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Abstract. In this paper we study the S-box known as Xi initially pro-
posed by Daemen in 1995 and very widely used ever since in Keccak,
Ascon, and many other. This type of ciphers is typically analyzed [in
recent research] in terms of subspace trail attacks [TeDi19] and vector
space invariants. An interesting question is then, when different spaces
are mapped to each other by translations with a constant. In this pa-
per we relax this fundamental question and we consider arbitrary sets
of points and their translations. We generalize previous S-box partial
linearization results on Keccak and Ascon from Eurocrypt 2017. We ba-
sically introduce new ways to linearize the Ascon S-box to the maximum
possible extent. On this basis we show further remarkable properties and
some surprising connections between [simultaneous] linear and [promi-
nent] differential properties. We exhibit a new family of maximum size
and optimal approximation properties with 11 points, beyond the max-
imum size of any set in the DDT table. We prove a theorem which
guarantees that this type of properties are stable by arbitrary input-side
translations which holds for all quadratic permutations. All this will be
placed in the context of previous work on classification of 5-bit quadratic
permutations.
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1 Introduction

Linear Cryptanalysis [LC] and Differential Cryptanalysis [DC] are classical at-
tacks in symmetric cryptography [block ciphers, stream ciphers and hash func-
tions]. These methods are typically claimed to be invented either at IBM and
NSA in the 1970s, or by academic researchers in late 1980s. In fact it is easy
to see that the frequently cited research articles from late 1980 / early 1990s
did not invent anything new. It is possible to see that the study of differential
and linear properties of ciphers is in many ways much older, directly and in-
directly. For example in Section 7 of [CoGr22] we learn that Enigma rotor 3
from 1930s has a very strong linear approximation modulo 26 true with proba-
bility 10/26, and that all early German and Swiss Enigma rotors in 1930s had
an exceptionally low number of invariant impossible differentials which number
has substantially increased in later 1940s Enigma rotors, cf. [CoGr22]. Likewise,



several very specific design criteria which amount to resistance against a variety
of linear, differential, higher-order differential and partial collision properties in
the block cipher T-310 were already studied in Eastern Germany in 1970s, cf.
[CoPoSc08,CSDPOSB17].

It is also important to see that in their very simple or “simplistic” versions,
where isolated “single” linear and differential properties are exploited, these
basic attacks simply do not work, or they do not work well, on any modern cipher
such as AES, Ascon or Keccak. Or so it seems: sometimes an attack works better
than predicted and contradicts the theory, cf. [CoQi20]. More importantly, many
advanced attacks published in recent years, are all about various ways to combine
multiple linear and differential properties with a systematic study of so called
“Connectivity Tables” and the DLCT framework, see Section 3 in [HaDeEi24].

This paper studies the question of existence of [large size] simultaneous linear
approximations with Ascon or/and Keccak S-box and a number of closely related
facts and concepts. At Eurocrypt 2017 researchers work on constructing collisions
on up to 6 rounds of Keccak with so called “connectors”, cf. Section 4.2. in cf.
[QSMG17]. Their “connectors” are based on partial linearization properties with
4 points known as LAS, which points in fact form an affine space of dim 2 on
both I/O sides of the S-box. with special focus on LSA properties related to
DDT() sets. In this paper we drop the requirement of points forming an affine
space of Dim=2,3,4, and we study more general types of linearization properties
with arbitrary sets of points. Most of the work inside this paper is applicable to
Ascon, Keccak, XooDoo, Icepole, Ketje, Keyak, and few other similar ciphers.

Another important family of cryptanalytic attacks are various subspace trail
attacks [TeDi19] which allow to predict the state of a cipher in terms of a se-
quence of affine spaces. Similar questions occur in many other families of invari-
ant attacks such as in [CARG19,GJNQSS16] and many other research papers
such as truncated differential attacks [TeAs16]. Here also we can drop the require-
ment of points forming a vector spaces. Then the classical question of repeated
or reused linear spaces in subspace trail attacks or invariant space attacks can
be simplified, and amounts to the study of pairs of sets or points shifted by a
bitwise XOR with a constant.

In this paper we study various self-similarity properties of Ascon and other
similar S-boxes. We mostly work with the Ascon S-box and we will discover
some interesting rather non-trivial properties. This will lead to some new defi-
nitions, attempting to propose some relatively robust measures of vulnerability
w.r.t. space/set reuse and simultaneous linear approximations. At the end we
will compare Ascon to other similar S-boxes and also study their ASIC imple-
mentation cost (and few other important parameters) in order to avoid unfair
comparisons. At this moment we do not attempt to design an actual invariant or
subspace attack on several rounds of Ascon or Keccak (or not in this paper). The
universe of potential attacks involving affine space trails and/or simultaneous lin-
ear and differential approximations [or equations or relations] is extremely large
and diverse [BiCaQu04,CARG19,CoQi20,GJNQSS16,LiIsMeYa21,HaDeEi24].



2 Notation and Basic Definitions

We summarize here our notations.

F2 Finite field F2 = {0, 1}
⊕ Bitwise XOR or bitwise addition modulo 2 in F k2

S-box In this paper all S-boxes are assumed to be bijective
F [], S[] Some cryptographic S-box F k2 → F k2
k In this paper k = 5 most of the time

HW Hamming Weight
BIBO Bad Input Bad Output property cf. [LMCFW23]
I/O Input and Output sides

LIO-5 5 linear relations involving terms from both I/O sides xi/yj
LAT Linear Approximation Table

α·x+β ·y=0 One LIO equation from LAT where · is the dot product
A|2 Example of LIO encoding for y1 = x1 ⊕ x3

DDT Differential Distribution Table
δin, δou Two 5-bit I/O differences

MI Mutual Information
DMI MI(δin; δou)

DMIS MI(δin, δou|x, x′ ∈ S)
y = F [x] Application of F to x, implies x, y ∈ F k2
xi, yi We number bits of x and y from 0 to k − 1
co−X Complement of set X, co−X = F 5

2 \X
LAS-2 Linearizable Affine Subspaces of dim 2
LSS-11 A Linearizable Sub Set of points of size 11∑
in(V ) XORs of all I/O for all x ∈ V ⊂ F 5

2∑
ou(V ) XORs of all outputs S[x] for all x ∈ V ⊂ F 5

2

UDB Undisturbed Bits property F [x]j ⊕ F [x⊕ δin]j = Cst for several j
Sin Linear function s.t. Sin[x] = the input of embedded Keccak S-box
Tou Affine function s.t. T−1ou [y] = the output of embedded Keccak S-box
Rot5 Circular bit rotation on 5 bits; Rot5[16] = 1
ρin Input-side rotation in Ascon, ρin[x] = S−1in ◦Rot5 ◦ Sin
ρou Output-side rotation in Ascon, ρou[x] = Tou ◦Rot5 ◦ T−1ou

kX Values of 5 internal products; equal to Sin[x]⊕ Tou[S[x]] in Ascon

2.1 Basic Notions

Definition 1 (LIO relation). For any subset of points V ⊂ F k2 we call an
LIO relation for an S-box F any affine or linear combination mixing input and
output bits xi ∈ F2 and yi ∈ F2 which is true with probability 1, i.e. it holds for
every pair x, y where x ∈ V and y = F [x].

LIO equations are a special case of “implicit equations” in mathematics,
a.k.a. “I/O equations” as defined in [CoDe08] which we restrict to consider only
implicit equations which are of degree at most 1 in both variables on both sides.



Our LIO and general I/O equations form a linear space stable by addition, and
therefore the number of non-zero LIO relations is always of type 2k − 1.

Example 1a - Ascon. For we consider the set V = {0, 3, 8, 9, 10, 11, 22, 23, 29, 31}.
For these 10 points by linear algebra we get exactly 3= 22−1 LIO relations which
are in hex: C|B 14|0 18|B which form a linear space of dimension 2. The last
one 18|B could be transcribed as: y0 ⊕ y1 ⊕ y3 = x4 ⊕ x3 where ⊕ denotes the
addition modulo 2.

Example 1b - Ascon. One can do better than size 10. It is possible to see
that there exist seven sets of 20 points out of 32, such that exactly 3 distinct
linear approximations (dim=2) exist and hold in all 20 pairs x, y and these sets,
with corresponding linear I/O masks in hex, are:

– 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 21, 22, 25, 26, 29, 30 1|6 E|4 F |2
– 0, 3, 4, 7, 8, 11, 12, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31 F |4 13|6 1C|2

It is important to notice that these two sets are equivalent by a XOR with
a constant x, this for any x ∈ {18, 22, 26, 30}, and this sort of translation
similarity situation happens extremely frequently in this paper.

Example 2 - Probabilistic Single LIO. Keccak S-box has an undesirable
property: it has 5 probabilistic LIO where yi = xi with probability of 24/32 or
0.75 each, see Property 2 in [LiIsMeYa21]. In this paper we study only determin-
istic LIO true with probability 1, when restricted to sets of say 11 values out of
32. This amounts to study of simultaneous linear I/O equations and the size
of our set can be used to effectively lower-bound the probabilities for various
sets of linear equations to hold jointly.

Definition 2 (LIO-k). We say that a set of points V ⊂ F k2 is LIO-k when it
has exactly 2k − 1 LIO (i.e. linear I/O relations).

An important notion already studied for Ascon and Keccak S-boxes is the
notion of LAS introduced at Eurocrypt 2017 cf. [QSMG17].

Definition 3 (LAS = Linearizable Affine Subspace). Let S be an S-box
on k bits. We call LAS or Linearizable Affine Subspace a set of points V which
forms an affine subspace such that

S[x] = A · x+ c ∀x ∈ V

where A is k × k matrix and c is a constant vector in F k2 .

In this paper we need to relax this notion slightly:

Definition 4 (LSS = Linearizable Sub Set). Let S be an S-box on k bits.
We call LSS or Linearizable Sub Set any set of points V such that

S[x] = A · x+ c ∀x ∈ V.



2.2 On Rotation Properties

Inside Ascon S-box there is anther S-box embedded: the Keccak S-box. This has
some very serious consequences as we will see in this paper. Keccak S-box has
many symmetries and in particular it is stable w.r.t. a rotation of five wires like
i 7→ i + 1 mod 5. With an affine variable change on each side, the internal
circular bit rotations of Keccak can be translated to Ascon as follows. These
functions are of order 5 and orbits for these functions are six sets of size 5 and
two singletons (size 1). These 6+2 sets play an important role in this paper and
will be later called by letters a, b, q, r, s, t, , y, z, cf. Table 11 in page 26. We recall
that ρin[x] = S−1in ◦ Rot5 ◦ Sin and ρou[x] = Tou ◦ Rot5 ◦ T−1ou . It goes without
saying that orbits for ρin are mapped to orbits for ρou by the Ascon S-box.

f specification

ρin 0,2,23,21,12,14,27,25,28,30,11,9,16,18,7,5,17,19,6,4,29,31,10,8,13,15,26,24,1,3,22,20
ρ2in 0,23,8,31,16,7,24,15,1,22,9,30,17,6,25,14,19,4,27,12,3,20,11,28,18,5,26,13,2,21,10,29
ρ−2
in 0,8,28,20,17,25,13,5,2,10,30,22,19,27,15,7,4,12,24,16,21,29,9,1,6,14,26,18,23,31,11,3
ρ−1
in 0,28,1,29,19,15,18,14,23,11,22,10,4,24,5,25,12,16,13,17,31,3,30,2,27,7,26,6,8,20,9,21
ρ5in 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

ρou 10,1,12,7,4,15,2,9,18,25,20,31,28,23,26,17,3,8,5,14,13,6,11,0,27,16,29,22,21,30,19,24
ρ2ou 20,1,28,9,4,17,12,25,5,16,13,24,21,0,29,8,7,18,15,26,23,2,31,10,22,3,30,11,6,19,14,27
ρ−2
ou 13,1,21,25,4,8,28,16,15,3,23,27,6,10,30,18,9,5,17,29,0,12,24,20,11,7,19,31,2,14,26,22
ρ−1
ou 23,1,6,16,4,18,21,3,17,7,0,22,2,20,19,5,25,15,8,30,10,28,27,13,31,9,14,24,12,26,29,11
ρ5ou 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

Table 1. Two linear internal isomorphisms or rotation functions relevant to Ascon.

With rotations, we can introduce a new type of property:

Definition 5 (LRS = Linearizable Rotation Stable Sub-Set). We call
LRS any set of points V , such that for every rotation of type ρain for any integer
a including a = 0, there exist a matrix A[a] and a vector c[a] such that

S[x] = A[a] · x+ c[a] ∀x ∈ ρain[V ]

2.3 On Maximal Size Properties

We also define:

Definition 6 (Maximum Size LAS/LSS/LRS). Let S be an S-box on k bits
and V be a set of points V ∈ Fn2 . We say that V is maximal size LAS / LSS /
LRS respectively if

S[x] = A · x+ c ∀x ∈ V.
and satisfies one of the previous definitions respectively AND the equality

above does no longer hold if we add any additional points to V .

Definition 7 (Maximum Size LIO-k). We say that V is maximal size LIO-k
if at least one of 2k − 1 LIO relations is no longer correct for all x ∈ V , if we
add any additional points to V .



2.4 On Mutual Information and DMI

A very nice measure of quality of the S-box is to measure the Mutual Information
between the input difference δin and the output difference δou across all possible
pairs of values. We call this quantity DMI and a simple formula to compute DMI
is given below. DMI is of course motivated by and closely related to Differential
Cryptanalysis and the DDT() sets we will study below in Section 3. In this paper
we will show that it is also very strongly related and correlated to LC and more
advanced forms of LC, and even with technical questions such Multiplicative
Complexity (MC) and ASIC implementation cost. We use a standard formula
for MI mixing joint and marginal probabilities found in wikipedia [wikiMI]. We
define:

Definition 8 (DMI and Restricted DMIS). We define DMI as follows:

DMI = MI(δin; δou), done for all possible pairs of inputs, more precisely:∑
∀δin,δou∈Fk

2

Prx(S[x]⊕ S[x⊕ δin]=δou) · log2
(
Prx(S[x]⊕ S[x⊕ δin] = δou)

2−k · Prx,x′(S[x]⊕ S[x′]=δou)

)

In this paper we will sometimes restrict this definition to a subset S ⊆ F 5
2

as follows, and consider all pairs within a certain subset. Then we see if this MI
can increase in specific cases. We define: DMIS = MI(δin; δou|x, x′ ∈ S), i.e.

DMIS =
∑

∀δin,δou∈F 5
2

Prx,x′∈S(x⊕ x′ = δin ∧ S[x]⊕ S[x′] = δou)

·log2
(

Prx,x′∈S(x⊕x′=δin∧S[x]⊕S[x′]=δou)

Prx,x′∈S(x−x′=δin)·Prx,x′∈S(S[x]⊕S[x′]=δou)

)
2.5 On 5-bit S-boxes and their DMI

In this table we recall some of the most prominent 5-bit S-boxes used in applied
and lightweight cryptography.

sbox specification

Ascon 4,11,31,20,26,21,9,2,27,5,8,18,29,3,6,28,30,19,7,14,0,13,17,24,16,12,1,25,22,10,15,23
Keccak 0,9,18,11,5,12,22,15,10,3,24,1,13,4,30,7,20,21,6,23,17,16,2,19,26,27,8,25,29,28,14,31
Icepole 31,9,18,11,5,12,22,15,10,3,24,1,13,4,30,7,20,21,6,23,17,16,2,19,26,27,8,25,29,28,14,0
Thakor 10,3,11,22,17,4,1,8,12,28,23,18,26,6,31,20,15,24,29,13,14,19,30,5,25,27,7,0,16,21,2,9
Fides 1,0,25,26,17,29,21,27,20,5,4,23,14,18,2,28,15,8,6,3,13,7,24,16,30,9,31,10,22,12,11,19

Table 2. Various cryptographic S-boxes on 5 bits studied and compared in this paper.



2.6 On Prediction of LAS-2 Properties

A well known folklore result is such that zero of LAS-2 properties exist for APN
S-boxes. This also holds for few other classes of cryptographically strong near-
optimal S-boxes such as based on power, inverse and exponential functions.

sbox #0s in DDT #8s in DDT DMI MC LAS-2

Ascon 707 20 1.910 5 80
Keccak 707 20 1.910 5 80
Icepole 687 10 1.819 6 70
Thakor 637 4 1.589 ? 45

Inv-GF32 527 0 1.125 8 0
Fides 527 0 1.125 8 0

Table 3. Basic parameters of S-boxes on 5 bits studied in this paper.

We claim that the number of LAS-2 properties can be predicted with a decent
level of precision from DMI and from DMI alone.

Fig. 1. A near-affine relationship which shows that DMI and LAS-2 properties are
related and that the number of LAS-2 mappings drops to zero below DMI ≈ 1.1.

To show this we have done extensive computer simulations with S-boxes
created essentially at random or by mutations from other known S-boxes, to show
that there is a strong near-affine relationship between the number of distinct
LAS-2 properties and the DMI value, see Table 1. We conjecture also that a
similar type of relationship hold for LSS properties and many other.



3 The DDT Connection

The idea of how DDT (Differential Distribution Table) reveals some affine spaces
and their transformations is not new, see Section 5.2 in [GJNQSS16]. This paper
explores further connections between LAS, LSS and DDT. Following [QSMG17]
we define:

Definition 9 (DDT Sets). Let S be an S-box on k bits. We define the following
set:

DDT (δin, δou) = {x ∈ Fn2 |S[x]⊕ S[x⊕ δin] = δou}

In Observation 2 in [QSMG17] the authors already show that the sets of
points of type DDT (δin, δou) are sometimes LAS of size 4 and are affine spaces,
sometimes they are of size 8 and not affine spaces, and contain LAS as subsets.
In addition we also observed that in many cases DDT sets of size 8 are perfect
disjoint unions of two LAS of size 4.

3.1 On Translations of Sets

It is possible to see that in S-boxes generated at random, the sets of type
DDT (δin, δou) behave like random sets which are stable by a translation by δin
and these sets are not affine spaces typically (cf. Section 5.2.3. in [GJNQSS16]).
However with Ascon or Keccak S-box we get some very special situations. For
example in Section 3.3 we will discover that all sets of the form DDT (0x10, δou)
are disjoint cosets and translations of each other by a constant, and they also
fix some bits on both sides in a regular and systematic way.

3.2 On Disjoint Sets of δou

We observe that in Ascon and in Keccak there are exactly 20 sets of type
DDT (δin, δou) which are of size 8 and are “behind” each 8 which appears in
the DDT table of Ascon. The set of δin for which this happens contains 5 ele-
ments, and there are 5 lines in the DDT table which contain four 8’s each. All
the output differences are also disjoint across all the four entries in each of 5
lines: the set of 20 δou which are used is a set of 20 distinct elements of F 5
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which is a bit surprising. All δin for which we obtain have the “undisturbed
bits” UDB property extensively studied by Tezcan in multiple papers for Ascon
[TeAs16,TeDi19] and other ciphers [MaTe14].



3.3 On DDT-related Sets Which Fix Some Bits

Definition 10 (ioab). We say that a set of points V ⊂ F k2 is ioab for two
integers a, b if for every x, y with y = S[x] there are a bits out of 5 fixed on input
side and there are b bits out of 5 fixed on the output side.

Example 1: We consider one of the LAS sets of size 4 already studied in
[QSMG17] which is 13,14,29,30 7→3,6,10,15 and which has a property which can
be summarized as ?11??=>0??1? in binary with 4 bits being fixed. This set is of
type io22: two input bits are fixed at input side, and two output bits are fixed at
output side, this simultaneously for all 4 points and their transformations y =
S[x]. In the same way the set 9,10,25,26 7→5,8,12,1 has property ?10??=>0??0?
and is of type io 22 also.

Example 2: Finally the union of the two sets listed above, which is exactly:
{9, 10, 13, 14, 25, 26, 29, 30} is of type io11. Moreover this set of 8 values is always
in the form (in binary):

C8 = {9, 10, 13, 14, 25, 26, 29, 30} ?1x?? => 0??x?

where x is the same value, x =0, or 1 on both sides. Moreover all possible
translations of this set C8 ⊕ b are also always of type io11, and they are always
of the form DDT (0x10, δou). Moreover these sets form 4 disjoint cosets with
4 distinct δou ∈ {0x9, 0xB, 0x1A, 0x18} covering the whole space of 32 points.
This type of translation uniformity is quite surprising.

Example 3: By exhaustive enumeration we found that there exists exactly
8 sets of type LSS-7 which are io11. For example the set {0, 5, 9, 13, 20, 24, 28}
which is of type ???0? =>?0??? or set {1, 4, 8, 12, 21, 25, 29} which is of type
???0? =>?1???.

Applications in Cryptanalysis: It is easy to see that if all Ascon S-boxes
fix some bit say yi = C at output of one round, then [avoiding the action of
round constants] at least 56 S-boxes in the next round will have xi = C at the
input of next round, for any constant C. This is due to the fact that 064 and
164 are invariants for all five linear diffusion layer permutations used in Ascon.
If in addition, our set of say 4 or 7 points is stable by XOR with 4=0x4, then
the action of round constants is neutral and has no effect.

On this basis the attacker can try to construct probabilistic invariant proper-
ties on full Ascon, which is very difficult task with a lot of coding and processing
of large datasets for favorable events, falling outside the scope of this paper.



4 Pairs of Hyperplanes in LAT and Related Sets

We would like to discover different ways how the Ascon can be partly linear
in the spirit of and generalizing our notion of LAS. Before we study arbitrary
sets of points, which we will do later and which quickly leads to computational
limitations, we are going to discover interesting sets of points by an indirect
method. We will now re-visit the question of partitioning the Ascon/Kecack S-
box space of 32 elements ex-nihilo, ignoring affine spaces or some actual DDT()
sets. We rather work in the spirit of LAT (Linear Approximation Table) and
we will consider all possible pairs of hyperplanes: (maximum dimension affine
spaces). It was already noted in [QSMG17] that we cannot hope that Ascon S-
box maps affine spaces of dimension 3 to a space of dim 3. By extension we can
hardly hope that this will happen with hyperplanes or at maximal dimension
4, and nothing like this was ever observed for any major cryptographic S-box.
Therefore we must consider a question of more probabilistic or approximative
nature:

Key Question: Is it possible that an S-box sends a “large” subset of some
(maximum size) affine space of dim 4 at the input side, to a “large” subset of
another affine space of dim 4 at the output side?

To see this we consider an arbitrary linear space Li with 16 elements on the
input side; and an arbitrary linear space Lo with 16 elements which is intended
to be used on the output side. This is related to the well known concepts of
Walsh coefficients, LAT tables, sometimes called correlation tables. We define:

Li = {x | α · x = 0} and Lo = {y | β · y = 0}

where · is the dot product. There are 961 = 312 possible pairs of linear spaces
Li, Lo. This corresponds to both α, β being non-zero, in other terms we discard
the first line and the first column of any LAT table as being degenerated.

In what follows let S−1 be the inverse of the Ascon S-box. We will denote
the complement by the following notation: co−X = F 5

2 \X.

Definition 11 (LAT Hyperplane Pair Approximation Test).
For any bijective S-box S : F k2 → F k2 We consider the following natural

partitioning of 2k elements into 4 sets:

S−1[Lo] ∩ Li ∪ S−1[Lo] ∩ co− Li ∪
co− S−1[Lo] ∩ Li ∪ co− S−1[Lo] ∩ co− Li

In this paper the S-boxes studied are always bijective and k = 5. In this case
these 4 sets are then a disjoint partitioning of 32 elements into 4 sets (which
is not true in general). It is then easy to see that the sum of sizes in each line
is 2k−1 = 16 and the same is true for each column. Therefore the cardinals of
each two sets lying opposite on each diagonal are identical [again because S is
bijective].

Let s00, 16 − s00 be the sizes of sets defined above in the 1st line. Then
in the second line the are swapped: we have 16 − s00, s00 elements. Then the



number of solutions to the LIO equation α · x + β · y = 0 is 2s00 by the union
of S−1[Lo]∩Li and the other corner with both sets complemented. Likewise the
number of solutions to a negated LIO equation namely α · x+ β · y = 1 will be
in general 2k − 2s00 and both equations are represented typically by the same
unique entry in LAT table. We recall that most authors define LAT in terms of
relative numbers or “biases” and our numbers are shifted by 2k−1 accordingly
and therefore we have:

LAT (α, β) = 2s00 − 2k−1

Example with Ascon. For example with Ascon S-box we have 336 entries
out of 961 with a partitioning of type 6+10+6+10 or vice versa. This means
that in LAT we will see 336 entries of type 16± 4 = 2 · 6 or 2 · 10 respectively.

Note. We rediscover a well-known fact that for a bijective S-box, all entries
in the LAT table are even. In this paper we emphasize the fact that our pairs of
sets of the same size are frequently (but not always) more deeply related: by a
translation with a constant.

Observations. It is possible to see that 6+10 situations or LAT (α, β) = ±4
are the most common case in all cryptographic S-boxes at size 5, and other
situations are less frequent in any cryptographic S-box. We cannot really hope
to have a split of type 0+16 or we would have an extremely weak cipher. We also
observe very high frequencies of type 8+8 which cases are perfectly balanced. It
corresponds to zeros inside an LAT table, and does not lead to any linear bias
whatsoever. The situations of type 4+12 are less frequent and correspond to
stronger biases with LAT (α, β) = ±8 and happen 40 times out of 961 with Ascon
S-box. There are also other possibilities such as 5+11 which do not happen in
Ascon/Keccak or other quadratic S-boxes studied, yet they do happen for other
S-boxes on 5 bits. In the Table 4 we report how all possible 961 pairs of affine
spaces of Dim 4 lead to a variety of situations in Ascon and Keccak.

4.1 Unexpected Properties and Translations

In this process we always generate pairs of sets of the same size. For example we
consider S−1[Lo]∩Li and co− S−1[Lo]∩ co−Li. Can these two sets be related
to each other, for example by a translation (XOR) with a constant?

For example in one case out of 961 with α = 20 and β = 11 we have:

S−1[Lo] ∩ Li = 0,3,20,21,29,31 7→ 0,4,10,13,20,23
S−1[Lo] ∩ co− Li = 4,6,12,13,16,17,18,19,24,27 7→ 3,7,9,14,16,19,25,26,29,30
co− S−1[Lo] ∩ Li = 1,2,8,9,10,11,22,23,28,30 7→ 5,8,11,15,17,18,22,24,27,31

co− S−1[Lo] ∩ co− Li = 5,7,14,15,25,26 7→ 1,2,6,12,21,28

It important to see that if these two sets with here s00 = 6 are related by
translation, then also the two other complementary sets of sizes 16 − s00 = 10
are also and always related by the same translation. This is due to the fact that
we complement (in several ways) inside affine spaces on two sides, and affine
spaces are more likely to be stable by certain (but not all) translations. Can this
be guaranteed to work? Yes, and we have the following result:



Theorem 1. We assume that if we translate the 1st set S−1[Lo]∩Li by a con-
stant C we get the last set co − S−1[Lo] ∩ co − Li, then the two remaining sets
on the other diagonal are also related by translation with the same constant C.

Proof. Our translation C is by definition a XOR of one element of Li with
parity=0 and one from co − Li with parity=1, therefore we have parity=1 and
C ∈ co − Li. Likewise we also have C ∈ co − S−1[Lo]. Therefore our constant
belongs to the last set: C ∈ co−S−1[Lo]∩co−Li. We define S by adding C to all
elements from the second set S−1[Lo]∩co−Li, in S we always swap the parity on
both sides shifting to the other coset of only two, so S ⊆ co−S−1[Lo]∩Li. Now
we know that the sets are of the same cardinality and so S = co−S−1[Lo]∩Li.
This ends the proof. ut

4.2 On Sets Related to LAT in Ascon and Other S-boxes

It is easy to see in this process we obtain 4 · 585 + 2 · (336 + 40) = 3092 distinct
sets of points of sizes 4,6,8,10,12. We start by two essential observations.

Fact 4.1. For all quadratic S-boxes on 5 and 6 bits, and for all sizes, all
inputs in all four LAT-related sets V add to zero at input side, i.e.

∑
in(V ) = 0.

Counter-Examples. This is not true in AES and for 5-bit S-boxes which
are not quadratic, e.g. Icepole.

Can Our Sets Be LSS? We conjecture that for S-boxes which are not
quadratic no set of any size generated as above are LSS, not even at size 4
(the easiest). It might seem that many sets of 4 will form an LSS property, and
the four I/O pairs can be interpolated by linear algebra in several ways (pairs,
space of dimension 5). However this is not true, the system of equations could
be contradictory and they systematically are with cryptographic S-boxes. More
precisely, all our sets of size 4 for quadratic S-boxes are such that the sum (XOR)
of 4 inputs

∑
in(V ) is zero, and the sum of 4 outputs

∑
ou(V ) = 0 is never zero.

This is true in Ascon/Keccak and for all quadratic S-boxes of size 5 where the
inverse is not quadratic, following Table 2 in [BoBiSa17]. Then it is impossible
to obtain an LSS, because an affine space should be sent to an affine space by
our affine transformation with matrix+vector.

In some cases our set of 4 points can be LSS, for example when the S-box is
quadratic and its inverse is quadratic. This happens for example with S-box class
17 from Table 1 in [BoBiSa17] all of which are quite weak. In this case all 96 sets
of sizes 4,6 generated are LSS, and 496 out of 2204 sets of size 8 generated are
LSS. Then at size 10 no sets are LSS even though plenty of LSS-10 properties
exist for this S-box, which can be easily interpolated from our later Table 13. For
Ascon, at size 12 we cannot hope to find an LSS-12 property for this S-box, they
simply do not exist, cf. Thm. 2 page 18. So far we never observed an example
where a LAT-related sets of size 4, 6 or 8 would be LSS for any “strong” or
cryptographically significant S-box.

Corollary and Observation. There is no intersection between two remark-
able sets of 80 properties on 80 points: 1) the 80 sets of 4 which are LAS-2 prop-
erties studied at Eurocrypt 2017 cf. [QSMG17], and which are also LSS-4, and
the 80 sets of size 4 found for Ascon related to LAT and which are all possible



sets of the form S−1[Lo]∩Li or similar of size 4. All these 80+80 properties with
4 points are disjoint:

∑
ou(V ) = 0 for the firtst 80 and never zero for the other

80.
Cases where

∑
ou(V ) = 0. We observed that for all quadratic S-boxes such

that the inverse is not quadratic, outputs for all sets of size 4, 6 almost never
add to zero at output side. For example in Ascon at size 6 there are only 2 such
examples out of 672 which is again our special unique pair α = 20 = ρin[31] and
β = 11 = ρ−1ou [31] where

∑
ou(V ) = 0.

On Entropy of
∑
ou(V ). We observed that only some specific output differ-

ences happen for various sets of size 4 or 6. For example there are 80 sets of size 4
and the output side sum is always y ∈ {2, 6, 8, 17, 24} which are also exactly those
5 where the output of the Keccak S-box has HW=1, i.e. T−1ou [y] ∈ {1, 2, 4, 8, 16},
and each of these 5 values is taken 16 times.

On
∑
ou(V ) with LSS In Section 8.5 we find 160 examples of LSS-10 where∑

ou(V ) = 0 is never zero. In contrast with our 32 A11 properties all values∑
in(V ) and

∑
ou(V ) are equally probable.

Relevance of
∑
ou(V ) = 0 in Cryptanalysis. In general, rare cases where∑

ou(V ) are those which will have an interest in cryptanalysis for various zero
sum attacks, cube distinguishers and many related concepts, see for example
[HuCu24].

all 8+8 6+10 4+12 0+16

961 585 336 40 0

Table 4. Ascon S-box interacting with 961 pairs of spaces of dim 4 related to LAT

4.3 On Rotation Invariance with our Partitions

It is possible to see that all sets obtained in our 961 partitions match another set
by a rotation such as defined previously as ρin. In our example above, we had
S−1[Lo] ∩ Li = 0, 3, 20, 21, 29, 31 etc, and this is a very special example which
example will be called later called B in Section 5 due to an LIO-6 property.
In this case, all our four sets of size 6 and 10 are stable by rotations ρin. By
inspection we verified that this type of internal rotational symmetry happens
just once in this exact case with α = 20 = ρin[31] and β = 11 = ρ−1ou [31].

In all other cases, an interesting question is if a rotation of one set can produce
another “twin” set of the same size with a different pair of α, β. The answer is
that this happens systematically for all sets generated no matter their size.



4.4 Translation Similarities

We have tried all 961 possibilities and found that in balanced cases 8+8, some-
times we get related sets of 8 points, and in all unbalanced cases 6+10 or 4+12
we always get related sets without any exception.

all 8+8 6+10 4+12 0+16

961 585 336 40 0

inp-shifted 240 336 40 0

unrelated 345 0 0 0

Table 5. Pairs spaces of the same size which are equivalent by translation with Ascon.

This is a bizarre situation like winning in a game of heads/tails in 336+40
cases in a row, which are exactly those cases which are unbalanced like 6+10,
and therefore potentially cryptographically significant. In fact however this prop-
erty is not specific to Ascon. Similar things happen to all other quadratic S-boxes,
cf. Table 15 in Appendix. In contrast it is important to see that this does not
happen at all for random S-boxes, not even with a low frequency, in other terms
we switch from 100% to 0% for all unbalanced pairs, as we will see in Table 7
below in page 14. First we will look at what happens in Icepole, when the S-box
is altered slightly by adding two high degree products, cf. Table 6 below.

Icepole 8+8 7+9 6+10 5+11 4+12 0+16

961 435 220 240 36 30 0

inp-shifted 120 10 160 6 20 0

unrelated 315 210 80 30 10 0

Table 6. Pairs of spaces equivalent by translation with Icepole S-box.

Finally we see that no weakness whatsoever is observed for Thakor, which
has DMI close to that of a typical random S-box, cf. Fig. 1.

Thakor 8+8 7+9 6+10 5+11 4+12 0+16

961 270 420 196 60 15 0

inp-shifted 0 0 0 0 0 0

unrelated 270 420 196 60 15 0

Table 7. Pairs spaces of the same size equivalent by translation with Thakor S-box.



In spite of random S-boxes being devoid of this type of vulnerability, in Table
15 in Appendix we show that most or all cryptographically significant quadratic
S-boxes have significant translation properties of this type.

4.5 Output Side Translations

We also note that nothing like this happens in a comparably strong proportion
at the output side of the Ascon S-box, cf. Table 8 below.

all 8+8 6+10 4+12 0+16

961 585 336 40 0

out-shifted 60 80 40 0

unrelated 525 256 40 0

Table 8. Equivalence by translation at the output side with Ascon.



5 On Discovery of New I/O Partitioning Properties

We have examined all the 961 possible pairs of dim 4 spaces, and looked at
various sets of sizes 4,6,8,10,12 to see if some of them achieve some particularly
large numbers of simultaneous LIO relations.

cases dim LIO-2 LIO-3 LIO-4 LIO-5 LIO-6 LIO-7

LIO # 3 7 15 31 63 127

4 from 4+12 40+40 0 0 0 0 0 80

6 from 6+10 336+336 0 0 670 2 0

8 from 8+8 4 · 585 0 700 1260 360 20 0

10 from 6+10 336+336 272 320 80 0 0 0

Table 9. Different LIO dimensions in all 961 pairs of spaces tried.

By brute force enumeration of 961 spaces we discover that there exist exactly
22 pairs of dim 4 linear spaces with as many as 63 simultaneous LIO relations.
These 22 selected simultaneous linear approximations of Ascon split into two
categories:

A 10 pairs Li, Lo of balanced type 8+8 already studied in [QSMG17] without
realizing that we obtain a large number of 63 LIO relations at size 8.

B 1 unique special (not previously studied) unbalanced pair of Li, Lo of type
6+10 with also 63 LIO albeit at size 6.

Observations on Set A of 8 · 8 points. For each of 10 pairs Li, Lo we
get two sets of 8 points. These 20 sets of points are exactly those which are
“contained” in the 20 Ascon DDT table entries equal to 8, and all of which can be
decomposed in 6 different ways as a disjoint (fact not noticed or not emphasized
before) union of one of 80 possible LAS (see Observation 1 in [QSMG17]). This
set of 20 sets of 8 points from DDT() is stable by arbitrary translations by a
constant.

Observations on Set B of 6 + 6 points. On the surface, the latter case is
just 1 of 336 of “inp-shifted” cases reported above with {0, 3, 20, 21, 29, 31} or the
same set XORed with 26 generated from the same pair Li, Lo. This partitioning
is however quite special and will also be relevant in few other places as we will
see below. We have LiB = {0, 1, 2, 3, 8, 9, 10, 11, 20, 21, 22, 23, 28, 29, 30, 31} and
α = 20 = ρin[31] and
LoB = {0, 3, 4, 7, 9, 10, 13, 14, 16, 19, 20, 23, 25, 26, 29, 30} and β = 11 = ρ−1ou [31].



6 Do Stronger Properties Exist?

We are now going to show a surprising result: it is possible to achieve 31 LIO
(dimension 5) with 11 points (larger than ever before) and this is the best we can
hope for with Ascon. Furthermore we will show that all our LIO-5 properties
of size 11 are also LSS-11, and that additional strong translation symmetry
properties hold.

We have used a SAT solver coding which allows to enumerate all possible
solution to this problem and show that no other solutions exist and that solutions
of size 12 or better do not exist. We found that exactly 32 solutions exist and
that they come in two pairs of 11 disjoint points, forming 16 joint dual LIO-5
approximations of Ascon spanning 22 out of 32 points. In order to study these
properties we define:

A11 = {0, 3, 4, 12, 16, 17, 19, 20, 21, 29, 31}
This set will be later also called si+ ti+{0} and it forms an LSS-11 property

for Ascon. We further define a special well-chosen dual or translation of A11

which will be called B11 = A11 ⊕ 0x1A, which is the same as shifting by 26 in
decimal. It is easy to see that B11 = {5, 7, 9, 10, 11, 14, 15, 22, 25, 26, 30} which
set will sometimes also be called ri + qi + {26} later, cf. Table 11 in page 26.

Disjoint Sets. We observe that A11 and B11 are disjoint, which is not obvi-
ous at all, as these sets are not affine spaces and the maximum size of intersection
of any of these sets with any affine space of Dim 4 is at most 8 not 16. However
at the output side, these sets are contained inside an affine space and its comple-
ment, which provides an easy explanation why they are disjoint. Moreover this
special Lo is precisely from the one special and unique case obtained above
out of 961 and called “Set B”, with 63 LIO and α = 20 = ρin[31] and β =
11 = ρ−1ou [31]. We have LoB = {0, 3, 4, 7, 9, 10, 13, 14, 16, 19, 20, 23, 25, 26, 29, 30}
and S[A11] = {0, 4, 10, 13, 14, 19, 20, 23, 26, 29, 30}.

New LSS-11 Properties. Now we observe that all our 32 = 16·2 properties
of size 11 are also LSS-11, which is not obvious at all here, and is not true in
general for other LIO-5 properties. To better visualize these properties, we list
only those 5 out of our 31 LIO properties which use exactly one output bit.

– A11 = 0, 3, 4, 12, 16, 17, 19, 20, 21, 29, 31 B|1 1C|2 F |4 17|8 16|10
– B11 = 5, 7, 9, 10, 11, 14, 15, 22, 25, 26, 30 12|1 F |2 E|4 1D|8 B|10

Translation Invariance. It is important to see that the fact that we found
32 properties is not accidental. In fact our property is invariant by arbitrary
input-side translation by a constant (but not on the output side) as we will
see later, see Thm. 3 below page 22. Moreover the 32 properties here work in
pairs, we get 16 pairs of disjoint 11+11 points obtained by translation from
A11, B11 which all give pairs of distinct LSS-11 approximations with disjoint
supports. These properties span uniformly the whole space, and for different
configurations of points there will be typically several way to approximate them
using these properties.



To summarize here is our strongest Ascon/Keccak simultaneous approxima-
tion LSS-11 result:

Theorem 2 (Ascon Family of LSS-11 Properties). There exists exactly 32
sets of size 11 such that the Ascon S-box is fully linearized on each set of 11
points under the form

S[x] = A · x+ c ∀x ∈ V

which are all of the form A11 ⊕ b where
A11 = {0, 3, 4, 12, 16, 17, 19, 20, 21, 29, 31} and no solution exists with 12 points.
All solutions at size 11 are isomorphic by a translation with a constant.

Proof. We have obtained this result by 2 methods. First by an automated
proof with a SAT solver returning UNSAT or enumerating 32 solutions. We
have used the CryptoMiniSAT 5.8 solver developed by Mate Soos. We have also
obtained the same result with a brute force method coded on GPU. ut

Output Side Translations. Nothing even remotely similar happens for
output side translations. All 1024 output side translations of all 32 set of type
A11 ⊕ s are distinct sets of 11 points.

On Cryptographic Quality of LIO Equations. The 5 equations we listed
above e.g. B|1 D|4 etc, could be qualified as BO or Bad Output, and Keccak is
in this respect substantially weaker than Ascon, see notions of BIBO for DDT
and LUT tables and comparison in Table 8 in [LMCFW23].

Do Better S-boxes Exist? If we replace the Ascon S-box by Fides S-box
which is an APN, then the highest possible number of points to achieve the same
type of full S-box linearization drops from 11 to 7, see Table 12 page 31.

On Inverse S-boxes. We have verified that the maximum size of LSS prop-
erty with the inverse S-box for Ascon is LSS-10. This is related to the fact that
in general cubic S-boxes are stronger and our LSS-11 properties are one-sided
properties.

On LIO and S-boxes with Quadratic Inverses. We have also verified
that quadratic S-boxes which have quadratic inverses achieve systematically big-
ger or worse LSS values, for example LSS-14 or even higher. This is true for all
such S-boxes without any exceptions (!). Therefore ONLY quadratic permuta-
tions in size 5 which have a cubic inverse qualify for cryptographic applications.
All the other are easily disqualified: for example they always have differentials
with probability at least of at least 0.5=16/32, see Table 1 in [BoBiSa17]. De-
tailed results on maximum achievable LSS-sizes in different S-boxes will be later
shown in Table 12 in page 31.

Applications. All the results in this paper apply also to Keccak S-box by
a simple affine variable change. This with a notable exception of Section 3.3,
where we look at some individual bits in Ascon.



7 Further Study of LSS-11 Properties Based on A11

We give here two examples of matrices obtained in LSS-11 properties, with for
A11 and B11 = A11 ⊕ 26. In the case of A11 we have:

y0
y1
y2
y3
y4

 =


0 1 0 1 1
1 1 1 0 0
0 1 1 1 1
1 0 1 1 1
1 0 1 1 0

 · (x0, x1, x2, x3, x4 )⊕


0
0
1
0
0


For example with input 4 = 00100 = x0x1x2x3x4 we get output 26 =

11010 = y0y1y2y3y4 in binary where x4/y4 represent the least significant bit.

In the case of B11 we have:
y0
y1
y2
y3
y4

 =


1 0 0 1 0
0 1 1 1 1
0 1 1 1 0
1 1 1 0 1
0 1 0 1 1

 · (x0, x1, x2, x3, x4 )⊕


1
0
0
0
0


For example with input 22 = 10110 = x0x1x2x3x4 we get output 17 =

10001 = y0y1y2y3y4 in binary where x4/y4 represent the least significant bit.

On Rank of LSS Matrices. We have verified that for all affine shifts of
our LSS-11 property, which are always of the form A11 ⊕ x, the matrices are
invertible in 30/32 cases for all x 6= 0 and x 6= 26. In 2/32 cases which are
exactly A11 and B11 for which the matrices are shown above, the rank drops to
4. It is a bit surprising to discover that the right kernel space of each matrix is
the same and contains exactly one non-zero element which is in both cases the
same and equal to 26.

Further Observations. In general the 32 matrices we find here are not
exactly random matrices and live in a space of a small dimension, see Section
8.3 below. Constant parts do not behave like random numbers either. In Section
8.4 we will discover that in half or 16/32 of these approximations of type A11⊕x,
the constant part on 5 bits is the same and equal to 4 = 00100.

7.1 Interaction of A11 and DDT Sets

The reader might think that the 11 points are related to DDT() sets, and have
a deep connection to differential cryptanalysis, while by its origin it was derived
from linear cryptanalysis. This is what we are going to show now. Initially,
research for some DDT set connection seems to fail very badly. We have checked
that the set of 11 and their 32 translations do NOT contain any of the total
2594 sets of 4,6,8 or 10 points studied in Section 5, nor one would be included
inside any one set of 12 points obtained in this process. However we discovered
that very interesting things happen when we study how these sets interact with
themselves (their own affine shifts):



Observations on Self Similarity of A11. We found that:

1. The intersection of A11 with another variant A11 ⊕ x is always not empty
except for B11 = A11 ⊕ 0x1A, when x = 26 = 0x1A.

2. The intersection of A11 with another variant A11⊕x is of maximum size 6 in
exactly 5 cases where x ∈ {4, 12, 16, 17, 19} which set will later be called t,
which are exactly five of those lines δin in the DDT of Ascon/Keccak S-box
which contain 8, and which are therefore exactly all the input differentials
in Ascon of maximum strength 8/32. These 5 δin also amount to half of 10
“undisturbed bits” UDB properties in [TeAs16,TeDi19].

3. The intersection of A11 with another variant A11 ⊕ x is of size 4 when x ∈
{1, 2, 3, 5, 7, 8, 14, 15, 20, 21, 23, 25, 28, 29, 31} which set will later be called
s ∪ r ∪ b and which 15 values are exactly those lines in DDT table which
contain any 4 numbers.

4. The intersection of A11 with another variant A11 ⊕ x is of size 2 when x ∈
{6, 9, 10, 11, 13, 18, 22, 24, 27, 30} which set will later be called q∪a which 10
values are exactly those lines in DDT table except for the special case of
x = 26 = 0x1A already used in B11.

Remark on A11 and Differential Cryptanalysis. Each time when inter-
section of two A11 is of maximum size 6, we obtain a property which concerns
16/32 points and yet captures 6/8 of the points which might interest the attacker
the most: those concerned by differentials true with maximum probability of
8/32. This question is further studied in Section 12 and leads to the study of the
notion of a DMI profile. This is also expected to lead new types of differential-
linear attacks, guess then determine collision finding attacks, or/and algebraic
key recovery attacks, where the attacker makes several assumptions about input
differences of several S-boxes, and these properties entail 2 · 31 additional linear
I/O relations between 20 bits.



Table 10. The DDT table for Ascon with focus on 5x4 sets DDT() of size 8.



8 A General Result for all Quadratic S-boxes

We recall that we call LSS or Linearizable Sub Set any set of points V such that

F [x] = A · x+ a ∀x ∈ V.

Theorem 3 (Translation Invariance of LSS for All Quadratic S-boxes).
Let F be a quadratic S-box on k bits. If there exists a set V forming an LSS-k
property for F [] for some integer |S| = k > 0, then for any affine constant d
the shifted set V ⊕d also forms another distinct LSS-k property, i.e. there exists
another matrix B and vector b such that:

F [x] = B · x+ b ∀x ∈ V ⊕ d.

Proof. In mathematics, the process of “polarization” of a polynomial in pro-
duces a unique symmetric bi-linear homogeneous form, from which the original
polynomial can be recovered. In the case of multivariate quadratic S-boxes, also
known in the literature as Dembowski-Ostrom polynomials, researchers typically
study their “difference function” cf. Section 8 in [FeHAPa21] or their “polar
form” cf. Appendix 1 in [PaGo98]. There are some cosmetic differences between
these notions such the presence of certain terms which are constants (e.g. F [0]).
In this paper we define:

∆F (x, d) = F [0]⊕ F [x]⊕ F [d]⊕ F [x⊕ d].

It is easy to show that our polar form is a bi-linear multivariate function
in k + k variables, and when one variable is fixed, it becomes a multivariate
linear function in k variables, also known as a “linearized polynomial”. These
well-known facts are sufficient to prove our theorem. By the initial property
we have F [x] = A · x + a ∀x ∈ V and we are now going to replace F [x] by
∆F (x, d)⊕ F [0]⊕ F [d]⊕ F [x⊕ d] which gives:

F [x⊕ d] = (∆F (x, d)⊕A · x) + (a⊕ F [0]⊕ F [d]) ∀x ∈ V
which is the same as:

F [x] = (∆F (x⊕ d, d)⊕A · (x⊕ d)) + (a⊕ F [0]⊕ F [d]) ∀x ∈ V ⊕ d

and given that when d is fixed our ∆F (x, d) becomes linear, we obtain:

F [x] = (∆F (x, d)⊕A · x) + (∆F (d, d)⊕ F [0]⊕ a⊕ F [d]⊕A · d) ∀x ∈ V ⊕ d

which provides an explicit formula of type F [x] = B · x + b ∀x ∈ V ⊕ d
which is exactly the explicit simultaneous linearization property we claimed. ut

Corollary. It follows that all the 80 of LAS-2 properties from Eurocrypt
2017 cf. [QSMG17] are also stable by arbitrary translations at the input side. A
detailed enumeration shows that they split into two disjoint classes of 40 cosets
stable by arbitrary translations and that properties spanned with 15 · 8 sets
DDT() of size 4 and 5 · 4 sets DDT() of size 8, both cover uniformly the whole
set of 80 LAS-2 properties several times.



Observations. Our result is somewhat very surprising, because we have
first fully linearized a non-linear S-box on a subset, where it is equal to a
multivariate linear function with a matrix and a constant, and then we claim
that simple transformed variants of our linear property cover the whole space
F k2 several times, very much as if the original S-box F [] was linear.

Output Side. This result very rarely holds with output side translations like
y⊕S[A11⊕ x]. Moreover, with numerous cryptographic S-boxes we checked, we
found that the maximum LSS size of an inverse S-box, is typically strictly lower
than the best LSS size for the initial S-box. This with some exceptions when for
example the inverse box is quadratic (in Ascon/Keccak the inverse is cubic). A
quadratic inverse never happens for any “good” cryptographic S-boxes in size
5, or all S-boxes which are quadratic in both directions are extremely weak, as
shown very clearly by comparison of Table 1 and Table 2 in [BoFiPe13].

Violations of Thm. 3. We have verified that our result is NOT true for
Thakor and Icepole S-box, which are not quadratic. Therefore these two ciphers
could have better resistance against various attacks with translations of affine
spaces, and with translations of arbitrary sets, and with multiple related simul-
taneous linear approximations, leading simply to a bigger variety of affine spaces
and sets which will be harder to connect together in some attack.

Applications of Thm. 3. Our similarity result of Thm. 3 holds for an
overwhelming majority of 5-bit S-boxes used in applied cryptography including
SHA-3, SHAKE and Ascon.

8.1 Ascon, Dual or More Low-MC Approximations

An interesting question is, since A11 and B11 are disjoint, is it possible to com-
bine both these very “simple” entirely linear approximations of the whole S-box,
into one single “super-approximation” true with a larger probability of 22/32. A
key question is how, and what might be a reasonable way to evaluate the “qual-
ity” of such approximations which will no longer be linear. One possible measure
of quality could be the MC (Multiplicative Complexity). For example we checked
that for 13 points but not more, the whole S-box can be approximated by a func-
tion with MC=1. This should have some serious consequences in probabilistic
variants of current attacks on Ascon with zero sums and cube distinguishers. In
this paper we propose another quality metric for such approximations, and this
metric is studied in later Section 12.



8.2 On Unicity of Matrices A

Following on A11 and all their shifts, we have checked that these matrices are
unique and no more solutions exist. In general these matrices do not have to be
unique at smaller sizes. The matrix unicity here is easy with 11 points, however
it will not hold for 80 LAS-2 properties from [QSMG17], with 4 points only,
the solutions A cannot be unique for just 4 points. Two examples of actual
matrices are shown in Section 7 which section also explains that these matrices
are invertible in all 30/32 cases except precisely with A11 and B11 themselves.

8.3 On Affine Dimension of Set of Matrices A

Now we are going to show that the set of matrices A here is much smaller
and simpler than expected, and forms an affine space of small dimension. We
start by observing that our proof technique for Thm. 3 provides an interesting
bonus property and some insights. Let k = 5 and consider the Ascon S-box.
Here potentially this space of unique matrices could span a linear space of large
dimension up to 25. However, in our proof we see that every new matrix is of the
form (∆F (x, d)⊕A · x) discarding any constants. Knowing that ∆F is bi-linear,
we can consider some basis of 5 elements for d, we obtain that our set matrices
must be an affine space and has dimension at most 5. In spite of this property,
we found that all 32 these matrices are all distinct, for both Ascon and Keccak
S-box.

8.4 On Entropy of Constant Parts in A11 Approximations

Let us denote by M11[d] a unique matrix such that:

F [x] = M11[d] · x+ φ[d] ∀x ∈ A11 ⊕ d.

where each entry of our 5x5 matrix M11[d] is an affine function of 5 bits of d,
and for some “constant part” function φ : F 5

2 → F 5
2 . Then we can observe that

in 16 out of 32 cases, the constant φ[x] = F [0] = 4. A similar result is true for
Keccak: in half of cases that constant is equal to 0 = F [0].



8.5 Almost-Maximal size LSS-10 Properties

It is easy to see that the number of LSS−m properties increases as m goes down.
For example, any subset of 10 inside an LSS-11 property form a valid albeit trivial
LSS-10 property. In addition we found there exists exactly 5 non-trivial LSS-10
properties. They form 5 distinct classes or orbits w.r.t. translations of LSS-10
properties of Ascon. Each these 5 classes generates 32 distinct translations of
size 10 following Thm. 3. We list these remarkable sets of 10 here together with
a XOR of all elements at output side, which is a translation invariant for all
these sets being of even size. We have exactly 5 classes each containing 32 affine
shifts:

– 0,1,3,4,5,9,16,19,20,24 Σou(V )=5
– 0,3,4,15,16,17,19,20,21,28 Σou(V )=7
– 0,4,8,11,17,21,23,24,25,27 Σou(V )=14
– 0,2,3,4,12,14,16,19,20,31 Σou(V )=15
– 0,2,4,12,14,16,17,20,21,29 Σou(V )=25

Note. The set of 5 sums Σou(V ) we obtain here is not at all a random set of
5 points, it is the same set which we will later denote by ri = {5, 7, 14, 15, 25} ⊂
B11.

On Matrices Involved. This class of properties leads to 5·32 = 160 distinct
approximation matrices. Most of these matrices are invertible however a large
number of these are not invertible and of rank 4.

Rotation Invariance of all 160 of non-trivial LSS-10.
It is possible to see that all internal rotations due to embedded Keccak S-box such
as say ρ2in, cf. Table 1, will act on these 5 classes with their shifts, transforming
sets of 10 into different sets of 10 from another class. Hence we have obtained
160 LRS-10 properties. It goes without saying that the sums of all elements in
these sets are also preserved by rotations, and the set of ri = {5, 7, 14, 15, 25} is
stable by our rotations such as type ρin and their combinations.

Rotation Invariance of LSS-11. In contrast, rotations do not always
transform sets of type LSS-11 into other sets of type LSS-11. We have veri-
fied that only exactly 2/32 properties of type A11⊕ b obtained from Thm. 2 are
invariant by rotations. These 2/32 are also exactly those where approximation
matrices are not invertible, cf. Section 7.

On Dual Action and Group Theory Questions. We have a set of 160
sets of 10 points where two transformations: arbitrary translations such as ρ2in,
and arbitrary translations with a XOR with a constant, both act and stay within
the same set of 160 properties. It is important to note that shift

Rotations also act at the output side, but translations typically do not work
on the output side. We leave for future research the study of the group generated
by these two operations. It goes without saying that there are many remarkable
identities there to be discovered and this work can be extended to other S-boxes
based on Daemen Xi family and other sets of sizes other than 10.



9 Order Emerging From Chaos

It is time to define a new classification of points in Ascon S-box and introduce
some new notations. The same exact things could be done for the Keccak S-box.
It is important to see that S-boxes in odd size have some interesting properties,
and more specifically at size 5 we can have some very unique properties which
other S-boxes of size say 6 will not have, or things will be very different there. We
claim that there exists a unique and natural partitioning of all the 32 points
into 6 sets of 5 points and two sets of size 1. The easiest way to define our
partitioning is to consider that, buried inside Ascon S-box, is the Keccak S-box
which is stable by simultaneous rotation on both sides, i.e. it is SI or Shift-
Invariant, see Def. 6.1 page 111 in [DaPhD95]. We simply partition all 32 points
into sets stable by rotation.

However, with Ascon things are less simple than with Keccak. tWe have two
rotation functions different on each side of the S-box, which were specified in
Table 1. At the end we get pairs of rotation-stable sets which are different on
each side of the Ascon S-box, which however are the same from the point of view
of the Keaccak S-box hidden inside. In the following table we report the input of
the Ascon S-box, the output, and two “internal” values: corresponding to input
of Keccak S-box which is called Ki, and the output of the Keccak S-box, which
is called Ko. In addition in the middle column we report also the XOR of these
two values Ki and Ko which quantity we call Kx. To summarize we obtain the
following partitioning of Ascon set of 32 states into:

name Ascon input Keccak Ki Kx=Ki⊕Ko Keccak Ko Ascon output
a 6,13,18,24,27 7,14,19,25,28 1,2,4,8,16 15,23,27,29,30 3,7,9,16,25
b 1,2,8,23,28 3,6,12,17,24 1,2,4,8,16 11,13,21,22,26 11,22,24,27,31
q 9,10,11,22,30 15,23,27,29,30 1,2,4,8,16 7,14,19,25,28 5,8,15,17,18
r 5,7,14,15,25 11,13,21,22,26 5,9,10,18,20 1,2,4,8,16 2,6,12,21,28
s 3,20,21,29,31 5,9,10,18,20 5,9,10,18,20 3,6,12,17,24 0,10,13,20,23
t 4,12,16,17,19 1,2,4,8,16 1,2,4,8,16 5,9,10,18,20 14,19,26,29,30
y 0 0 0 0 4
z 26 31 0 31 1

Table 11. Our special space partitioning in Ascon which corresponds to classes of
points stable by rotation for the embedded internal Keccak S-box.

If there is no ambiguity we will denote these sets by single letters a, b, q, r, s, t, y, z.
At places where it is not clear on which side of the S-box we are, or when we
mix both sides, we will use the exponents such as ai and ao to distinguish input
and output sides, which is a common notation used in in [CARG19] in the study
of non-linear invariant attacks on block ciphers. For example we write

ti = {4, 12, 16, 17, 19}
If there is no ambiguity we denote by the S[] the Ascon S-box, and we have

by definition and by construction:

S[ai] = ao S[ti] = to etc..



Likewise we are going to also sometimes use a Keccak variants of some sets,
to write things like,

tKi = {1, 2, 4, 8, 16} and tKo = {5, 9, 10, 18, 20}

9.1 Initial Observations About Our Sets

All our sets come in pairs, however the pairing is not the same on both sides:

ai = bi ⊕ 26⊕ 0 ti = qi ⊕ 26⊕ 0 si = ri ⊕ 26⊕ 0 yi = zi ⊕ 26⊕ 0

ao=ro⊕S[26]⊕S[0] to=bo⊕S[26]⊕S[0] so=qo⊕S[26]⊕S[0] yo=zo⊕S[26]⊕S[0]

In Section 7.1 we discovered that lines in Ascon DDT table can be partitioned
into disjoint sets of lines with highly uniform content and properties:

1. 1 line with δin ∈ yi which contains zeros and 32.
2. 11 lines δin ∈ zi ∪ qi ∪ ai which contain only 2s.
3. 15 lines δin ∈ si ∪ ri ∪ bi which contain only 4s.
4. 5 lines δin ∈ ti which contain only 8s.

It is further possible to see that content of DDT () sets in various lines can
be bijectively mapped to the content of other DDT () sets in other lines of the
same class by more or less arbitrary translations of sets by a constant.

We observe that the set ti = {4, 12, 16, 17, 19} which are exactly five input
differentials δin in Ascon of maximum strength (DDT=8). These 5 are also half
of 10 known “undisturbed bits” UDB properties in [TeAs16,TeDi19]. There are
two special singleton sets y and z stable by translation 0, 26 which were those
involved in flipping between A11 and B11. They correspond to two fixed points
in Keccak. These two points play an important role and are involved in countless
remarkable identities. For example sum of all five values in ti is 26=zi. Sum of
all five value in to is 4=yo. Similar properties hold for all six classes and on
both input and output sides. We can relate these sets to our pair of a unique
special maximum size linear spaces called Li/Lo and discovered in Property B
in Section 5, a special and unique partitioning of type 6+10 leading to LIO-63.
Then we observe that s is the complement of A11 inside Li excluding the special
point. One can define a as a unique set of 5 which is a complement of S[A11]
inside our special linear space Lo of dim 4, this at the output side, i.e. S[a] and
S[A11] forms a linear space which linear space is actually the same as Lo

9.2 Further Remarkable Identities

Here we define multiple derived sets. For example we write zi⊕ bi to enumerate
all possible XORs on 5 bits of an element from z on input side, with an element
from b on the input side. Given that the origins of these sets is the study of
various mappings in Ascon which match other when we translate them by a



constant and in relation to various affine spaces, we frequently obtain sets which
can also be obtained in a different way.

Fact 9.1. The reader can verify that the following identities hold:

ai = zi ⊕ yi ⊕ bi ao = zo ⊕ yo ⊕ ro
qi = zi ⊕ yi ⊕ ti bo = zo ⊕ yo ⊕ to
ri = zi ⊕ yi ⊕ si qo = zo ⊕ yo ⊕ so

Fact 9.2. There are also many identities which involve basic sets of 11 points.
si ∪ qi ∪ yi = bi ⊕ bi ri ∪ ti ∪ zi = ai ⊕ bi
bi ∪ qi ∪ yi = si ⊕ si ai ∪ ti ∪ zi = ri ⊕ si
si ∪ bi ∪ yi = qi ⊕ qi ri ∪ ai ∪ zi = ti ⊕ qi

which bears some similarity and could be compared to:

Ai11 = si ∪ ti ∪ yi Bi11 = qi ∪ ri ∪ zi
Ao11 = so ∪ to ∪ yo Bo11 = qo ∪ ro ∪ zo

Fact 9.3. Many more such identities exist with XORs of 3 elements, many
of which also give sets of exactly 11 points:

ao ∪ so ∪ yo = to ⊕ to ⊕ yo bo ∪ qo ∪ zo = ro ⊕ ro ⊕ zo
ao ∪ to ∪ yo = so ⊕ so ⊕ yo bo ∪ ro ∪ zo = qo ⊕ qo ⊕ zo
to ∪ so ∪ yo = ao ⊕ ao ⊕ yo ro ∪ qo ∪ zo = bo ⊕ bo ⊕ zo

ai ∪ ri ∪ zi = ti ⊕ ti ⊕ zi si ∪ qi ∪ yi = bi ⊕ bi ⊕ yi
ai ∪ ti ∪ zi = ri ⊕ ri ⊕ zi si ∪ bi ∪ yi = qi ⊕ qi ⊕ yi
ri ∪ ti ∪ zi = ai ⊕ ai ⊕ zi bi ∪ qi ∪ yi = si ⊕ si ⊕ yi

ro ∪ bo ∪ zo = qo ⊕ qo ⊕ zo so ∪ ao ∪ yo = to ⊕ to ⊕ yo
qo ∪ bo ∪ zo = ro ⊕ ro ⊕ zo so ∪ to ∪ yo = ao ⊕ ao ⊕ yo
ro ∪ qo ∪ zo = bo ⊕ bo ⊕ zo to ∪ ao ∪ yo = so ⊕ so ⊕ yo

Many more similar identities exist with longer XORs of various sets.

Fact 9.4. For example here are some identities involving 16 points:

ai ⊕ ai ⊕ ai = ri ∪ ti ∪ ai ao ⊕ ao ⊕ ao = to ∪ so ∪ ao
ri ⊕ ri ⊕ ri = ai ∪ ti ∪ ri ro ⊕ ro ⊕ ro = qo ∪ bo ∪ ro
si ⊕ si ⊕ si = qi ∪ bi ∪ si so ⊕ so ⊕ so = to ∪ ao ∪ so
bi ⊕ bi ⊕ bi = si ∪ qi ∪ bi bo ⊕ bo ⊕ bo = qo ∪ ro ∪ bo
qi ⊕ qi ⊕ qi = si ∪ bi ∪ qi qo ⊕ qo ⊕ qo = ro ∪ bo ∪ qo
ti ⊕ ti ⊕ ti = ri ∪ ai ∪ ti to ⊕ to ⊕ to = ao ∪ so ∪ to

Fact 9.5. More remarkable identities: with A11 and B11 there are more sub-
stantial differences about what happens on each side [input/output].



Ai11 = si ∪ ti ∪ yi Bi11 = qi ∪ ri ∪ zi
Ao11 = so ∪ to ∪ yo Bo11 = qo ∪ ro ∪ zo

Ai11 ∪ si ∪ ti = Bi11 ⊕ zi Bi11 ∪ qi ∪ ri = Ai11 ⊕ zi
Ai11 ⊕Ai11 = F 5

2 \ 26 Bi11 ⊕Bi11 = F 5
2 \ 26

Ao11 ⊕Ao11 = ao ∪ so ∪ to ∪ yo Bo11 ⊕Bo11 = ao ∪ so ∪ to ∪ yo
Ao11 = ao ∪ ao ∪ yo Bo11 = bo ∪ bo ∪ zo
Ao11 = ao ∪ ro ∪ zo Bo11 = bo ∪ to ∪ yo

Ao11 ∪ ao = Ao11 ⊕Ao11 = Bo11 ⊕Bo11
Bo11 ∪ bo = Bo11 ⊕ ao = Ao11 ⊕Bo11

There are many other interesting observations about these 6 sets of 5 points.
Fact 9.6.i. At input side sets ti, ai, ri form a basis for the whole space

and the other three do not form a basis and their sum is 0. Together, these
16 elements si + bi + qi + yi form a linear space of maximum dimension 4
known as Li in Property B of Section 5, with α = 20 = ρin[31], with LiB =
{0, 1, 2, 3, 8, 9, 10, 11, 20, 21, 22, 23, 28, 29, 30, 31} and its elements are exactly all
the unions of 0,2 or 4 distinct elements of ti.
Fact 9.6.o. At output side sets bo, ro, qo form a basis for the whole space
and the other three do not form a basis and their sum is S[0] and together
these 16 elements ao + so + to + yo form a linear space of maximum dimen-
sion 4 known as Lo in Property B of Section 5 with β = 11 = ρ−1ou [31], with
LoB = {0, 3, 4, 7, 9, 10, 13, 14, 16, 19, 20, 23, 25, 26, 29, 30} and its elements are ex-
actly all the unions of 1,3 or 5 distinct elements of to.

We now consider some remarkable identities which are mixing “apples and
oranges”: sets and affine spaces from both I/O sides of the S-box. This type of
properties could be exploited in some invariant attacks (yet to be discovered).
We call I the intersection of the 2 remarkable spaces of dimension 4 above.

Fact 9.7. We have I = {0, 3, 9, 10, 20, 23, 29, 30}. This space I creates a
partitioning of the whole set of 32 points into 4 affine spaces or cosets which are:

name either side
I 0,3,9,10, 20,23,29,30
J 1,2,8,11, 21,22,28,31
K 4,7,13,14 16,19,25,26
L 5,6,12,15 17,18,24,27

It is hard to imagine that these sets of 8 can align well with various sets of
5, while mixing both sides of the S-box, however there are still some remarkable
identities at size 16 to report:

LiB = I ∪ J = si ∪ qi ∪ bi ∪ yi K ∪ L = ai ∪ ti ∪ ri ∪ zi
S[I] ∪ S[J ] = so ∪ qo ∪ bo ∪ yo S[K] ∪ S[L] = ao ∪ to ∪ ro ∪ zo
LoB = I ∪K = ao ∪ so ∪ to ∪ yo J ∪ L = bi ∪ qi ∪ ri ∪ zi



9.3 Keccak Only Section

We should also observe the following: Keccak S-box has two fixed points yKi and
zKi and all other points can be ordered in two cycles of size 2 and 4 operating
on sets of 5 bits as follows:

aKi 7→ qKi 7→ aKi bKi 7→ rKi 7→ tKi 7→ sKi 7→ bKi

{7, 14, 19, 25, 28} 7→ {15, 23, 27, 29, 30} 7→ {7, 14, 19, 25, 28}

{3, 6, 12, 17, 24}7→{11, 13, 21, 22, 26}7→{1, 2, 4, 8, 16}7→{5, 9, 10, 18, 20}7→{3, 6, 12, 17, 24}

Ascon does no longer have any comparable cycling properties. However we
can construct multiple derived functions such as

x 7→ S−1[ S[ x ]⊕ 5 ]

and such functions have short cycles operating on sets of size 5.



10 Comparison to Other Quadratic Permutations

There exist exactly 75 affine equivalence classes of quadratic permutations on 5
bits, cf. Table 1 in [BoBiSa17], and Ascon/Keccak S-box belongs to class 68. Is
the Ascon/Keccak S-box A11 property a typical case or is it a particularly weak
quadratic permutation? We have run our SAT solver tool on all 75 classes from
[BoBiSa17] and looked at the maximum size set LSS. In most cases these S-boxes
are substantially weaker than Ascon and Keccak, direct comparison makes little
sense, and no one would agree to use such S-boxes in cryptography. Therefore
we restrict our study to all classes out of 75 where DMI(δin; δou) ≤ 2.2 bits
knowing that in Ascon/Keccak we have DMI = 1.91 and DMI = 1.12 in the
best case. The results obtained with two independent implementations of our
tool are reported below in Table 12. These results are optimal and cannot be
improved.

Other S-boxes. We have not included Thakor and Icepole because these
S-boxes are not quadratic. For these S-boxes LSS=11, same as in Ascon/Keccak.

classes also known as best LSS size max DTT size MC DMI(δin; δou)

28,36 13 16 5 2.16

52,56,58 11 16 5 2.06

58 11 16 5 2.06

61,62,65 11 8 6 2.06

47 10 16 5 1.97

59 11 8 5 1.94

68 Ascon,Keccak 11 8 5 1.91

53,70 11 8 5 1.88

57 10 8 6 1.78

69 10 8 6 1.72

63,64 9 8 6 1.69

71 10 4 6 1.69

72 9 4 5 1.59

66 10 8 6 1.56

67 9 8 6 1.56

73 8 4 6 1.41

75 7 2 7 1.12

74 Fides,Primates 7 2 8 1.12

Table 12. Maximum size LSS properties for all cryptographically “not too weak”
equivalence classes of quadratic permutations on 5 bits according to [BoBiSa17].

Analysis. In Table 12 it is possible to see that the maximum LSS property
size behaves in a highly regular way and could be actually quite reliably predicted
from the value of DMI. We observe that LSS-11 property occurs for S-boxes
with 1.88 ≤ DMI ≤ 1.94. We must conclude that LSS-11 property is a typical
property of an S-box with DMI ≈ 1.9.



Remark. In spite of the fact Ascon S-box has some rotational symmetries
which other S-boxes do not have, and the value Kx inside this S-box is biased,
not uniformly distributed and always has a small HW, the results in Table 12
do not confirm the idea that Ascon S-box would be very special or weaker than
other comparable S-boxes.

Comparison with DDT Sets. An interesting transition occurs in our table:
in the upper part, best LSS properties are not as large as best DDT() sets, which
means that we can hardly expect, even in the worst case, that very large sets
obtained from DDT can be fully linearized in a LSS property. We can eventually
hope that, as observed above, DDT() sets are supersets [or disjoint unions] of LSS
sets. We then expect that for such (weaker) s-boxes, traditional DC with single
differentials will perform well. Then for most of cryptographically significant S-
boxes, roughly in the lower half of Table 12, best LSS size can be substantially
larger than best DDT() size. Here, while there is hope to break these ciphers by
simple DC, the attacker should try to exploit combinations of LSS properties and
also some closely related [weaker] differential properties which can be sometimes
amplified by such subsets, cf. Section 12.

Can We Do Better? Ascon and Keccak cipher could be made arguably
and measurably more secure against simultaneous linear approximation attacks,
by changing the S-box to an S-box in classes 74/75, or rather a well-chosen affine
equivalent without any BI or BO properties [LMCFW23], and with a low ASIC
implementation depth.

11 ASIC Implementation Considerations

In this paper we intend to study and evaluate several S-boxes not only on security
w.r.t. some new precise differential and linear security metric, but also on an
ASIC implementation cost metric. This as a first approximation and [for now]
without considering side channels or/and threshold implementations [BGST23].

In Table 12 we already studied the MC (Mutliplicative Complexity) metric
[BoPePo00] which is expected to “heuristically” approximate the overall ASIC
cost, cf. [BoPe10]. Another important heuristic is the number of high degree
monomials, cf. [BGST23]. Here we do not have any high degree monomials
therefore we will try to approximate ASIC cost by the overall number of ho-
mogeneous quadratic monomials with multiplicity. For example if a monomial
say x2x3 appears twice in say y0 and y2, we count it twice. We call “hom-MQ
size” this total number of quadratic terms in a any given S-box.

In the table which follows we are going to study whole classes of S-boxes and
also compare them to existing individual S-boxes. In order to avoid comparison
of apples and oranges, we write *68* for a whole class of S-boxes known as
68 in [BoBiSa17], with two stars which correspond to our ability to add two
arbitrary affine transformations on the input and output side. Finally we write
just Ascon/Fides if there is no modification to an existing S-box.

At this moment we only report results where DMI(δin; δou) ≤ 2.2 bits. We
conjecture that the combination of best LSS size, our hom-MQ metric and the
classical MC metric allow to predict and anticipate with great precision the



actual GE (Gate Equivalent) cost of silicon with best available tools. We also
conjecture that the GE cost is roughly proportional to our hom-MQ metric,
while the older MC metric is simply not precise enough to be used in practice
as a tool for predicting the ASIC cost, and in rare cases it is inaccurate and
misleading. Our ASIC implementation results are presented in Table 13 below.

classes best LSS min(hom-MQ size) MC DMI

*28* 13 5 5 2.16

*36* 13 6 5 2.16

*52* 11 7 5 2.06

*62* 11 8 6 2.06

*56*,*58* 11 8 5 2.06

*61*,*65* 11 9 6 2.06

*47* 10 8 5 1.97

*59* 11 8 5 1.94

Ascon 11 11 5 1.91

*68*,*Ascon*,*Keccak* 11 10 5 1.91

*53* 11 10 5 1.88

*70* 11 12 5 1.88

*63* 9 11 6 1.69

*71* 10 13 6 1.69

*72* 9 13 5 1.59

*66* 10 11 6 1.56

*67* 9 13 6 1.56

*73* 8 14 6 1.41

*75* 7 14 7 1.12

*74*,*Fides*,*Inv* 7 15 8 1.12

Fides 7 18 8 1.12

Table 13. Comparison of LSS, MC and our [simplified] ASIC implementation cost
metric for various S-boxes on 5 bits and full classes with affine equivalence

Note. Our ASIC cost metric is not an ideal one, it inly applies to quadratic
S-boxes. We can of course count cubic monomials like in [BGST23], or degree 4
monomials in S-boxes from [MeBi19], however it is hard with method to compare
an ASIC implementation cost of two S-boxes which do not have the same degree.
One solution to this problem is to consider the “latency complexity” metric
defined in [LatRa22]



12 Study of DDT and DMI Limited to Specific Sets

In Section 7.1 we discovered that our subsets of 11 points have exceptionally
large coverage of 6/8 of the points which should interest the attacker the most:
those involved in DDT() sets of maximum size 8/32. In this section we define a
more precise methodology in order to compare quality of arbitrary sets of point
from a purely differential cryptanalysis point of view. This inspiration for this
work is the Table 12 above, where we see that DMI seems to a very decent overall
measure of a quality of an S-box, and reproduces the ordering of S-boxes of Table
1 in [BoBiSa17] in a very predictable and near-monotonous way from weaker to
stronger. In comparison the authors [BoBiSa17] have classified the S-boxes by
3 key parameters based on 3 most prominent notions of “non-linearity”, which
are [the sizes of] DDT,LUT and MC, cf. [BoFiPe13] and we obtain a simpler yet
very similar classification.

It is easy to see that the classical mathematical definition of DMI which can
be found in wikipedia [wikiMI] applies also to arbitrary subsets of points, see
Definition 8 in page 6. This amounts to the we study DDT restricted all pairs
x, x′ inside a subset S. We get therefore a yet more precise measure of overall
quality of an S-box w.r.t. differential cryptanalysis provided that the attacker
is indeed able to achieve a certain peculiar probability distribution for a set of
points. This leads to a new refined optimization problem in cryptanalysis which
is very closely related to almost everything we do in this paper.

Definition 12 (DMI Profile of an S-box for Arbitrary Probability Dis-
tributions). For every H ≤ 5 bits, what is a probability distribution with input
Shannon entropy H, which maximizes the value MI(δin; δou) and what is the
highest possible value of DMI? We call a graph representing all possible pairs
H,DMImax the DMI Profile of an S-box.

The computation of the profile defined above is extremely difficult and can
only be approximated. We define:

Definition 13 (Simplified DMI Profile of an S-box with Arbitrary Sub-
sets:). For every n ≤ 25, and assuming uniform distribution inside a set S of n
values out of 2k, we call the “Simplified DMI Profile” a graph made with pairs
(n,DMImax) where DMImax is the maximum of

MI(δin; δou|x;x′ ∈ S)

over all possible sets of size #S = n.

In the table below we display some values which compare the Simplified DMI
Profile of Fides and Ascon/Keccak S-boxes.



LSS size 7-9 10-15 16-19 20-22

Xi/Ascon/Keccak 4.375 4.806 3.808 2.999

Fides/Primate/InvGF32 4.357 4.046 3.124 2.482

Table 14. Simplified DMI Profile for two S-boxes.

Interpretation of Results. We claim that the Simplified DMI Profile pro-
vides a precise and robust measure of vulnerability of an S-box against Differen-
tial Cryptanalysis when restricted to sets of n distinct values. It is also possible
to see that for each S-box there exists an optimal size which maximizes this
quantity. This does not however mean that this is the value on which the at-
tacker should concentrate his algorithmic efforts. It is not easy to see if 2.99/5.0
of bits of shared information between input and output differences for a property
which is true for a large fraction of 22/32 of the whole space, would advantage
the attacker more; than the very impressive 4.8/5.0 bits of shared information
for a property concerning a substantially smaller fraction of 11/32 the whole
space.

Open Problems. The values reported in this table were obtained in a long
GPU computation on the best effort basis and are not guaranteed to be optimal
at the moment. It is an open problem to design an efficient optimized algorithm
to compute the Simplified DMI Profile of an S-box. In practice it can be ap-
proximated by some heuristics such as for example considering unions of various
affine spaces, DDT() sets, LSS sets, sets related to LAT, etc.



13 Conclusion

The main topic of this paper is the discovery of the strongest possible simul-
taneous linear approximations of a cryptographic S-box. We focus in particular
on the peculiar S-box called Xi and used in Ascon, Keccak and many other ci-
phers, and few other comparable S-boxes. At Eurocrypt 2017 researchers have
constructed collisions on up to 6 rounds of Keccak with so called “connectors”’.
These connectors exploit a set of 80 partial linearization LAS properties with
4 points which form an affine space of dim 2 on both sides. The same LAS
properties also work for Ascon.

In this paper, starting from observations about further remarkable sets in-
volved in a variety of simultaneous linear, differential and translation properties,
we have generalized and extended previous work in several ways. The notion of of
functional approximations (LAS) within affine spaces was extended to consider
to sets of arbitrary points (LSS) and to the study of arbitrary linear I/O rela-
tions which are no longer functions (LIO). In this new framework, the classical
question of repeated affine spaces with applications in cryptanalysis is extended
and becomes the study of pairs of sets equivalent by a translation with a con-
stant. We have done an exhaustive study of how pairs of maximum dimension
affine spaces can approximate the Ascon S-box and exhibit several interesting
sets and spaces which maximize the number of linear I/O relations. Our new
functional approximations are optimal and the strongest possible.

13.1 Summary of Results

It is possible to be surprised by how frequently different sets of points such
DDT () sets and all sets related to LAT are related to each other by translation,
cf. Table 5, Table 15 and Table 17. Some of these properties are explained by
internal hidden rotational symmetry of the Xi/Keccak S-box. Some other are
related to our LSS-k translation property of Thm. 3. Other are not LSS, and
will still be similar to (fewer) other sets. All these suggest that cryptanalysis
with arbitrary subsets of points is in fact less complex than it seems with 5-bit
S-boxes. For random S-boxes, even at size 5, translation properties happen very
rarely or only by coincidence, and typically not all, cf. Table 7 and Table 12.
Zero translation similarities like those those studied here occur with the AES
S-box (size 8).

In our research we have studied many natural ways of approximating our
S-box by linear functions, or LIO relations, or by linearity when restricted to
subsets, and found many new properties at sizes 6,8,10,11 and 12 which are
stronger, more general and larger than those previously studied. Our best re-
sult is a class of “maximal” linear approximation properties with as many as
11 points, cf. Thm. 2, which is optimal. We have shown that arbitrary trans-
lations of such sets give equally strong full matrix+vector linearization LZS-11
properties. This result holds for all quadratic S-boxes cf. Thm. 3, and there-
fore for an overwhelming majority of 5-bit S-boxes used in practical applications
[Ascon,SHA3,SHAKE,etc..], but not in Thakor/Icepole.



We also observed that mutual intersections between various translations of
our maximum size set, are in a one to one correspondence with the set of all
lines of the DDT table of Ascon classified by relative strength.

13.2 Is There Anything Wrong With Ascon or Keccak?

A detailed analysis based on a classification of all quadratic permutations, shows
however that it is not possible to claim that Ascon or Keccak S-box are special or
dangerous or worse than other quadratic S-boxes. In fact Table 12 demonstrates
very clearly that they behave like typical quadratic S-boxes with DMI ≈ 1.9
and a cubic inverse.

The only reasonable way to make these ciphers arguably and measurably
more secure is to use an S-box with lower DMI. Here DMI ≈ 1.1, and LSS=7
is the best property we can hope for. This is optimal, and we confirmed that
APN and few other boxes are strongest possible. Here with respect to a new
“global” security notion based on simultaneous linear approximations such as
LSS. In Table 13 we show that though reducing max LSS size very slightly to 10 is
possible with classes 68 and 47. Then we see that reducing it further is impossible
with quadratic permutations at size 5, without increasing the expected ASIC
area / implementation cost by up to 50%. In addition this paper provides new
arguments which suggest to mistrust all quadratic S-boxes in general, see Thm.
3, and switch to the likes of Thakor and Icepole or to 4-17 quartic type. An open
problem is to find yet better S-boxes with LSS< 11 and similar or better ASIC
implementation cost.

13.3 Future Research

These properties are expected to lead many new ways of attacking Ascon with a
mix of linear and differential properties where the S-boxes will be (under certain
conditions) modeled by linear equations and where differentials act in predictable
ways [or/and with quite large probabilities]. It is possible to see that best known
attacks on Ascon,Keccak and many other ARX ciphers are differential-linear at-
tacks, cf. for example [TeDi19,HaDeEi24]. We postulate that attackers need to
construct and find new forms of invariant differential-linear attacks, combined
with state partitioning with sets of certain type, which will be very different than
any currently known differential-linear attacks [with connectors] where differen-
tial and linear properties occurred in different and disjoint parts of the cipher.

One example of how an invariant attack with affine spaces can work together
with predictable differentials at every round inside one single attack can be found
in [CoQi20]. Future work should try to construct similar attacks which would no
longer use perfect affine spaces but rather more irregular sets.
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A More Translation Invariance with 961 Pairs in LAT

In this paper we have seen that one major weakness of Ascon S-box was the
fact that the A11 property does not exist in isolation, but is stable by arbitrary
translations. This is our first holographic property cf. Thm. 3. For example,
an attacker is trying to manipulate the state of one S-box in order to make sure
it will be one of the 11 values. Then we have an applications of a secret constant
such as a cryptographic key, or a public constant such as the round constant in
Ascon equal to 0x4 at one S-box. In spite of this, we obtain a related set with a
similar property. Finally we will maybe even obtain the exact same configuration
after a few rounds in some [hypothetic] periodic invariant attack. Now and again,
with Thm. 3 this property is less exceptional than it seems, and it actually holds
for all LSS properties of any size, and for all quadratic S-boxes.

Another interesting set of translation similarities was studied in Section 4
and in Table 5. We saw that in 336+40 cases and in all cases without exception
which are unbalanced, i.e. not of type 8+8, two pairs of sets are equivalent by
[just one] translation constant. This is our second holographic property. We
have also seen that this did not happen at all for Thakor. We are going to see
that such undesirable properties happen for all small size quadratic S-boxes used
in cryptography (but not for larger sizes). Following Section 4 we recall the main
motivation of this exercise:

Key Question: Is it possible that an S-box sends a “large” subset of some
(maximum size) affine space of dim 4 at the input side, to a “large” subset of
another affine space of dim 4 at the output side?

This leads to different ways of partitioning of 32 elements into 2+2 disjoint
sets like 6+10+6+10 or similar. It would also be interesting to see how many
entries of different type we see, which is essentially about relative frequencies of
different entries in the LAT table. We show some further detailed results of this
type in Table 15 below.



S-box all 8+8 7+9 6+10 5+11 4+12 0+16 DMI

28 961 702 0 192 0 128 0 2.16
inp-shifted 474 0 192 0 128 0
unrelated 228 0 0 0 0 0

47 961 552 0 384 0 48 0 1.97
inp-shifted 174 0 384 0 48 0
unrelated 378 0 0 0 0 0

60 961 648 0 256 0 56 0 2.34
inp-shifted 366 0 256 0 56 0
unrelated 282 0 0 0 0 0

68,Ascon 961 585 0 336 0 40 0 1.91
inp-shifted 240 0 336 0 40 0
unrelated 345 0 0 0 0 0

70,69,71 961 585 0 336 0 40 0 1.88,
inp-shifted 240 0 336 0 40 0 1.72,
unrelated 345 0 0 0 0 0 1.69

67,66 961 585 0 336 0 40 0 1.56
inp-shifted 240 0 336 0 40 0
unrelated 345 0 0 0 0 0

72 961 525 0 416 0 40 0 1.59
inp-shifted 120 0 416 0 40 0
unrelated 405 0 0 0 0 0

73 961 501 0 448 0 24 0 1.41
inp-shifted 72 0 448 0 4 0
unrelated 429 0 0 0 0 0

74,75,Fides 961 465 0 496 0 0 0 1.12
inp-shifted 0 0 496 0 0 0
unrelated 465 0 0 0 0 0

Icepole 961 435 220 240 36 30 0 1.82
inp-shifted 120 10 160 6 20 0
unrelated 315 210 80 30 10 0

Thakor 961 270 420 196 60 15 0 1.59
inp-shifted 0 0 0 0 0 0
unrelated 270 420 196 60 15 0

Table 15. Pairs of spaces of the same size which happen to be equivalent by translation
[vs. just unrelated sets of the same size] in several S-boxes and their affine equivalents.



B Focus on Stronger S-boxes - Not Quadratic

In Table 7 in [MeBi19] we find a list of 17 particularly strong quartic (degree 4)
permutations on 5 bits. Here below we analyze their vulnerability to translation
self-similarity properties with pairs of hyperplanes, as studied above and in Sec-
tion 4. We recall some of the strongest S-boxes in this set and to avoid confusion
with previous class numbers, we pre-pend 4- to the numbers used in Table 7 in
[MeBi19].

sbox specification

4-11 0,1,2,3,4,6,8,12,5,11,16,24,22,26,9,19,7,23,10,13,31,18,20,29,27,30,28,15,14,17,21,25
4-12 0,1,2,3,4,6,8,12,5,13,16,23,17,18,24,11,7,29,21,27,25,9,22,10,31,14,15,20,19,30,28,26
4-13 0,1,2,3,4,6,8,12,5,14,16,26,10,27,23,31,7,24,11,28,20,17,9,18,25,21,13,30,15,22,29,19
4-14 0,1,2,3,4,6,8,12,5,16,13,23,25,21,26,14,7,17,20,28,29,19,11,9,15,10,31,24,27,18,30,22
4-15 0,1,2,3,4,6,8,12,5,16,21,26,31,22,18,10,7,24,17,13,30,14,19,27,20,9,23,25,11,29,15,28
4-16 0,1,2,3,4,6,8,16,5,10,20,29,7,31,27,13,9,25,15,18,19,14,22,26,21,17,11,12,30,28,23,24
4-17 0,1,2,4,3,6,8,16,5,10,15,27,19,29,31,20,7,18,25,21,12,14,24,28,26,11,23,13,30,9,17,22

Fides 1,0,25,26,17,29,21,27,20,5,4,23,14,18,2,28,15,8,6,3,13,7,24,16,30,9,31,10,22,12,11,19

Table 16. The top or the strongest quartic S-boxes according to Table 7 in [MeBi19].

More Translation Properties - 8li8 and 8ci8. In Table 17 below, we
introduce and study new types of translation properties, which will sometimes
denote by a shorthand notation 8li8 and 8ci8 and which exist only in size 8,
and which are different than 8+8 similarity studied so far. In essence, the 8+8
property was to see how many times for different pairs of hyperplanes out of
961, we get two sets in one diagonal inside Def. 11, like for example:

S−1[Lo] ∩ Li
co− S−1[Lo] ∩ co− Li

which are related by a translation and were studied in Thm. 1 page 12. In
contrast, the 8li8 property occurs when two sets in the 1st column are related
by a translation, which sets are exactly:

S−1[Lo] ∩ Li
co− S−1[Lo] ∩ Li
Furthermore we denote by 8ci8 the number of pairs of hyperplanes out of 961

when this happens in the 2nd column of our table of Def. 11.
Note. These events 8li8 and 8ci8 happen only for balanced partitions where

the sizes of all 8 sets are the same. We do not report when it happens that two
sets in the same line are related by translation. This happens less frequently in
general, and this information can be entirely deduced from 8+8 and 8ci8 and
8co8 values displayed below.

B.1 Translation Similarity with Larger S-boxes

We have examined all top 8 or the so-called “strong” 6-bit quadratic permuta-
tions listed in Table 15 in [MeBi19]. They all have the same characteristics with
DMI = 2.06 and max DDT () size of 8. All these permutations give the same



S-box best LSS 8ci8 8li8 8+8 7+9 6+10 5+11 4+12 0+16 DMI

28 13 702 702 702 0 192 0 128 0 2.16
inp-shifted 702 702 474 0 192 0 128 0
unrelated 0 0 228 0 0 0 0 0

68,Ascon 11 585 585 585 0 336 0 40 0 1.91
inp-shifted 585 585 240 0 336 0 40 0
unrelated 0 0 345 0 0 0 0 0

73 8 501 501 501 0 448 0 24 0 1.41
inp-shifted 501 501 72 0 448 0 4 0
unrelated 0 0 448 449 0 0 0 0

74,75,Fides 7 465 465 465 0 496 0 0 0 1.12
inp-shifted 465 465 0 0 496 0 0 0
unrelated 0 0 465 0 0 0 0 0

Icepole 11 435 435 435 220 240 36 30 0 1.82
inp-shifted 435 315 120 10 160 6 20 0
unrelated 0 120 315 210 80 30 10 0

Thakor 11 270 270 270 420 196 60 15 0 1.59
inp-shifted 61 62 0 0 0 0 0 0
unrelated 209 208 270 420 196 60 15 0

4-13 9 245 245 245 410 236 140 0 0 1.36
inp-shifted 29 31 0 0 16 0 0 0
unrelated 216 214 245 410 220 140 0 0

4-11 10 215 215 215 435 250 122 0 0 1.30
inp-shifted 12 13 0 0 0 0 0 0
unrelated 203 202 215 435 250 122 0 0

4-15 9 215 215 215 435 250 122 0 0 1.30
inp-shifted 16 19 0 0 0 0 0 0
unrelated 199 196 215 435 250 122 0 0

4-16 8 205 205 205 430 276 100 0 0 1.24
inp-shifted 29 31 0 0 16 0 0 0
unrelated 176 174 205 430 260 100 0 0

4-17 9 155 155 155 465 310 62 0 0 1.12
inp-shifted 0 0 0 0 0 0 0 0
unrelated 155 155 155 465 310 62 0 0

Table 17. New quartic S-boxes compared to some 5-bit S-boxes previously studied.

results: we either have 16+16 situation with 3024/3969 cases of translation sim-
ilarity, or 12+20 situation with guaranteed translation similarity in 1008 cases
out of 1008. These are the only two types of partitioning which actually happen.

AES S-box. We have finally also looked at what happens with the AES
S-box. We found that there is a great variety of 65025 pairs of hyperplanes, and
yet translation similarities between pairs of sets of the same size NEVER happen
at all for the AES S-box.


