses. Thus,

when decoupling the attack from the observation, the attacker can

only learn the timing of the first victim access, but nothing about

subsequent victim accesses.

We discuss the implementation of this approach in Section 4.

However, while it can significantly improve the temporal resolu-

tion in the case of slow timers, in our case, a large overhead still

remains. This is due to the relatively large overhead incurred by

the squashing of the speculative window. To bridge the gap, in Sec-

tion 6, we develop new techniques (based on the insights described

in Section 5) that allow us to perform multiple measurements in a

single speculative window, achieving a temporal resolution com-

mensurate with one L1 cache hit.

4 SPECULATIVE TIME MEASUREMENT
In this section, we explore and evaluate multiple options for adapt-

ing the techniques of Katzman et al. [18] for use with the Prime+

Scope attack.

4.1 Weird Gate for Speculative Measurement
Katzman et al. [18] use a weird NAND gate as part of their im-

plementation of the Prime+Probe attack. Unlike Prime+Probe, the

Prime+Scope attack, which we adapt, only accesses a single mem-

ory location, the scope address, when monitoring the cache state.

Hence, we only need a gate with a single input, i.e., a NOT or a

BUFFER gate, for implementing the attack.

The choice of the gate type has a significant impact on our attack.

Recall that our goal is to detect with high temporal resolution the

first access to the target address. Until this first access, the scope

address will be cached at L1. If we use a BUFFER gate, in each scope

operation, we will copy the cached state of the scope address to a

new store address, i.e., we will access the store address and fetch it

into memory. As we will show, our scope operation is much faster

than an access to the external memory. This means that the memory

fetching request will start to lag after the scope operation. However,

the line fill buffer (LFB) that handles such memory requests has only

a limited size queue, and when filled, it would block further memory

requests. This means that asymptotically, our scope operations rate

will be limited by the latency of external memory.

Based on this observation, we use a NOT gate to achieve high

temporal resolution. While the scope is cached, a NOT gate does

not perform any memory accesses. This allows us to run the scope

operations at maximal frequency. After the target address is ac-

cessed, the scope address will be evicted, and the NOT gate will

start accessing external memory. This first access will be detected

with high temporal resolution. Further accesses might fill the LFB’s

queue and limit the rate, but at this point, we cannot learn new

information, so it will not have any effect on the accuracy of the

attack.

Spec-o-Scope: Cache Probing at Cache Speed

P+S P+S no fences BT gate CBT gate RET gate
0

50

100

150

cy
cle

s

Figure 2: Distribution of execution time for a single execution
of a single scope invocation for the original Prime+Scope
attack and variants based on the different weird gates types.

4.2 Experimental Evaluation
Past works identified three main approaches for generic imple-

mentations of a NOT gate, with branch training, without branch

training, and return-based. In particular, the no-branch-training

variant of Katzman et al. [18] obviate the need for costly training

by using an indirect branch with a jump table, instantiated using

a switch statement, such that at each invocation a different case

is taken. This always results in a misprediction, as the processor

predicts a repeat of the previous case. We implemented all three

approaches as well as two versions of the Prime+Scope attack. The

first implementation of Prime+Scope uses the code from the public

repository of the attack
2
. It consists of two rdtscp instructions for

measuring the access time to the scope address, with the addition of

the mfence and lfence instructions for synchronizing the instruc-

tion stream. The second implementation, presented in Listing 2,

is the same Prime+Scope code, but without the synchronization

instructions (which can be omitted).

Wemeasured the execution time of all five variants with a cached

input (the high resolution case) on an Intel Core i5-8250U. For each

variant, we ran 100 000 experiments, each executing 1260 consecu-

tive scope invocations. As the resulting box-plot in Figure 2 demon-

strates, the public version of the Prime+Scope attack is the slowest,

taking on average about 150 cycles per scope invocation. The ver-

sion without fences is significantly faster requiring only 70 cycles

(as was reported by Purnal et al. [34]). The speculative versions of

the attack also vary significantly. The branch training version is

the slowest, requiring over 130 cycles per invocation. Conversely,

the return-based implementation is the fastest, requiring only 54

cycles for each invocation.

4.3 Scope Overhead
The return-based scope variant’s invocation time of 54 cycles is

still much higher than the L1 cache typical latency of 4 cycles [10].

We will now attempt to explain the cause of this high overhead.

Observing the code of the NOT gate (Listing 1), we see that the

critical path through the code consists of two function calls, one

memory dereference (*in), one addition and one memory write,

which is likely forwarded to the RET instruction.

Based on Fog’s optimization guides[9, 10], Table 1 summarizes

the latency of these operations. The table does not include the cost

2
https://github.com/KULeuven-COSIC/PRIME-SCOPE

Table 1: Latency of operations in return-based NOT gate.

Instruction Count Latency (cycles)

CALL 2 3

RET 2 2

Read from cache 1 4

ADD 1 1

LEA 1 1

Store forwarding 1 5

Total 21

of the return misprediction and overheads due to the C calling

conventions and the loop that executes the gate. We could not find

references for the cost of return misprediction. However, Fog [10]

estimates branch misprediction costs at 15–20 cycles, and Bryant

and O’Hallaron [6] estimates it at 19 cycles. Assuming 19 cycles for

the misprediction, and an additional 8 cycles for the calling of the

gate, we reach a total of 48 cycles, which account for the majority

of the overhead of the NOT gate.

While it may be possible to remove some of the overhead, it

appears that a significant part of it is caused by performing the gate

operation. Thus, it would appear that the overhead is essential, and

cannot be removed. We therefore require a novel approach.

5 INSTRUCTION CHAINS
To further reduce the overhead, we require a novel type of weird

gates. To explain our solution, we use new terminology for describ-

ing weird gates, which we will present in this section. The core

concept we use is an instruction chain, which is a subsequence of

the instruction stream that the processor executes, such that the

last instruction in the chain has a data dependency on all of the

instructions in the chain. For our purposes, an instruction has a di-

rect data dependency on a prior instruction if it uses data produced

by the prior instruction. Data dependency between instructions

is defined as the transitive closure of direct data dependency, i.e.,

the data an instruction uses depends on the data produced by the

other instruction. We note that in some cases, the data dependency

can be implied. For example, RET instructions implicitly depend on

the most recent store to the location at the top of the stack, which

contains the return address. Similarly, conditional moves and con-

ditional jumps implicitly depend on the most recent instruction

that updates the flag.

We start with classifying the chains that exist in the literature

based on their function in the gate and their temporal behavior. We

then proceed to introduce two new types of chains, which we use

later.

Chains in weird gates. Using our definition of chains, we can

now see that a typical weird gate builds on a race condition between

two types of chains, defined by the purpose of the last instruction

of the chain. In signal chains, the last instruction, if executed, leaves
observable changes in the micro-architectural state of the processor.

In all of the examples in this paper, signal chains introduce a mem-

ory access to an output address, which depends on the result of the

preceding chain. One such example is Line 5 in Listing 1, which uses

https://github.com/KULeuven-COSIC/PRIME-SCOPE

Gal Horowitz, Eyal Ronen, and Yuval Yarom

an access to the address pointed by out, with a dependency on the

result of the preceding delay. Conversely, a control chain typically

ends with an instruction whose outcome is mispredicted, resulting

in transient execution of (parts of) a signal chain. In all of the code

examples in this paper, we use the return misprediction [17], which

we abstract as a call to the function mispredict_ret().
When the gate executes, the race between a control and a sig-

nal chain determines the gate’s output. When the processor en-

counters the last instruction of the control chain, it mispredicts its

outcome and proceeds to transiently execute instructions of the

signal chain. At some stage, when the last instruction of the control

chain executes, the misprediction is detected. If at this stage the

last instruction of the signal chain has already been executed, i.e.

the signal chain wins the race, the state of the micro-architecture

will be changed. Conversely, if the control chain wins the race, the

signal chain is squashed before the last instruction executes, and

the state is not changed.

As a concrete example, the chains of a NOT gate are depicted in

Figure 1. In each of the parts of the figure, the control chain consists

of the operations in the left column of the figure, i.e. accessing

in and setting the return address. The signal chain, consisting of

a delay and an access to out, is on the right column of the gate

operation diagram.

1 delay_chain1(tmp) { delay_chain2(tmp) {
2 tmp += tmp; tmp = sqrt(tmp);
3
4 tmp += tmp; tmp = sqrt(tmp);
5 return tmp; return tmp;
6 } }

Listing 3: Examples of delay chains.

Delay chains. Chains can also be classified based on their timing

behavior. Delay chains are designed to take a fixed number of cycles

before falling through to the instructions that control their purpose.

In these chains, each instruction typically depends on its predeces-

sor in the chain. The delay chain is designed to produce a known

output, which is then used as part of the signal or control operation

of the chain. In all of the chains that we use, the inputs and output

are always zero. Listing 3 shows two examples of delay chains, one

using additions and the other using square root operations. The

number of repetitions of the operations controls the length of the

delay. While we present C-like code, in practice we implement the

delay chain in assembly. This allows us better control of the gen-

erated code and, in particular, facilitates interleaving of multiple

chains.

Probe chains. In contrast with delay chains, probe chains are de-

pendent on variable time operation. They can be used to “measure”

the time an operation takes, typically compared to a delay chain. In

all of the probe chains we use, the chain depends on one or more

memory accesses, such that the chain takes a long time if any of

the accessed locations is not in the cache.

Combining chains. Different gates are constructed using different
combination of chains. As we described, a NOT gate consists of a

fixed delay signal chain and a probe chain for the control. A NAND

gate has a similar construction, with the probe chain depending

on multiple inputs, rather than just one. Conversely, BUFFER and

AND gates have fixed delay chains at their control arm and probe

chains at the signal arm.

Some gates include multiple chains of each type. All gates with

multiple outputs use multiple chains that share their timing com-

ponent, but not their signal instructions. Similarly, the NOR and

MAJORITY gates of Katzman et al. [18], which consist of multiple

control chains, all of which are probe chains, and a single, fixed

delay, signal chain. Last, the OR gate of Wang et al. [40], uses mul-

tiple signal chains, each probing a different input, but all using the

same output.

NewChain types. Utilizing of the flexibility of the terminology, we

now introduce two types of chains, which have not been used in the

literature so far. These new chains present alternative approaches

for implementing prior gates and support new functionality. They

also form the basis for our main contribution, the Spec-o-Scope

attack.

Multi-probe Chains. Multi-probe chains are chains that probe

a sequence of multiple input addresses. Unlike past chains that

access multiple addresses in parallel, e.g. the control chain of NAND

gates, the accesses to inputs in a multi-probe chain are serialized by

introducing dependencies between consecutive chains. Thus, the

delay of a multi-probe chain correlates with the sum of the delays

of the probes, whereas in prior multiple-input chains it correlates

with the maximum probe delay.

1 m_probe(in1, in2, in3) { m_input(in1, in2, in3) {
2 t1 = *in1; t1 = *in1;
3 t2 = *(in2 + t1); t2 = *in2;
4 t3 = *(in3 + t2); t3 = *in3;
5 return t3; return t1 + t2 + t3;
6 } }

Listing 4: Example of a multi-probe chain with three inputs
(left), contrasted with a multiple-input chain (right). The
code assumes that the memory contents is always zero. Note
that in the multiple-input chain, the memory accesses do not
depend on each other and can execute in parallel.

Listing 4 shows an example of a multi-probe chain with three

inputs on the left side. Note that when loading successive inputs,

the accessed address depends not only on the input, but also on the

value read from the previous input. Similar to past works, the code

assumes that the content read from memory is always zero; hence,

adding it to the address creates a dependency without changing

the address. In comparison, in the multi-input chain on the right

side, the three input loads are independent and will be executed in

parallel.

A potential use of multi-probe chains, which is orthogonal to

this work, is to implement a majority gate [18]. As an example, a

majority-out-of-5 gate uses a multi-probe chain which accesses all

five inputs as a signal chain, and a fixed-delay chain with a delay

slightly larger than two cache misses as the control chain. The

Spec-o-Scope: Cache Probing at Cache Speed

control chain then wins the race if three or more of the inputs are

not cached, but loses if at most two inputs are not cached.

1 tapped_gate(out1, out2, out3, in1, in2, in3) {
2 t1 = *in1;
3 t2 = *(in2 + t1);
4 t3 = *(in3 + t2);
5 mispredict_ret(real_return + t3);
6 tout1 = *(out1 + delay1());
7 tout2 = *(out2 + dependent_delay2(t1));
8 tout3 = *(out3 + dependent_delay3(t2));
9 real_return:
10 return;
11 }

Listing 5: An example of a gate using a tapped multi-probe
chain. Each of the three outputs is the result of a race against
a different suffix of the control chain in Lines 2–4.

Start

Access

*in1

Access

*in2

Access

*in3

Mispredict

return

Misprediction

detected

Delay

chain 1

Delay

chain 2

Delay

chain 3

Access

*out3
Access

*out2
Access

*out1

Figure 3: A diagram of a gate which uses a tappedmulti-probe
chain. Delay chain 1 races against the full multi-probe chain.
Delay chain 2 races against the accesses to *in2 and *in3 in
the multi-probe chain, and Delay chain 3 races only against
the final access in the multi-probe chain.

Tapped Multi-Probe Chains. When a multi-probe chain is used

as the control arm of a weird gate, it is possible to attach multiple

signal chains, each at a different location in the multi-probe chain.

This creates multiple race conditions, between different suffixes of

the multi-probe chain and the corresponding signal chains.

An example of a gate that uses a tapped multi-probe chain is

shown in Listing 5. The same gate is depicted in Figure 3. The

gate includes a multi-probe chain that leads to the control action

(Lines 2–4 in Listing 5, left column of Figure 3). Additionally, the

gate includes three delay chains, each leading to a separate signal

(Lines 6–8, right three columns). Delay chain 1 does not depend on

any of the control chain’s accesses and therefore races the whole

control chain. That is, after executing the gate, *out1 is accessed
and cached if delay chain 1 is faster than the total accesses in the

control chain. The second delay chain (Line 7) depends on t1, the
output of the first access in the multi-probe chain. Consequently,

delay2() only begins executing after t1 is available, and thus races
only the memory accesses to *in2 and *in3. Finally, delay chain 3

races only the last memory access of the multi-probe chain.

6 MULTIPLE PROBES PERWINDOW
As we show in Section 4, using speculative gates can indeed reduce

the time it takes to perform the Prime+Scope attack. However, the

reduction is only from 70 to 54 cycles, and most of the gap between

scope time and cache access time still remains. As we cannot remove

essential operations, our core strategy for improving the temporal

resolution of the attack is to perform multiple scope steps within a

single speculative window. In this section, we outline the design of

our Spec-o-Scope gates that perform multiple probes of the same

memory location.

6.1 Spec-o-Scope Gate Design
The core observation behind the Spec-o-Scope gate is that due to the

dependency between successive memory accesses in multi-probe

chains, the chains can be used to perform multiple accesses to the

same memory address. Thus, to realize a Spec-o-Scope gate, we

use a tapped multi-probe chain, where all inputs point to the scope

address. We then set the signal chains such that they will lose the

race if the scope address remains cached throughout the execution

of the control chain, but win the race if any of the memory accesses

that the signal chain races against misses in the cache.

The resulting timing diagram is shown in Figure 4. In the left-

hand side of the figure, we see the case that no victim access is

detected, i.e., the scope address remains cached. In such a case, the

control arm of the gate executes before any of the signals, and none

of the outputs are cached. Conversely, when the victim accesses

the target cache set, it causes eviction of the scope address from

the cache, forcing a cache miss in the control chain. This cache

miss delays the execution of the control chain, allowing some of
the signal chains to complete (speculatively). Specifically, control

chains that are tapped before the access that misses in the cache, i.e.,

before the victim access, will win the race and access their outputs.

Conversely, control chains that tap after the victim access will only

start after the miss is handled and will therefore lose the race. This

scenario is demonstrated in the right-hand side of Figure 4, where

victim access caused the second scope to miss. Consequently, both

the first and second delay chains win the race and access their

respective outputs. Conversely, the third delay chain, which does

not race against the second scope, loses the race and its output is

not accessed.

After the gate executes, we can check the outputs to determine

whether a victim access has occurred, and if so, when. Specifically,

we test whether the output addresses are cached or not. If the first

output address is not cached, we know that the victim has not

accessed the monitored set during the execution of the Spec-o-

Scope gate. Conversely, if the first output address is cached, we

need to search for the first non-cached output address in order to

determine which of the scope accesses missed. We further recall

Gal Horowitz, Eyal Ronen, and Yuval Yarom

Start

Scope 1

Scope 2

Scope 3

Set return

address

Misprediction

detected

Delay

chain 1

Delay

chain 2

Delay

chain 3

Access

store 3

Access

store 2

Access

store 1

Misprediction

detected

Start

Scope 1

Scope 2

Scope 3

Set return

address

Delay

chain 1

Delay

chain 2

Delay

chain 3

Access

store 3

Access

store 2

Access

store 1

Figure 4: Timing diagram for multiple scopes. Left, without victim access; Right with victim access before the second scope.

that the attacker does not need to test the outputs after each gate

invocation, but can wait until the attack is completed.

Implementing the gates, particularly when the number of chains

grows, requires some tuning. In particular, we want to reduce the

size of the code that executes speculatively to fit within the reorder

buffer (ROB). Additionally, we would like to avoid contention on

CPU resources, including reservation stations, execution units, and

line fill buffers. For that, we select specific instructions to be used in

delay chains. To reduce contention, some chains use floating-point

instructions (in particular, sqrtsd) and some use arithmetic in-

structions (in particular, popcnt). The popcnt instruction is chosen

because it takes up 2 cycles, accepts any register, and is made up of

a single micro-op [9]. A concrete implementation of a three-scope

Spec-o-Scope gate is presented in Listing 6 in Appendix C. Code

for other gate sizes can be found at the repository.

6.2 Spec-o-Scope Gates Evaluation
We now evaluate the temporal resolution that our Spec-o-Scope

gates achieve. We first analyze the gates’ structure to assess the

number of cycles between each scope operation. We then measure

the gates’ execution time to assess if it matches the analysis re-

sults. Last, we complement the measurements by evaluating the

sensitivity of gates to event timing.

Gate analysis. The control chain of a gate consists of a sequence

of memory accesses. Assuming all hit the cache, as is typical for

the Prime+Scope attack, the latency of each such access is 5 cy-

cles [9]. Additionally, the gate includes some overhead, in the form

of argument passing, computation, and memory accesses that cause

mispredictions, as well as call and ret instructions. In Section 4.2

we measured the timing of the NOT gate, which is very similar to

our single-scope gate, as about 54 cycles. Consequently, we can

extrapolate that an 𝑛-scope Spec-o-Scope gate will take 49 + 5𝑛

cycles when no cache misses are executed.

1 2 3 4 5 6 7 8 9 10
Number of scope operations in gate

0

25

50

75

100

Cy
cle

s

y = 5.35x + 46.29

Figure 5: Median execution time of Spec-o-Scope gates.

Gate execution time. To validate the analysis results, we im-

plement ten Spec-o-Scope gates, each with a different number of

scope operations and corresponding signal chains. We measure the

execution time of 1 000 000 invocations of each gate on an Intel Core

i5-8250U, and report the median execution time. Figure 5 shows the

results. As we can see, the execution time increases linearly with

the number of scope operations. The figure also includes a trend

line, showing a slope of 5.35 cycles per scope operation, closely

matching the results of our analysis.

Gate sensitivity. To test the gate sensitivity, we use it to perform

the Prime+Scope attack against an artificial victim. For the test, the

victim and attacker run in two synchronized threads. The victim

Spec-o-Scope: Cache Probing at Cache Speed

0 2 4 6 8 10
Sample detection index

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48

W
ai

t d
ur

at
io

n
in

 c
yc

le
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6: Distribution of the indices of scope operations in
which the access is detected for different wait durations (1000
experiments per wait duration).

waits for a small number of cycles (0–50), before accessing a victim

address. Concurrently with the victim, the attacker thread executes

the Spec-o-Scope gate, noting the index of the scope operation in

which the attacker identifies the victim’s access. We repeat the

experiment 1000 times for each waiting duration and draw the

results in Figure 6. For each wait duration, the figure shows the

distribution of the indices of scope operation in which the access is

detected. That is, the probabilities in each row add up to 1.0.

As the figure shows, the longer the wait time is, the later in the

gate the access is detected, advancing roughly one index every 5

cycles. We thus conclude that our Spec-o-Scope gate is sensitive

enough to achieve a 5-cycle resolution for the duration of executing

the control chain.

6.3 Continuous Attacks
So far we discussed the operation of a single Spec-o-Scope gate.

The gate achieves a fine temporal resolution, of a scope operation

every 5 cycles. However, it is very limited and can only perform a

handful of accesses before the gate terminates. For a continuous

attack, the attacker must repeat invoking the gate multiple times.

A 10-scope gate has a latency of about 100 cycles. Thus, on aver-

age, we achieve a cache probing resolution of 10 cycles. However,

unlike, e.g., Prime+Scope, our scope intervals are not regular. In-

stead, we perform 10 scope operations at an interval of 5 cycles,

followed by a gap of about 50 cycles without scopes.

When a victim’s access falls inside this measurement gap, it

causes a cache miss in the first attacker scope of the following gate

invocation. Consequently, the attacker can detect such accesses. As

we will see in Section 7, when the 5 cycles resolution is required,

this detection can be used for rejecting traces where the desired

resolution cannot be guaranteed.

7 ATTACKING AES S-BOX IMPLEMENTATION
AES S-box-based implementations are generally considered less

vulnerable to side-channel attacks [3] compared to T-table-based

implementations. This is because the S-box table is much smaller

(one S-box table is comprised of 256 bytes or 4 cache lines, compared

to four T-Tables, each comprised of 1024 bytes or 16 cache lines).

Moreover, it is accessed at a much higher rate (16 accesses per round

compared to only 4). Overall, for each round, the probability that

a given cache line in the S-box table is not accessed is (3
4
)16 ≈ 1%

(compared to (15
16
)4 ≈ 77% for T-tables).

To witness an event where a given cache line is not accessed on

the first round of decryption, we will need 1/(3
4
)16 ≈ 100 traces of

decryption on average. However, an event where the cache line is

not accessed in the first two rounds of decryption occurs with a

probability of ≈ 0.01% and will require ≈ 10 000 traces on average

to witness it. This means that for a practical attack on S-box-based

implementations, an attacker should be able to distinguish if an

S-box cache line was accessed or not in a specificAES round (i.e., the
first round). In other words, we require an oracle O that can reveal

the exact round in which a specific part of the S-Box table was

first accessed. This requires a side-channel attack with a very high

temporal resolution. As each full round of AES takes ≈ 70 cycles,

an oracle that can distinguish between two consecutive rounds

requires us to sample at a rate faster than 35 cycles.

Our Spec-o-Scope is the first micro-architectural side-channel

attack that is able to sample with such high-temporal-resolution.

We note that previous attacks on S-box-based implementations

overcome this limitation by either interrupting the run of the en-

cryption code by exploiting non-trivial control of the operating

system [3, 28], utilize the now deprecated Intel TSX [5], or by mod-

ifying the original code [7].

For our attack, we follow the theoretical attack presented by

Cheng et al. [7], where we realize the required oracles with our

Spec-o-Scope attack. Their attack is made up of two main steps:

(1) Realize an oracle O1 that can determine if the first cache line

of the S-box (cache line 0) was accessed in the first round of

decryption or not. O1 is then used to find “witness” cipher-

texts, i.e., ciphertexts that do not access cache line 0 in the first

round. Based on these “witness” ciphertexts, we can recover

the top two most significant bits (MSBs) of each byte of the first

decryption round key (𝑘0).

(2) Using our knowledge of the two MSBs of each key byte, we

can now efficiently generate ciphertexts that are assured not to

access cache line 0 in the first round. We then realize an oracle

O2 that can determine if, for a given ciphertext, the first cache

line of the S-boxwas accessed in the second round of decryption.

Based on the resulting second round “witness” ciphertexts we

found, we can recover the remaining six least significant bits

(LSBs) of each byte of 𝑘0 and conclude our attack.

We will now present how we realized oracles O1 and O2 and the

experimental results of our attack. For more information about the

theoretical attack and the algorithms used for key recovery, we

refer the reader to a short recap in Appendix B and Cheng et al. [7].

7.1 First-Round Attack
To realize our O1 oracle, we require a very high accuracy measure-

ment of the time difference between the start of the AES decryption

and the first access to a given S-box cache line. However, we only

assume coarse-grain synchronization between our attack code and

the decryption process, which is not precise enough for our needs.

Gal Horowitz, Eyal Ronen, and Yuval Yarom

To overcome this limitation, we employ two attack threads. The

naive solution is to target the S-box’s cache line with one thread

and target some code line at the beginning of the AES decryption

code with the second thread. Although this can work, we have

experimentally found that this provides relatively noisy results.

Instead, we use a different approach that results in a cleaner

signal and also reduces the number of required measurements.

We use our Spec-o-Scope attack to measure the timing difference

between accesses to two different cache lines in the S-box. We run

two threads synced using a flag in shared memory, where each

thread runs our Spec-o-Scope attack with 10 probes per speculation

window. The first thread targets the first 64 bytes of the S-box

(cache line 0), and the second one targets the last 64 bytes (cache

line 3). Shortly after launching our attack threads, we run the AES

decryption code.

Measuring the time difference between accesses to two different

lines of the S-box results in two oracles in a single measurement.

If the timing difference is very small, we assume both cache lines

were accessed in the first round. If cache line 0 was accessed before

cache line 3, we assume cache line 3 was not accessed in the first

round, and vice versa.

We note that if both the first and last cache lines are not accessed

in the first round of decryption, the timing difference will be similar

to the case where both of them were accessed in the first round, and

our oracle will return an erroneous result. However, the probability

that these two S-box cache lines are not accessed on the first round

of decryption is (2
4
)16 ≈ 0.0015%. As our attack is designed to work

with noisy oracles, this negligible addition to the error rate does

not affect our attack, and getting two queries per measurement

and a much cleaner signal results in a significantly reduced overall

complexity.

7.1.1 Experimental Results. We ran our attack on the same CPU

configuration used in the previous experiments targeting a stan-

dard S-Box-based implementation extracted from OpenSSL 1.1.1i.
3

Similar to Cheng et al. [7] we do not prefetch the S-Box to the cache.

Figure 7 shows the distribution of the measured timing difference

for “witness” ciphertexts (i.e., didn’t access either cache line 0 or

cache line 3 in the first round) and “non-witness” ciphertexts that

accessed both cache lines in the first round. Note that the X-axis is

the difference between the scope index when access was detected

in the first attack thread (targeting cache line 0) and the scope index

when access was detected in the second attack thread (targeting

cache line 3). The difference we show is slightly skewed, as it does

not take into account the measurement gap (that occurs every 10

samples) into account. However, this does not seem to affect this

part of the attack. Using a threshold of ±20, we get an O1 oracle

(returns true for a witness ciphertext, i.e., if cache line 0 (cache

line 3) was not accessed in the first round) with a false positive rate

of only 0.01%, and a false negative rate of 21.75%.

Following Cheng et al. [7], we can use the resulting O1 oracle to

test guesses for the 2MSBs of each first round key byte. Recall that

we get twoO1 oracles in eachmeasurement, one for cache line 0 and

one for cache line 3. Figure 8 shows the results of targeting key byte

0 whose 2 MSBs are 0x3. We use our O1 oracle on 10 000 random

ciphertexts, clustered by their first byte’s MSBs’ value. For each

3
Code provided in additional materials.

75 50 25 0 25 50 75
Attacker difference

0.0

0.2

0.4

De
ns

ity

Non-Witness
Cache Line 0 Witness
Cache Line 3 Witness

Figure 7: Distribution of timing difference measured by our
O1 oracle attack for witnesses for cache line 0, cache line 3,
and when both cache lines were accessed on the first round.
Taken over 1000 random keys with 10 000 random ciphertexts
for each key.

ciphertext where the MSBs of byte 0 are also 0x3 cache line 0 will
be accessed in the first round (the XOR of the MSBs of ciphertext

and key at byte 0 is 0x0). In that case, as can be seen in Figure 8,

we don’t observe any witnesses for cache line 0. Similarly, if the

first byte’s MSBs’ are 0x0, cache line 3 is accessed, and we don’t

observe any witnesses for it.

In our attack, we recover the key byte’s MSBs value by choos-

ing the value that corresponds to the lowest number of witnesses.

Although we get some false negatives (witnesses that were not

detected), the very low false positive probability still allows us to

recover the correct key bytes MSBs with a relatively low number

of traces. Moreover, we can reuse the same measurements to find

the MSBs of all key bytes.

We ran our attack on 1000 different keys, testing the success rate

of our attack for different numbers of traces. Figure 9 shows the

success probability of recovering all 16·2MSBs of the first round key

as a function of the number of ciphertext traces. 1000 ciphertexts

are enough for a 81.5% success rate, while 2000 ciphertexts achieve

a 99.5% success rate. We note that measuring 2000 ciphertexts takes,

on average, only 0.56 seconds.

7.2 Second-Round Attack
We will now explain the attack on the second round that allows us

to recover the rest of the key bits. Recall that the 2 MSBs of the key

byes recovered in the first-round attack determine which S-Box

cache lines are accessed in the first round. This means that we can

use the recovered key bits to generate a set of ciphertexts that are

all first-round witnesses, i.e., they will not access cache line 0 on

the first round. Using this set, we will now look for second-round

witnesses. Our second-round attack has two main parts:

(1) We start by looking for a second-round witness ciphertext (i.e.,

a ciphertext that doesn’t access the first cache line of the S-Box

in the first two rounds) out of the set of first-round witnesses

we generate.

(2) Next, for each byte of the second-round witness ciphertext we

found, we iterate over all possible other 63 values for the 6

LSBs and test if the resulting ciphertext is also a second-round

witness or not. We then use this information to recover the

remaining 6 LSBs of the key byte.

Spec-o-Scope: Cache Probing at Cache Speed

0x0
60

40

20

0

20

40

60
Di

ffe
re

nc
e

Be
tw

ee
n

At
ta

ck
er

s

0x1 0x2 0x3

Non-Witness
Line 0 Witness
Line 3 Witness
False Positive

Corresponding Ciphertext Byte Value

Figure 8: The distribution of the difference measured between attack threads for witness and non-witness ciphertexts as a
function of the MSBs’ value of byte 0, measured for 10 000 randomly generated ciphertexts.

0 250 500 750 1000 1250 1500 1750 2000
Number of traces

0%

25%

50%

75%

100%

Su
cc

es
s r

at
e

Figure 9: The success rate for full 16 · 2 MSBs recovery as a
function of the number of traces used.

Assuming the ciphertext chosen in the first part is indeed a

second-round witness, for each byte index we get 2
6 = 64 cipher-

texts, where ≈ 34% of them are also second-round witnesses. We

enumerate all possible values for the 6 LSBs of the 𝑖’th key byte and

8 bits that are a function of first-round state bytes and affect the 𝑖’th

byte of the second-round state (see Appendix B for details). In total,

we need to guess 14 bits. For each guess, we can calculate which

of the 64 ciphertexts should be second-round witnesses, and we

correlate this guess with the results of our O2 oracle. To improve

the quality of the oracle, we use rejection sampling to discard traces

with measurements that might have fallen inside the gate’s mea-

surement gap (i.e., detected by the first scope inside a speculative

window). In the initial part of the second-round attack, where we

find a second round witness, we additionally use majority voting

(as detailed in Section 7.2.1), however, for this step of the attack,

we do not need to perform majority voting as the correlation-based

approach can handle errors.

7.2.1 Finding a Second Round Witness. For the first part of the

attack, we require a high-accuracy witness O2 oracle for a single

ciphertext. We improve our accuracy by using rejection sampling

to discard traces that have a high probability of being erroneous.

We discard any trace with a measurement that might have fallen

inside the windows’ measurement gap or results in a time difference

that is smaller than required for a second-round access. Figure 10

shows the distribution of the measured timing difference (after

rejection sampling) for ciphertexts that accessed cache line 0 on

the second round and for ciphertexts that accessed cache line 0 on

50 25 0 25 50 75 100 125 150
Attacker difference [Adjusted]

0.00

0.05

0.10

De
ns

ity

Second Round
Later Rounds

Figure 10: Timing difference distribution measured by our
attackers for ciphertexts that access cache line 0 on the sec-
ond round and ciphertexts that access it on later rounds (i.e.,
second round witnesses). Taken over 100 random keys with
5120 random first-round witness ciphertexts for each key.

later rounds (usually the third). As before, the timing difference is

measured at the difference between the index of the scope operation

where access was detected on the two attack threads. However, for

this step, we adjusted the difference to take the measurement gap

into account, i.e., we increase the index number by 10 after each

speculative window.

We tested our O2 oracle on 100 different keys. For each key, we

tested 5120 ciphertexts randomly generated from the set of first-

round witnesses (i.e., do not access cache line 0 on the first round).

Note that in our experiment, the number of ciphertexts that access

cache line 0 on the second round is ≈ 100 times larger than the

number of ciphertexts that don’t (the probability of not accessing is

≈ 1%). Our resulting O2 oracle is noisier than O1, with a false posi-

tive rate of 10.79%, and a false negative rate of 16.76%. The higher

error rate is caused by added noise due to longer time differences

measured. Moreover, as the number of non-witness ciphertexts is

much larger, even a relatively low false positive probability will

cause the attack to fail. To prevent false positives, whenever a trace

shows a ciphertext is a second-round witness, we repeat the mea-

surement 9 times. Only if a majority of the 9 measurements agree

that the ciphertext is indeed a witness will we use it for the sec-

ond part of the attack. Using this approach, this step of our attack

returns a second round witness with a high probability of ≈ 94%.

Gal Horowitz, Eyal Ronen, and Yuval Yarom

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

6 LSBs of the key byte

0.0

0.2

0.4

0.6

0.8
Pe

ar
so

n
Co

rre
la

tio
n

Figure 11: Correlation for each guess of the 14 bits in a single attack on key byte 0. The guesses are clustered by the key byte’s 6
LSBs value. The guesses for the correct key bits are highlighted, and the correct guess on all 14 bits is marked.

0 2500 5000 7500 10000 12500 15000 17500
Number of traces

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ilit

y

Selecting witness
Measuring 1024 for witness
Total

Figure 12: Histogram of the required number of traces to
complete the attack. Measured over 1000 random keys and
repeated 5 times for each key.

7.3 Recovering the Key Bytes’ LSBs
After finding a second-round witness, we start the final step of our

attack. For each byte 𝑖 of the ciphertext, we enumerate and measure

all possible values of the lowest 6 LSBs.

Figure 11 shows the Pearson correlation for all possible guesses

for the attack on key byte 0. For each guess of the key byte’s 6 LSBs,

we have 2
8 = 256 guesses for the other 8 internal state bits. For the

correct guess of key bits, we see a single guess for the state bits

that has a much higher correlation than all of the other guesses.

This is the one guess that is correct on all 14 bits.

We ran the full second round attack on 1000 different keys, re-

running the attack for 5 times for each key. Of the 5000 attacks,

48.36% recovered all 128 key bits correctly. Figure 12 shows a his-

togram of the required number of traces for each step of the second

round attack and the total number of traces. The main variance is

in the step where we select the witness ciphertext. The number

of ciphertexts we sample before finding a witness is a geometric

distribution with probability 𝑝 = 0.01. The actual number of traces

is larger because of rejection sampling and multiple measurements

for majority. The second step requires a total of 64 ·16 = 1024 traces

to recover all key bytes; again, the actual number is larger due to

rejection sampling.

7.3.1 Improving Accuracy with Post-processing. While getting a

50% success rate is arguably sufficient (we can just repeat the attack

on failure), we can significantly improve our success rate with

simple post-processing. If we look at the success rate for each byte

separately, across all 5000 · 16 key byte guesses, we get a much

higher success rate of 88%. This means that in a large number

of attack attempts, only a small fraction of the byte guesses are

incorrect (e.g., up to 4 incorrect bytes). Therefore, if we can identify

the incorrect guesses, we can simply brute force them to find the

correct values.

In the naive attack, we simply choose the key guess with the

highest correlation. Instead, we can consider guesses where the

maximal correlation is under a threshold (0.6) to be incorrect. Now,

for all attempts where at most 4 byte guesses are assumed to be

incorrect, we brute force the unknown 24 key bits. Using this ap-

proach, we were able to increase our success rate to 73.92% while

reusing the same traces as before.

7.4 Number of Required Traces for Full Attack
Full key recovery requires running both the first-round attack, and

the second-round attack. We experimentally find in Section 7.1.1

that 2000 decryption traces are sufficient to recover the 32 upper bits

of the key with probability 99.5%. We further find in Section 7.3.1

that the second round attack, which on average requires 7830 traces

succeeds with a probability of 73.92%. In total, we expect the attack

to require 9830 traces on average to recover the full key, and succeed

with a probability of 0.995 · 0.7392 ≈ 73.55%.

8 CONCLUSIONS
This paper presents the Spec-o-Scope attack, a micro-architectural

cache contention attack that achieves an order of magnitude im-

provement over the current state-of-the-art Prime+Scope attack.

We evaluate our attack experimentally, showing that it can discern

events with 5 cycles of precision. We also show how to use it to

efficiently recover the key from T-Table AES. Finally, we demon-

strate the first attack on unmodified S-Box AES that does not rely

on strong assumptions such as the ability to interrupt the victim

frequently or the availability of the now-deprecated Intel TSX.

Our Spec-o-Scope attack is based on advanced transient “weird

gates” that exploit complex interactions between different micro-

architectural components. We develop new general terminology

to describe these interactions and facilitate designing novel weird

gates that are based on them. We believe there is further potential

Spec-o-Scope: Cache Probing at Cache Speed

for enhancing attacks using such interactions and that future work

should investigate the usage of other micro-architectural compo-

nents and the best way to exploit them.

ACKNOWLEDGMENTS
We thank Antoon Purnal for the advice and assistance in reproduc-

ing the Prime+Scope attack.

This research has been supported by: an ARC Discovery Project

number DP210102670; the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Germany’s Excellence Strat-

egy - EXC 2092 CASA - 390781972; an ISF grant no. 1807/23; the

Blavatnik ICRC; the Len Blavatnik and the Blavatnik Family Foun-

dation; and Robert Bosch Technologies Israel Ltd.

REFERENCES
[1] Alejandro Cabrera Aldaya and Billy Bob Brumley. 2022. HyperDegrade: From

GHz to MHz Effective CPU Frequencies. In USENIX Security. 2801–2818. https:

//www.usenix.org/conference/usenixsecurity22/presentation/aldaya

[2] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and Yuval

Yarom. 2016. Amplifying side channels through performance degradation. In

ACSAC (ACSAC ’16). 422–435. https://doi.org/10.1145/2991079.2991084

[3] C Ashokkumar, Bholanath Roy, M Bhargav Sri Venkatesh, and Bernard L.

Menezes. 2020. “S-Box” Implementation of AES Is Not Side Channel Resistant.

HASS 4 (2020), 86–97. https://doi.org/10.1007/s41635-019-00082-w

[4] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan

Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache

Attacks Are Practical. In WOOT. USENIX Association. https://www.usenix.org/

conference/woot17/workshop-program/presentation/brasser

[5] Samira Briongos, Ida Bruhns, Pedro Malagón, Thomas Eisenbarth, and

José Manuel Moya. 2021. Aim, Wait, Shoot: How the CacheSniper Technique

Improves Unprivileged Cache Attacks. In EuroS&P. IEEE, 683–700.
[6] Randal E. Bryant and David R. O’Hallaron. 2016. Computer Systems: A Program-

mer’s Perspection. Pearson.
[7] Shing Hing William Cheng, Chitchanok Chuengsatiansup, Daniel Genkin, Dallas

McNeil, Toby Murray, Yuval Yarom, and Zhiyuan Zhang. 2024. Evict+Spec+Time:

Exploiting Out-of-Order Execution to Improve Cache-Timing Attacks. Cryptol-

ogy ePrint Archive, Paper 2024/149. https://eprint.iacr.org/2024/149

[8] Dmitry Evtyushkin, Thomas Benjamin, Jesse Elwell, Jeffrey A. Eitel, Angelo

Sapello, and Abhrajit Ghosh. 2021. Computing with Time: Microarchitectural

Weird Machines. In ASPLOS. 758–772. https://doi.org/10.1145/3445814.3446729

[9] Agner Fog. 2022. Instruction Tables: Lists of instruction latencies, throughputs

and micro-operation breakdowns for Intel, AMD, and VIA CPUs. https://www.

agner.org/optimize/instruction_tables.pdf.

[10] Agner Fog. 2023. The microarchitecture of Intel, AMD, and VIA CPUs. https:

//www.agner.org/optimize/microarchitecture.pdf.

[11] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.

Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA. 279–299. https:

//doi.org/10.1007/978-3-319-40667-1_14

[12] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template

Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Security.
897–912.

[13] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games –

BringingAccess-Based CacheAttacks onAES to Practice. In 2011 IEEE Symposium
on Security and Privacy. 490–505. https://doi.org/10.1109/SP.2011.22

[14] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and

Berk Sunar. 2016. Cache Attacks Enable Bulk Key Recovery on the Cloud. In

CHES. 368–388.
[15] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. S$A: A Shared Cache

Attack ThatWorks across Cores and Defies VM Sandboxing – and Its Application

to AES. In IEEE SP. https://doi.org/10.1109/sp.2015.42

[16] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014.

Wait a Minute! A fast, Cross-VM Attack on AES. In RAID. 299–319. https:

//doi.org/10.1007/978-3-319-11379-1_15

[17] David A. Kaplan. 2023. Optimization and Amplification of Cache Side Channel

Signals. arXiv/2303.00122. https://doi.org/10.48550/arXiv.2303.00122

[18] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen,

and Yuval Yarom. 2023. The Gates of Time: Improving Cache Attacks with

Transient Execution. In USENIX Security. https://www.usenix.org/system/files/

usenixsecurity23-katzman.pdf

[19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,Werner Haas,

MikeHamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,

and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In

IEEE SP. 1–19. https://doi.org/10.1109/SP.2019.00002

[20] Zili Kou, Sharad Sinha, Wenjian He, and Wei Zhang. 2022. Attack Directories on

ARM big.LITTLE Processors. In ICCAD. 62:1–62:9.
[21] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos,

and Kaveh Razavi. 2020. NetCat: Practical Cache Attacks from the Network. In

IEEE SP. 20–38.
[22] Andrew Kwong, Walter Wang, Jason Kim, Jonathan Berger, Daniel Genkin, Eyal

Ronen, Hovav Shacham, Riad S. Wahby, and Yuval Yarom. 2023. Checking

Passwords on Leaky Computers: A Side Channel Analysis of Chrome’s Password

Leak Detect Protocol. In USENIX Security. 7107–7124.
[23] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clémentine Maurice,

and Stefan Mangard. 2017. Practical Keystroke Timing Attacks in Sandboxed

JavaScript. In ESORICS (2). 191–209.
[24] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan

Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security. 549–564.

[25] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User

Space. In USENIX Security. 973–990.
[26] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-

Level Cache Side-Channel Attacks are Practical. In IEEE SP. 605–622.
[27] ClémentineMaurice, ManuelWeber, Michael Schwarz, Lukas Giner, Daniel Gruss,

Carlo Alberto Boano, Stefan Mangard, and Kay Römer. 2017. Hello from the

Other Side: SSH over Robust Cache Covert Channels in the Cloud. In NDSS.
[28] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:

How SGX Amplifies the Power of Cache Attacks. In CHES.
[29] Michael Neve and Jean-Pierre Seifert. 2006. Advances on Access-Driven Cache

Attacks on AES. In SAC. 147–162. https://doi.org/10.1007/978-3-540-74462-7_11

[30] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.

Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript

and their Implications. In CCS. 1406–1418.
[31] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In CT-RSA. 1–20.
[32] Colin Percival. 2005. Cache Missing for Fun and Profit.

[33] Antoon Purnal, Marton Bognar, Frank Piessens, and Ingrid Verbauwhede. 2023.

ShowTime: Amplifying Arbitrary CPU Timing Side Channels. In AsiaCCS. 205–
217. https://doi.org/10.1145/3579856.3590332

[34] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021. Prime+Scope:

Overcoming the Observer Effect for High-Precision Cache Contention Attacks.

In CCS. 2906–2920. https://doi.org/10.1145/3460120.3484816

[35] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled. 2021. Database

Reconstruction from Noisy Volumes: A Cache Side-Channel Attack on SQLite.

In USENIX Security. 1019–1035.
[36] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal,

Yossi Oren, and Yuval Yarom. 2019. Robust Website Fingerprinting Through the

Cache Occupancy Channel. In USENIX Security. 639–656.
[37] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi

Miyauchi. 2003. Cryptanalysis of DES Implemented on Computers with Cache.

In CHES. 62–76.
[38] Yukiyasu Tsunoo, Etsuko Tsujihara, Kazuhiko Minematsu, and Hiroshi Miyauchi.

2002. Cryptanalysis of Block Ciphers Implemented on Computers with Cache.

In ISITIA.
[39] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical

Attack Framework for Precise Enclave Execution Control. In SysTeX. https:

//doi.org/10.1145/3152701.3152706

[40] Ping-Lun Wang, Fraser Brown, and Riad S. Wahby. 2023. The ghost is the

machine: Weird machines in transient execution. In WOOT. 264–272. https:

//doi.org/10.1109/SPW59333.2023.00029

[41] Mengjia Yan, ChristopherW. Fletcher, and Josep Torrellas. 2020. Cache Telepathy:

Leveraging Shared Resource Attacks to Learn DNN Architectures. In USENIX
Security. 2003–2020.

[42] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W. Fletcher,

Roy H. Campbell, and Josep Torrellas. 2019. Attack Directories, Not Caches: Side

Channel Attacks in a Non-Inclusive World. In IEEE SP. 888–904.
[43] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A High Resolution, Low

Noise, L3 Cache Side-Channel Attack. In USENIX Security. 719–732.
[44] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-

VM side channels and their use to extract private keys. In CCS. 305–316.
[45] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2014. Cross-

Tenant Side-Channel Attacks in PaaS Clouds. In CCS. 990–1003.

https://www.usenix.org/conference/usenixsecurity22/presentation/aldaya
https://www.usenix.org/conference/usenixsecurity22/presentation/aldaya
https://doi.org/10.1145/2991079.2991084
https://doi.org/10.1007/s41635-019-00082-w
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://eprint.iacr.org/2024/149
https://doi.org/10.1145/3445814.3446729
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1109/sp.2015.42
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1007/978-3-319-11379-1_15
https://arxiv.org/pdf/2303.00122.pdf
https://doi.org/10.48550/arXiv.2303.00122
https://www.usenix.org/system/files/usenixsecurity23-katzman.pdf
https://www.usenix.org/system/files/usenixsecurity23-katzman.pdf
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1007/978-3-540-74462-7_11
https://doi.org/10.1145/3579856.3590332
https://doi.org/10.1145/3460120.3484816
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1109/SPW59333.2023.00029
https://doi.org/10.1109/SPW59333.2023.00029

Gal Horowitz, Eyal Ronen, and Yuval Yarom

A ATTACKING AES T-TABLES
IMPLEMENTATION

We will now show how to use our new Spec-o-Scope attack on

AES T-Tables Implementation. T-Tables-based implementations are

one of the main targets for micro-architectural attacks since the

seminal attack on AES by Osvik et al. [31]. Purnal et al. [34] show

that temporal information about T-Table accesses can significantly

improve the number of required traces when compared to the tradi-

tional attack on the upper nibbles of a 128-bit key. Indeed, because

the attack targets first-round accesses to the T-tables, in traditional

attacks, information is gained only whenever a cache line is not

accessed in the entire decryption process (implying that it is not

accessed in the first round). However, as a specific cache line is not

accessed during the entire decryption process with a probability of

only (15
16
)40 ≈ 7%, this requires a large number of traces before such

an event occurs. In contrast, an attack that can detect the specific

round in which an access happened can utilize every trace. As an

example use-case for our high temporal resolution attack, we use it

to target a 128-bit T-Table-based AES implementation and recover

the full key.

A.1 First-Round Attack
We use our Spec-o-Scope attack to measure the time difference

between the access to the first cache line of the AES code and the

access to the first cache line of each T-Table. We run two threads,

synced by a shared memory flag, each monitoring one of the lines,

while we decrypt random ciphertexts. To recover the upper nibble

of each key byte, we try guessing the correct value by enumerating

over each of the 16 options. For each such guess, we can predict

whether or not an access to the first line of the table will occur in

the first round of decryption for each ciphertext. For each guess,

we compute the Pearson correlation between the measured time

differences and the predictions over all ciphertexts. We expect the

correct nibble to have the highest correlation. Note that each nibble

determines only one of four accesses to the table in the first round,

and as such, the prediction might be incorrect even with the correct

key nibble guess. However, this is expected to occur only on (1 −
(15
16
)3) · 15

16
≈ 17% of the traces for the correct guess, and we still

expect to see a positive correlation between the measured times

and the prediction.

A.1.1 Experimental Results. We ran our attack on the same CPU

configuration used in the previous experiments targeting a T-Table-

based implementation extracted from OpenSSL 1.1.1i.
4
Figure 13

shows the results of an attack aimed at distinguishing between

accesses to the first cache line of table T1 that occur on the first

round, accesses that occur on the second round (required for the

second round attack), and accesses that occur at some later round.

Note that the X-axis is the difference between the scope index when

access was detected in the first attack thread (targeting the T-Table)

and the scope index when access was detected by the second attack

thread (targeting the first AES code line).

The difference we show is slightly skewed, as it does not take the

measurement gap (that occurs every 10 samples) into account. How-

ever, this does not seem to affect our correlation attack. Moreover, if

4
Code provided in additional materials.

20 10 0 10 20 30 40 50 60
Attacker difference

0.0

0.1

0.2

0.3

De
ns

ity

First Round
Second Round
Later Rounds

Figure 13: Timing difference distribution measured for ci-
phertexts accessing the targeted cache line in the first round,
the second round, and later rounds. Taken over 1000 random
keys with 4000 random ciphertexts for each key.

0 200 400 600 800 1000
Number of traces

0%

25%

50%

75%

100%

Su
cc

es
s r

at
e

Figure 14: The success rate of recovering 4 upper key nibbles
as a function of the number of traces used.

either of the two accesses happens during its attacker thread’s mea-

surement gap, it will be detected only in the first scope operation of

the next speculation window. This can cause a measurement noise

equivalent to up to 10 scope operations. Although we can detect

and ignore such measurements, we experimentally discovered that

they still have correlative information and are used in our analysis.

In contrast, samples with measured differences below a threshold

of 20 do not add any information, and we filter them out.

We ran our attack on 1000 different random keys and checked

our success rate for different numbers of traces. Figure 14 shows the

success rate of correctly recovering the top 4 most significant bits

(MSBs) of 4 key bytes (those accessing table T1 in the first round)

as a function of the number of traces used in the attack. Using 1000

traces, the attack is able to recover the 4 nibbles with a probability

of 98.5%.

A.2 Second-Round Attack
The second-round attack follows a similar methodology to the first-

round. Using our new-gained knowledge of the key’s upper nibbles,

we are able to sample random ciphertexts that do not access the

targeted cache line during the first round of decryption. This allows

us to focus on distinguishing between second-round accesses and

accesses on later rounds.

To recover the remaining 64 bits of the key we once again com-

pute the Pearson correlation between the measured timing dif-

ferences and access predictions in the second-round. To predict

whether an access in the second round falls within the targeted

Spec-o-Scope: Cache Probing at Cache Speed

0 500 1000 1500 2000 2500 3000 3500 4000
Number of traces

0%

25%

50%

75%

100%

Su
cc

es
s r

at
e

Figure 15: The success rate of recovering 4 lower key nibbles
as a function of the number of traces used.

cache line requires knowledge of 4 first-round key bytes, and a

single upper nibble in the second round. In total this requires enu-

merating 20 unknown bits.

We ran our attack on 1000 different keys and checked our success

rate for different numbers of traces. Figure 15 shows the success

rate of correctly recovering the bottom 4 least significant bits (LSBs)

of 4 key bytes as a function of the number of traces used in the

attack. Using 3000 traces, the attack is able to recover the 4 nibbles

with a probability of 97.6%.

A.3 Number of Required Traces for Full Attack
Full key recovery requires running both the first-round attack and

the second-round attack. We experimentally find that 1000 decryp-

tion traces are sufficient to recover the 16 upper bits of the key

with probability 0.985, so in total, we need 1000 · 4 = 4000 traces

to recover all 64 upper bits with a probability of 0.9854 ≈ 94.1%.

We further find that the second round attack is able to recover

the remaining lower 64 bits using 3000 traces with a probability

of 0.9764 ≈ 90.7%. In total, we expect the attack to require 7000

traces to recover the full key and succeed with a probability of

0.941 · 0.907 ≈ 85.4%.

B S-BOX AES THEORETICAL ATTACK RECAP
The following is a short recap of the theoretical attack on S-Box

AES, as described by Cheng et al. [7].

We attack an AES decryption algorithm 𝐷𝑘 (𝑐), where 𝑘 is a 16-

byte key. We assume access to two oracles, O1 (𝑐), which returns

true if cache line 0 of the S-box is not accessed by 𝐷𝑘 (𝑐) in the first

round, and O2 (𝑐), which returns true if cache line 0 of the S-box
is not accessed by 𝐷𝑘 (𝑐) during the first two rounds. Recall that a

cache line consists of 64 bytes, and thus the first 64 entries of the

S-Box fall within cache line 0. Equivalently, because the S-Box is

256 bytes long, an index 𝑖 will fall within cache line 0 if its 2 MSBs

are 0x0.
The attack, which recovers the first-round key 𝑘 , consists of two

steps; We first recover the 2 MSBs of each key byte using O1, and

then recover the remaining 6 LSBs of each key byte using O2.

First-Round Attack. Recall that the first round of AES decryption
accesses the S-Box once for each state byte, the bytes of 𝑐 ⊕ 𝑘 .

Therefore, if O1 (𝑐) is true, we conclude that for all 0 ≤ 𝑖 < 16,

the 2 MSBs of 𝑐 [𝑖] ⊕ 𝑘 [𝑖] are not 0x0, or equivalently, the 2 MSBs

of 𝑘 [𝑖] are not the 2 MSBs of 𝑐 [𝑖]. By sampling enough random

ciphertexts, we can rule out all but the correct value of the 2 MSBs.

Note that once we know the true values of these MSBs, we can

sample random ciphertexts that do not access cache line 0 in the

first round.

Second-RoundAttack. For the second-round attack, we first search
for a ciphertext 𝑐 for which O2 (𝑐) is true. We do so by sampling

random ciphertexts for which O1 (𝑐) is true and querying O2. We

recover each byte of 𝑘 separately. The following is a description for

𝑘 [0]. The process for the rest of the bytes is similar. To recover the 6

LSBs of 𝑘 [0], we query O2 with the 64 ciphertexts 𝑐 𝑗 for 0 ≤ 𝑗 < 64,

which are the same as 𝑐 for all bits except for the 6 LSBs of 𝑐 [0].
Specifically, 𝑐 𝑗 [0] = 𝑐 [0] ⊕ 𝑗 and 𝑐 𝑗 [𝑖] = 𝑐 [𝑖] for 𝑖 ≠ 0. Let 𝑠 𝑗 be

the decryption state just before S-Box substitution, e.g. 𝑠 𝑗 [𝑖] are
the indices used to access the S-Box. Based on the choice of 𝑐 𝑗 , it

can be shown that 𝑠 𝑗 [𝑖] = 𝑠0 [𝑖] for all 𝑖 > 3, and thus these do not

access cache line 0. Therefore, O2 (𝑐 𝑗) is determined by the 2 MSBs

of 𝑠 𝑗 [0], 𝑠 𝑗 [1], 𝑠 𝑗 [2], and 𝑠 𝑗 [3]. It can be shown that for some 𝑠′
0
,

𝑠′
1
, 𝑠′

2
, and 𝑠′

3
it holds that

𝑠 𝑗 [𝑖] = 𝑠′𝑖 ⊕ 𝐶𝑖 · 𝑆𝐵−1 (𝑐 𝑗 [0] ⊕ 𝑘 [0])
where 𝐶𝑖 is the corresponding InvMixColumns matrix entry and

𝑆𝐵−1
is the decryption S-Box. In particular, 𝑠′

𝑖
is independent of

𝑗 . Therefore, to know if O2 (𝑐 𝑗) is true it is sufficient to know the

2 MSBs of 𝑠′
0
, 𝑠′

1
, 𝑠′

2
, and 𝑠′

3
and the 6 LSBs of 𝑘 [0], 14 bits in total.

By enumerating all options and comparing the 64 predicted oracle

queries against the ground truth one can recover the 6 LSBs of 𝑘 [0].

C THREE-SCOPE IMPLEMENTATION
Listing 6 shows the implementation of a three-scope Spec-o-Scope

gate. Implementations of other gates can be found at the repository.

Gal Horowitz, Eyal Ronen, and Yuval Yarom

1 ; rsi = bank address
2 ; rdi = trash
3

4 jmp start
5

6 ret_misprediction:
7 lea rax, [rip+end]
8 add rax, rdi
9 mov [rsp], rax
10 ret
11

12 start:
13 ; Setup, make sure bank is cached
14 xorpd xmm0, xmm0
15 mov rax, qword ptr [rsi]
16 xor rdi, rax
17

18 ; Sample chain
19 xor rcx, rcx
20 cmp rdi, 0xBADF00D
21 sete cl
22 mov r8, qword ptr [rax + rcx]
23 mov r9, qword ptr [rax + r8]
24 mov r10, qword ptr [rax + r9]
25

26 ; Mispredict
27 mov rdi, r10
28 call ret_misprediction
29 ; --- Transient ---
30

31 ; First delay chain
32 mov rcx, qword ptr [rsi + 128]
33 cvtsi2sd xmm1, rdx
34 sqrtsd xmm1, xmm1

35 sqrtsd xmm1, xmm1
36 sqrtsd xmm1, xmm1
37 xor edx, edx
38 ucomisd xmm0, xmm1
39 sete dl
40 mov rcx, qword ptr [rcx + rdx]
41

42 ; Second delay chain
43 mov rcx, qword ptr [rsi + 136]
44 cvtsi2sd xmm1, r8
45 sqrtsd xmm1, xmm1
46 sqrtsd xmm1, xmm1
47 sqrtsd xmm1, xmm1
48 xor edx, edx
49 ucomisd xmm0, xmm1
50 sete dl
51 mov rcx, qword ptr [rcx + rdx]
52

53 ; Third delay chain
54 mov rcx, qword ptr [rsi + 144]
55 cvtsi2sd xmm1, r9
56 sqrtsd xmm1, xmm1
57 sqrtsd xmm1, xmm1
58 sqrtsd xmm1, xmm1
59 xor edx, edx
60 ucomisd xmm0, xmm1
61 sete dl
62 mov rcx, qword ptr [rcx + rdx]
63

64 end:
65

Listing 6: Implementation of a 3-scope Spec-o-Scope gate.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Cache Attacks
	2.2 Weird Gates
	2.3 Cache Attacks on AES
	2.4 Threat Model

	3 Spec-o-Scope Overview
	4 Speculative Time Measurement
	4.1 Weird Gate for Speculative Measurement
	4.2 Experimental Evaluation
	4.3 Scope Overhead

	5 Instruction Chains
	6 Multiple Probes Per Window
	6.1 Spec-o-Scope Gate Design
	6.2 Spec-o-Scope Gates Evaluation
	6.3 Continuous Attacks

	7 Attacking AES S-Box Implementation
	7.1 First-Round Attack
	7.2 Second-Round Attack
	7.3 Recovering the Key Bytes' LSBs
	7.4 Number of Required Traces for Full Attack

	8 Conclusions
	References
	A Attacking AES T-Tables Implementation
	A.1 First-Round Attack
	A.2 Second-Round Attack
	A.3 Number of Required Traces for Full Attack

	B S-BOX AES Theoretical Attack Recap
	C Three-scope Implementation

