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ABSTRACT
The proliferation of artificial intelligence and big data has resulted

in a surge in data demand and increased data dimensionality. This

escalation has consequently heightened the costs associated with

storage and processing. Concurrently, the confidential nature of

data collected by various institutions, which cannot be disclosed

due to personal privacy concerns, has exacerbated the challenges

associated with data analysis and machine learning model train-

ing. Therefore, designing a secure and efficient high-dimensional

data reduction method that supports multi-party joint participation

becomes critical to solving these problems.

This paper proposes a novel homomorphic encryption dimen-

sionality reduction scheme (HE-DR) based on CKKS[9], which mod-

ifies the Rank-Revealing (RR) method to make it more applicable to

fully homomorphic encryption, thereby achieving fast and secure

dimension reduction for high-dimensional data. Compared to tradi-

tional homomorphic encryption dimensionality reduction schemes,

our approach does not transmit the user’s original data to other

participants in any format (Ciphertext or Plaintext). Moreover, our

method’s computational efficiency is nearly 60 − 200 times faster

than similar algorithms, and the communication overhead is only

1/3 of theirs. Finally, we have shown that our proposed scheme

can preserve its computational efficiency and accuracy even when

dealing with high-dimensional data. As dimensionality escalates,

the ratio of ciphertext to plaintext computational efficiency plateaus

at approximately 5 times, while the computational error (distance

between subspaces) remains around 1𝑒−11

KEYWORDS
high-dimensional, efficient, dimension reduction, homomorphic

encryption, CKKS scheme

1 INTRODUCTION
Big data plays a pivotal role in contemporary social and economic

sectors, with applications spanning numerous domains, especially

biological genetics for disease prediction, clinical decision support,

and genomic research. However, genetic data’s high sensitivity

prohibits its owners’ public publication [18]. Certain biological in-

stitutions, laboratories, or hospitals possess only a limited amount

of this data. Furthermore, the inherent high dimensionality of gene

data, even when subjected to rudimentary filtering techniques,

results in elevated residual dimensions and exhibits significant cor-

relation. Concurrently, the non-public nature of this data limits the

number of samples per owner, rendering data dimension reduction

challenging. Consequently, our primary research objective is to

explore how multi-party data owners can collaboratively achieve

precise data dimension reduction safely and efficiently.

Historically, rank-revealing techniques have garnered signifi-

cant attention and research across diverse application domains.

These methods endeavor to distill pivotal information from high-

dimensional datasets while preserving themajority of their inherent

structure and patterns. By adeptly unveiling the data’s low-rank ar-

chitecture, rank-revealing approaches furnish robust tools for data

analysis, compression, and recovery tasks. Unlike conventional ma-

trix factorization techniques that often demand substantial compu-

tational resources and time, rank-revealing methods offer efficient

solutions. For instance, a pioneering low-rank subspace learning

algorithm is introduced in [14]. Also, an algorithm for computing

symmetric rank revealing factorizations of symmetric 𝑛 × 𝑛 matri-

ces𝑀 is delineated in [26]. Such applications underscore the broad

applicability of rank-revealing methods and attest to their efficacy

in addressing intricate problems.

As previously noted, the exponential surge in data volume neces-

sitates urgent attention to data privacy and security assurance. Dif-

ferential Privacy(DP), Federated Learning(FL), Secure Multi-Party

Computation(SMPC), and Fully Homomorphic Encryption(FHE)

are the most prevalent privacy protection technologies, extensively

utilized across diverse sectors such as recommendation systems,

cloud computing, and Internet of Things (IoT).

The concept of DP is first proposed in [11], which ensures the

privacy of individual data points by adding noise while still provid-

ing useful statistical analysis results. For tasks like dimensionality

reduction, however, the addition of noise can significantly affect

the accuracy of the results [30]. Moreover, the calculation process

usually involves multiple iterative computations, each involving up-

dates and recalculations of matrices. Under the differential privacy

mechanism, noise needs to be added in each iteration, leading to a

cumulative effect of the noise. As the number of iterations increases,

the impact of the noise becomes increasingly significant, resulting

in biases in the computational results and affecting the correctness

and effectiveness of the decomposition outcomes. In recent years,

federated learning has been proposed in [27]. As a distributed ma-

chine learning framework, it is applicable in scenarios where data

is stored on multiple devices, and each device needs to preserve the

privacy of the data. However, high-dimensional matrix decompo-

sition requires frequent exchanges of model parameters, leading

to a surge in communication overhead. Also, handling sparse data

further increases communication costs and computational com-

plexity [19, 21]. SMPC [10] protocol involves many encryption and
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decryption operations, especially floating-point operations in high-

dimensional matrix factorization, resulting in huge computational

overhead. In addition, high-dimensional data processing requires

frequent data exchanges and complex protocol coordination, lead-

ing to high communication overhead [15]. FHE [13] offers superior

privacy protection than other privacy protection technologies. This

is because data remains encrypted throughout the entire compu-

tation process. Data remains encrypted to protect privacy during

storage, transmission, or processing. Furthermore, the precision

of computational outcomes is not contingent upon adding noise

to the data or the distribution of computations, thereby entirely

mitigating the risk of data exposure. Unlike differential privacy,

fully homomorphic encryption obviates the need for noise-induced

privacy protection. This implies that computational results can be

rendered completely accurate and immune to distortion caused by

noise.

In recent decades, numerous solutions utilizing Federated Learn-

ing, Secure Multi-Party Computation, and Fully Homomorphic

Encryption have been proposed to reduce data dimensionality. This

process is a crucial component in every application scenario and

has consequently become a significant area of research in privacy

preservation. Initial work by [17] introduced a privacy-preserving

Singular Value Decomposition (SVD) method; however, its applica-

bility to real data is limited. Following this, a privacy-preserving

matrix factorization method [28] is applied to recommendation sys-

tems, but its single iteration time is approximately 3 hours, making

it still difficult to apply in practical scenarios. Recent studies by [8]

propose a homomorphic encryption-based SVD method and apply

it to recommendation systems, and their work is further explored in

subsequent work by [24], thereby mitigating the collusion-induced

data leakage problem to some extent. Federated Singular Vector

Decomposition (FedSVD) [7] can execute rapid federated singu-

lar value decomposition of high-dimensional data. Concurrently, a

more efficient and secure FedSVDwas proposed in [23], contrasting

with previous works by [16, 32]. Despite significant advancements

in privacy-preserving techniques for matrix operations, numerous

challenges persist. These include eliminating the involvement of

entirely trusted servers (or trusted third parties) within the system,

preventing collusion among multiple entities, and addressing issues

related to low computational efficiency and excessive communica-

tion overhead.

We use fully homomorphic encryption to avoid trusted third

parties and guarantee accuracy and dimensionality reduction. Sev-

eral fully homomorphic encryption schemes exist, such as BGV [5],

BFV [12], and CKKS. BGV and BFV are based on LWE [33] and

RLWE [25] problems, respectively. BGV is more complex in im-

plementation but has better performance than BFV. CKKS is more

efficient in real number operations and has slower noise growth,

which is suitable for tasks requiring many iterative computations.

In addition, after multiple homomorphic operations, the expansion

of the ciphertext of CKKS is relatively small, which is beneficial to

maintaining computational efficiency and resource usage.

In the past, dimensionality reduction schemes utilizing fully ho-

momorphic encryption technology have been user-centric. In these

models, users encrypt and transmit their data to the computation

party. The computation party returns the results, which the user

decrypts to ascertain the outcome. However, in practical scenarios,

the high data sparsity makes encrypting the entire dataset computa-

tionally intensive and resource-consuming. Additionally, whether it

involves data decomposition or dimensionality reduction, the com-

putational process necessitates iteration. Adhering to traditional

schemes, we must select a larger polynomial modulus degree (N)

to guarantee computational depth. Moreover, in real-world appli-

cations, multiple communications with the computation party are

still required to re-encrypt certain parameters and eliminate noise

within them [29].

Our study presents a rapid dimensionality reduction scheme

utilizing CKKS fully homomorphic encryption(HE-DR) for two

data owners. It aims to facilitate rapid dimensionality reduction of

high-dimensional data without compromising the confidentiality

of the participants’ original data. Our primary contributions and

strengths lie in these areas:

• The system is entirely independent of the involvement of a

trusted third party. Neither the initialization nor the com-

putation process requires the assistance of a trusted third

party, thereby ensuring that only two parties are involved

in the entire system.

• Our scheme guarantees that user data is not transmitted to

other participants in any form, thereby eliminating the neces-

sity for encrypting the original high-dimensional data. This

approach prevents computation between high-dimensional

ciphertext data. Furthermore, it eliminates the need for users

to transmit large volumes of encrypted data, thereby reduc-

ing communication overhead.

• We have proposed a new termination method for ciphertext

algorithms, which effectively enhances the precision of data

reduction under ciphertext. The scheme avoids the additional

communication overhead of sending the data back to the

owner for decryption and then deciding whether it meets the

requirement and the computational inaccuracy of another

method by which the desired number of dimension reduction

is agreed upon beforehand.

This paper is structured as follows: Section 2 introduces the no-

tation and the plaintext algorithm. Section 3 delineates our cipher-

text computation protocol, with a comprehensive security analysis

provided in Section 4. The experimental results on computational

efficiency and communication overhead are presented in Section 5,

while Section 6 concludes this study.

2 NOTATION AND PRELIMINARIES
2.1 Notations
For all computation protocols, we denote matrices by capital letters,

e.g., 𝑋 , 𝑌 , 𝑈 , and column vectors by lowercase boldface letters,

e.g., 𝒖, 𝒗, 𝒕 . The notation (·)𝑇 denotes the transpose of a matrix or

vector. Since this scheme only adopts CKKS fully homomorphic

encryption scheme, 𝑝𝑘 and 𝑠𝑘 represent the public and private keys

in the CKKS encryption scheme, and we denote the ciphertext by

𝑐 ( ·) , where the lower subscript denotes the corresponding plaintext
variable for encryption. For example, 𝑐𝒖 represents the ciphertext

of vector 𝒖.
For a concrete value 𝑚, 𝑖 ← 𝑚 means that the value of 𝑚 is

assigned to 𝑖 . And for an arbitrary distribution P, 𝒖 ← P means

that 𝒖 is uniformly sampled from P.



2.2 Singular Value Decomposition
SVD is commonly used in dimensionality reduction to map high-

dimensional data into a low-dimensional space for ease of subse-

quent processing or visualization. However, there are some difficul-

ties and challenges in practical applications:

• High computational complexity: The computational com-

plexity of Singular Value Decomposition (SVD) is relatively

high, primarily due to the extensive matrix operations in-

volved and the requirements for numerical stability. This can

be particularly resource-intensive when calculating high-

dimensional, sparse, low-rank matrices. Furthermore, the

SVD algorithm requires multiple iterations and error correc-

tions during computation to ensure the accuracy and stability

of the results, thereby increasing computational complexity.

• Large storage space requirement: When the matrix scale

is large (i.e.,𝑚 and 𝑛 are large), computing SVD becomes

time-consuming and requires a lot of memory resources to

store intermediate matrices and computational results. This

poses additional challenges for large-scale data processing.

• Inappropriate data matrix: In practical applications, the

data matrix is typically sparse, as observed in recommenda-

tion systems and biological gene data matrices. Nonetheless,

Singular Value Decomposition (SVD) is more adept at han-

dling dense matrices.

Therefore, it is unsuitable for reducing the dimension of a high-

dimensional sparse matrix. Another method, rank-revealing, can

compensate for SVD’s shortcomings in this area.

2.3 Rank-revealing
This section briefly introduces the rank-revealing solution proposed

in [20]. Given a𝑚 × 𝑛 matrix 𝑀 , where𝑚 ≥ 𝑛 and 𝑟𝑎𝑛𝑘 (𝑀) = 𝑘 ,

for SVD decomposition, we know that

𝑀 = 𝜎1𝒖1𝒗
𝑇
1
+ 𝜎2𝒖2𝒗

𝑇
2
+ · · · + 𝜎𝑛𝒖𝑛𝒗𝑇𝑛 (1)

also, 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑛 ≥ 0. According to the rank-revealing

method, if there is a threshold 𝜃 > 0, the numerical rank of𝑀 can be

determined, as well as its numerical range, without calculating the

rank-revealing decomposition. Assuming 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑘 >

𝜃 > 𝜎𝑘+1 ≥ · · · ≥ 𝜎𝑛 ≥ 0 are nonzero singular values of 𝑀 , 𝒖𝑖 is
the unit left singular vector and 𝒗𝑖 is the unit right singular vector
associated with singular value 𝜎𝑖 . For 𝑖 = 1, · · · , 𝑘 and 𝑘 ≪ 𝑛, we

have

𝑀𝑖 = 𝜎1𝒖1𝒗
𝑇
1
+ 𝜎2𝒖2𝒗

𝑇
2
+ · · · + 𝜎𝑖𝒖𝑖𝒗𝑇𝑖 (2)

Since 𝒖𝑇
𝑖
𝑀 = 𝜎𝑖𝒗𝑇𝑖 , we rewrite

𝑀𝑖 = 𝒖1𝒖
𝑇
1
𝑀 + 𝒖2𝒖

𝑇
2
𝑀 + · · · + 𝒖𝑖𝒖𝑇𝑖 𝑀 (3)

First of all, we set𝑀 (1) = 𝑀 and 𝜎1 is the largest singular value of

𝑀 (1) , then for𝑀 (2) = 𝑀 − 𝒖1𝒖𝑇
1
𝑀 , the largest singular value 𝜎1 of

𝑀 (1) is replaced by zero. The second largest singular value 𝜎2 of

𝑀 (1) becomes𝑀 (2) largest singular value, and the rank of𝑀 (2) is
less than𝑀 (1) by one. In the same way, through this method, the

rank of 𝑀 (3) = 𝑀 − 𝒖1𝒖𝑇
1
𝑀 − 𝒖2𝒖𝑇

2
𝑀 is equal to 𝑘 − 2. The third

largest singular value 𝜎3 of 𝑀 (1) becomes 𝑀 (3) largest singular

Figure 1: Approximate Singular Value Decomposition

Pseudocode 1: Larank
Input :Matrix𝑀 ∈ R𝑚×𝑛 , numerical rank threshold 𝜃 > 0

Output :𝑘 = 𝑟𝑎𝑛𝑘𝜃 (𝑀)
1 Initialize 𝜖𝑚 = ∥𝑀 ∥∞𝜖𝑚𝑎𝑐ℎ𝑖𝑛𝑒 along with empty matrices𝑈

and 𝑉

2 for 𝑘 = 0, 1, · · · , 𝑛 do
3 generate a random unit vector 𝒚

0
, set 𝜁0 = 0

4 for 𝑗 = 1, 2, · · · do
5 set 𝒖 = 𝑀𝑇 [𝒚 𝑗−1

−𝑈 (𝑈𝑇𝒚 𝑗−1
)], 𝒙 𝑗 =

𝒖
∥𝒖 ∥2

6 set 𝒑 = 𝑀𝒙 𝑗 , 𝒗 = 𝒑 −𝑈 (𝑈𝑇𝒑)
7 calculate 𝜁 𝑗 = ∥𝒗∥2, 𝒚 𝑗 =

𝒗
𝜁 𝑗

8 if ( 𝜃
𝜁 𝑗
)2𝑗 < 𝜖𝑚 or |𝜁 𝑗−𝜁 𝑗−1 |2

|𝜁 𝑗−1−𝜁 𝑗−2 |− |𝜁 𝑗−𝜁 𝑗−1 | < 𝜃 then
9 break the 𝑗-loop

10 end
11 end
12 if 𝜁 𝑗 < 𝜃 then
13 break the 𝑘-loop

14 end
15 update𝑈 = [𝑈 ,𝒚 𝑗 ]
16 end

value. Thus, we can determine the number of singular values greater

than the threshold and the matrix’s numerical rank.

As shown in Fig. 1,𝑈 = [𝒖1, · · · , 𝒖𝑘 ] is left orthogonal matrices,

𝑉 = [𝒗1, · · · , 𝒗𝑘 ] is right orthogonal matrices. It is worth noting

that the values of the matrix Σ on the diagonal 𝑑𝑖𝑎𝑔{𝜎1, · · · , 𝜎𝑘 }
is still satisfying 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑘 > 𝜃 > 𝜎𝑘+1 ≥ · · · ≥ 𝜎𝑛 ≥ 0.

Thus, for a given threshold 𝜃 of the user, we rewrite Eq. 1

𝑀 = 𝑀𝑘 + 𝐸 (4)

where 𝐸 = 𝜎𝑘+1𝒖𝑘+1𝒗
𝑇
𝑘+1 + · · · + 𝜎𝑛𝒖𝑛𝒗

𝑇
𝑛 . We shall call 𝑀𝑘 the

dominant part and 𝐸 the noise part of𝑀 within threshold 𝜃 .

To further elucidate the method, we present the original pseu-

docode from [20] as shown in Pseudocode. 1. The input is an𝑚 × 𝑛
matrix and a threshold 𝜃 , and the output of the larank algorithm

is the numerical rank 𝑘 of matrix𝑀 . In addition, step 8 determines

whether the feature vector converges, and step 12 judges whether

the current result has reached the set threshold. Finally, the algo-

rithm allows for the acquisition of a set of standard orthonormal

basis {𝒚
1
, · · · ,𝒚𝑘 } for matrix 𝑀 . This orthonormal basis can be

utilized solely to achieve dimension reduction of the original data.

In Pseudocode. 1, to improve the computational efficiency, it does

not apply power iteration of (𝑀 −𝑀𝑖 ) (𝑀 −𝑀𝑖 ) when calculating

the remaining 𝑘 − 1 singular vectors. According to the implicit



iteration method mentioned in [20],

(𝑀 −𝑀𝑖 )𝑇𝒚 = 𝑀𝑇 (𝒚 −𝒚
1
𝒚𝑇

1
𝒚 − · · · −𝒚𝑖𝒚𝑇𝑖 𝒚)

(𝑀 −𝑀𝑖 )𝒙 = 𝑀𝒙 −𝒚
1
𝒚𝑇

1
(𝑀𝒙) − · · · −𝒚𝑖𝒚𝑇𝑖 (𝑀𝒙)

(5)

where𝒚 is unit vector and 𝒙 is (𝑀−𝑀𝑖 )𝑇𝒚. Therefore, computing

and storing𝑀𝑖 is unnecessary.

2.4 Cheon-Kim-Kim-Song Cryptosystem
Cheon-Kim-Kim-Song (CKKS) is a scheme for fully homomorphic

encryption, which means that addition and multiplication over

ciphertexts can be performed without decryption. Moreover, it be-

longs to the class of lattice-based fully homomorphic encryption

schemes whose security is established on hard mathematical prob-

lems such as the Learning With Errors (LWE) problem and the Ring

Learning With Errors (RLWE) problem. Finally, since matrix opera-

tions are essentially carried out with floating point numbers, CKKS

supports the addition and multiplication of floating point numbers

in a homomorphic encryption environment, and the property that

multiple rounds of computation can be performed without losing

too much precision can be well adapted to our scheme.

2.5 Relative work of Security proofs
According to the description of secure protocols under semi-honest

behavior in Definition 7.2.1 in [15], let 𝑓 (𝑥,𝑦) be a computational

formula for both parties, where 𝑥,𝑦 are the inputs of both parties

respectively, andΠ is the protocol that both parties compute 𝑓 . Also,

let 𝑣𝑖𝑒𝑤Π (𝑥,𝑦) denote the information that both parties receive

while re-executing the Π protocol, and it does not contain the

results calculated by itself. Finally, the output of both parties is

denoted as 𝑜𝑢𝑡𝑝𝑢𝑡Π (𝑥,𝑦).

Definition 2.1. (privacywith respect to semi-honest behavior[15])

If there exist probabilistic polynomial-time algorithms 𝑆𝑎 and 𝑆𝑏 for

any input 𝑋,𝑌 of functionality 𝑓 , we can say the two-part protocol

Π privately computes 𝑓 .

{𝑆𝑎 (1𝜆, 𝑋, 𝑓𝑎 (𝑋,𝑌 ), 𝑓 (𝑋,𝑌 ))}
𝑐≡ {𝑣𝑖𝑒𝑤Π

𝑎 (𝜆,𝑋,𝑌 ), 𝑜𝑢𝑡𝑝𝑢𝑡Π (𝜆,𝑋,𝑌 )} (6)

{𝑆𝑏 (1𝜆, 𝑌 , 𝑓𝑏 (𝑋,𝑌 ), 𝑓 (𝑋,𝑌 ))}
𝑐≡ {𝑣𝑖𝑒𝑤Π

𝑏
(𝜆,𝑋,𝑌 ), 𝑜𝑢𝑡𝑝𝑢𝑡Π (𝜆,𝑋,𝑌 )} (7)

where

𝑐≡ denotes computational indistinguishability against prob-

abilistic polynomial time adversaries with negligible advantage in

the security parameter 𝜆.

Definition. 2.1 is satisfied for the general case,𝑋 ,𝑌 , and 𝑓𝑎 (𝑋,𝑌 ),
𝑓𝑏 (𝑋,𝑌 ) represent the inputs and outputs of A and B, respectively.

At the same time, in our scheme, we only consider the deterministic

equation 𝑓 , so we refer to the deterministic case in [15] to simplify

the expression. When 𝑓 is a deterministic functionality, we can say

that protocol Π is secure computation, and it only needs to satisfy

the following relationship (omit the security parameter Eq. 8:

{𝑆𝑎 (𝑋, 𝑓𝑎 (𝑋,𝑌 ))}
𝑐≡ {𝑣𝑖𝑒𝑤Π

𝑎 (𝜆,𝑋,𝑌 )}

{𝑆𝑏 (𝑌, 𝑓𝑏 (𝑋,𝑌 ))}
𝑐≡ {𝑣𝑖𝑒𝑤Π

𝑏
(𝜆,𝑋,𝑌 )}

(8)

Furthermore, we introduce the Lindeberg–Lévy central limit

theorem to justify the consistency of the simulator and the subse-

quently constructed actual observation distribution.

Theorem 2.2. (Lindeberg–Lévy CLT) Let the random variable
sequence 𝑋𝑘 be independent and identically distributed, and 𝐸 (𝑋𝑥 ) =
𝜇, 𝐷 (𝑋𝑘 ) = 𝜎2 > 0, 𝑘 = 1, 2, · · · . Donate 𝑌𝑛 =

∑𝑛
𝑘=1

𝑋𝑘−𝑛𝜇√
𝑛𝜎

,then for
any 𝑥 ∈ R,

lim

𝑛→∞
𝐹𝑛 (𝑥) = lim

𝑛→∞
𝑃 (𝑌𝑛 ≤ 𝑥) = Φ(𝑥) (9)

It is also known as the central limit theorem for i.i.d., and the

application of this theorem is that when 𝑛 is sufficiently large, we

approximately have:

𝑛∑︁
𝑘=1

𝑋𝑘
·∼ 𝑁 (𝑛𝜇, 𝑛𝜎2) (10)

where
·∼ represents the approximation of distribution.

3 SCENARIO AND PROTOCOL
3.1 Scenario
As shown in Fig. 2, there are only two parties, A and B, in our

scenario, and they have𝑚 × 𝑛 dimensional data matrices, denoted

as 𝑋 and 𝑌 , respectively. Two data proprietors aim to enhance the

precision of dimension reduction by amalgamating the data samples

from each other. In practical life, data usually have horizontal and

vertical combinations, as shown in Fig. 3. We use 𝑀 = [𝑋 ;𝑌 ] to
represent the vertical combination of data, and 𝑀 = [𝑋,𝑌 ] to
represent the horizontal combination of data. Our scheme mainly

demonstrates the results of the vertical combination form, as shown

in Fig. 4. Secondly, user A generates the required public-private

key pair 𝑝𝑘, 𝑠𝑘 based on the CKKS scheme and uses the public

key to encrypt the vector that needs to be transmitted to User

B. Meanwhile, to ensure data security, User B will add a mask to

the vector transmitted to User A. During the calculation of each

orthogonal basis, to guarantee the safety of both parties’ data, they

Figure 2: Two-party Framework



Figure 3: Different Data Partitioning

only transmit some intermediate results and only share the final

converged orthogonal basis. Finally, after several iterations, both

parties obtain their corresponding left orthogonal matrices 𝑈𝑎 =

[𝒖𝑎1, · · · , 𝒖𝑎𝑘 ] and 𝑈𝑏 = [𝒖𝑏1
, · · · , 𝒖𝑏𝑘 ] respectively. By vertically

combining them, they get the final orthogonal matrix𝑈 = [𝑈𝑎 ;𝑈𝑏 ],
which is shared for subsequent dimension reduction of new data

from both sides. Moreover, the entire system operation process

does not require any trusted third party or computing entity’s

participation.

It is important to highlight that the security proof for our com-

prehensive system is predicated on the semi-honest model. As

delineated in [6, 15], our task is merely to demonstrate that the

outcomes observed by both parties within this model align with

the actual results derived from input and output. This alignment

serves as evidence of the system’s secure privacy computation. The

comprehensive proof detailing each protocol will be presented in

Section 4.

3.2 Protocol
As illustrated in the preceding plaintext Pseudocode. 1, the plaintext

scheme is designed for a single-user and computing party model

unsuitable for multiparty joint computation. Moreover, as shown

in steps 5 to 12 of the Pseudocode. 1, this scheme requires many

normalization and modulo operations to ensure computational ac-

curacy, and it also needs to determine whether vectors converge

and compare with a threshold to control the termination of the al-

gorithm. However, the computational complexity of implementing

these operations using fully homomorphic encryption is substantial,

leading to suboptimal efficiency in practical applications. Therefore,

we redesign a judgment method by increasing the number of com-

munications, ensuring security and accuracy while maintaining

high computational efficiency. We also segment the algorithm into

two parts to enhance computational efficiency. The initial part only

computes the first orthogonal basis using the conventional power

iteration method, and the second part modifies the power iteration

method following Eq. 5 and determines the remaining orthogonal

bases.

In Protocol. 1, each party’s data is denoted by 𝑋 and 𝑌 , respec-

tively. Concurrently, the initial unit vectors are represented by 𝒖𝑎
and 𝒖𝑏 . The output singular vectors post each iterative cycle are

signified as �̄�𝑎 and �̄�𝑏 . In this protocol, the primary challenge lies in

Protocol 1: Principal orthogonal basis
Input A :𝑋 , 𝒖𝑎 , 𝑝𝑘 , 𝑠𝑘
Input B :𝑌 , 𝒖𝑏
Output A: �̄�𝑎
Output B : �̄�𝑏

1 for 𝑖 ← 1 to𝑚 do // 𝑚 is max number of iterations
2 B: send 𝑌𝑇 𝒖𝑏 to A

3 A: 𝒕 = 𝑋𝑇 𝒖𝑎+𝑌𝑇 𝒖𝑏
∥𝑋𝑇 𝒖𝑎+𝑌𝑇 𝒖𝑏 ∥

, �̄�𝑎 = 𝑋 · 𝒕
4 A: 𝑐𝒕 , 𝑐𝑋𝑌𝑇 𝒖𝑏 = 𝐸𝑛𝑐 (𝒕, 𝑋𝑌𝑇 𝒖𝑏 ; 𝑝𝑘)
5 A: send 𝑐𝒕 , 𝑐𝑋𝑌𝑇 𝒖𝑏 to B

6 B: 𝑐�̄�𝑏𝑒 = 𝑌 · 𝑐𝒕 + 𝒖𝑟 // 𝒖𝑟 ← Q
7 B: send 𝑐�̄�𝑏𝑒 to A

8 A: �̄�𝑏𝑒 = 𝐷𝑒𝑐 (𝑐�̄�𝑏𝑒 ; 𝑠𝑘)
9 A: send ∥�̄�𝑎 ∥2, �̄�𝑏𝑒 to B

10 B: �̄�𝑏 = �̄�𝑏𝑒 − 𝒖𝑟
11 B: send ∥�̄�𝑏 ∥2 to A

12 B: 𝒖𝑏 =
�̄�𝑏√

∥�̄�𝑎 ∥2+∥�̄�𝑏 ∥2

13 A: 𝒖𝑎 =
�̄�𝑎√

∥�̄�𝑎 ∥2+∥�̄�𝑏 ∥2

14 A: if 𝒖𝑎 are converge then
15 A: �̄�𝑎 = 𝒖𝑎
16 B: if 𝒖𝑏 are converge then
17 B: �̄�𝑏 = 𝒖𝑏
18 break the 𝑖-loop

19 end
20 end
21 end

safeguarding user B’s data from potential breaches while maintain-

ing computational accuracy. We introduce a random perturbation

𝒖𝑟 to the ciphertext in step 6, ensuring that user A cannot access

user B’s original data and eliminating this perturbation from the

calculation outcomes in step 10. This approach avoids data leakage

and maintains computation precision. As for steps 14 and 16, we

judge whether the results have converged by comparing the dif-

ference between the results of two successive iterations with the

machine calculation precision or user-specified precision.

As mention before, to improve the efficiency of calculation, we

rewrite the calculation Protocol. 1 according to Eq. 5, which is

shown in Protocol. 2. 𝑋 and 𝑌 still denote each party’s data, and

the initial random vector 𝒛𝑎𝑖 , 𝒛𝑏𝑖 must be re-generated when com-

puting each singular vector. It is worth noting that to guarantee

the security of user B and the accuracy of the calculation results,

a method similar to Protocol. 1 was used, where the perturbation

added by user B in Protocol. 2 steps 5 and 12 makes it impossible

for user A to obtain the data of user B. However, the perturbation

at this time will contain ciphertext data that user B cannot decrypt

during the calculation process. Therefore, to solve this problem,

the perturbation added by user B in Protocol. 2 step 5 is a random

number 𝑟 multiplied by the initial vector 𝒖𝑏 of Protocol. 1. Since

𝑐𝑋𝑌𝑇 𝒖𝑏 is shared, so User B can eliminate it in Protocol. 2 step 10.



Protocol 2: Sub-principal orthogonal basis
Input A :𝑋 ,𝑈𝑎 , 𝑝𝑘 , 𝑠𝑘

Input B :𝑌 ,𝑈𝑏 , 𝒛𝑎 , 𝒛𝑏 , 𝑐𝑋𝑌𝑇 𝒖𝑏
Output B : �̄�𝑎 , �̄�𝑏

1 for 𝑖 ← 1 to𝑚 do // 𝑚 is max number of iterations
2 B: 𝚫𝒂𝒊 = 𝒛𝑎 −𝑈𝑎𝑈

𝑇
𝑎 𝒛𝑎 −𝑈𝑎𝑈

𝑇
𝑏
𝒛𝑏

3 B: 𝚫𝒃𝒊 = 𝒛𝑏 −𝑈𝑏𝑈𝑇
𝑎 𝒛𝑎 −𝑈𝑏𝑈𝑇

𝑏
𝒛𝑏

4 B: 𝒕 = 𝑌𝑇 (𝚫𝒃𝒋 + 𝑟 · 𝒖𝑏 ) // 𝑟 ← Q
5 B: send 𝚫𝒂𝒋 and 𝒕 to A

6 A: 𝒛𝒂𝒆 = 𝑋𝑋𝑇
𝚫𝒂𝒋 + 𝑋 · 𝒕

7 A: 𝑐𝒛𝒂𝒆 , 𝑐𝑋𝑇
𝚫𝒂𝒋

= 𝐸𝑛𝑐 (𝒛𝑎𝑒 , 𝑋𝑇
𝚫𝒂𝒋 ; 𝑝𝑘)

8 A: send 𝑐𝒛𝒂𝒆 , 𝑐𝑋𝑇
𝚫𝒂𝒋

to B

9 B: 𝑐𝒛𝒂 = 𝑐𝒛𝑎𝑒 − 𝑟 · 𝑐𝑋𝑌𝑇 𝒖𝑏
10 B: 𝑐𝒛𝒃 = 𝑌 · 𝑐𝑋𝑇

𝚫𝒂𝒋
+ 𝑌𝑌𝑇𝚫𝒃𝒋

11 B: (𝑐𝒛𝒂𝒆𝒆 , 𝑐𝒛𝒃𝒆𝒆 ) = (𝑐𝒛𝒂 , 𝑐𝒛𝑏 ) + 𝒖𝑟 // 𝒖𝑟 ← Q
12 B: send 𝑐𝒛𝑎𝑒𝑒 and 𝑐𝒛𝑏𝑒𝑒 to A

13 A: 𝒛𝑎𝑒𝑒 , 𝒛𝑏𝑒𝑒 = 𝐷𝑒𝑐 (𝑐𝒛𝑎𝑒𝑒 , 𝑐𝒛𝑏𝑒𝑒 ; 𝑠𝑘)
14 A: send 𝒛𝑎𝑒𝑒 , 𝒛𝑏𝑒𝑒 to B

15 B: 𝒛𝑎 =
𝒛𝑎𝑒𝑒−𝒖𝑟

∥𝒛𝑎𝑒𝑒−𝒖𝑟 ∥ , 𝒛𝑏 =
𝒛𝑏𝑒𝑒−𝒖𝑟

∥𝒛𝑏𝑒𝑒−𝒖𝑟 ∥
16 B: if 𝒛𝑎 and 𝒛𝑏 are converge then
17 break the 𝑗-loop

18 end
19 end
20 B: �̄�𝑎 =

Δ𝑎𝑖

∥Δ𝑎𝑖 ∥ , �̄�𝑏 =
Δ𝑏𝑖

∥Δ𝑏𝑖 ∥
21 B: share �̄�𝑎 and �̄�𝑏 to A

Its correctness is shown in Eq. 11.

𝑐𝒛𝑎𝑖 = 𝑐𝒛𝑎𝑖𝑒 − 𝑟 · 𝑐𝑋𝑌𝑇 𝒖𝑏

= 𝑐 (𝑋𝑋𝑇
𝚫𝒂𝒋+𝑋 ·𝒕 ) − 𝑟 · 𝑐𝑋𝑌𝑇 𝒖𝑏

= 𝑐𝑋𝑋𝑇
𝚫𝒂𝒋
+ 𝑐𝑋𝑌𝑇 (𝚫𝒃𝒋+𝑟 ·𝒖𝑏 ) − 𝑟 · 𝑐𝑋𝑌𝑇 𝒖𝑏

= 𝑐𝑋𝑋𝑇
𝚫𝒂𝒋
+ 𝑐𝑋𝑌𝑇

𝚫𝒃𝒋
+ 𝑐𝑋𝑌𝑇 (𝑟 ·𝒖𝑏 ) − 𝑟 · 𝑐𝑋𝑌𝑇 𝒖𝑏

= 𝑐𝑋𝑋𝑇
𝚫𝒂𝒋
+ 𝑐𝑋𝑌𝑇

𝚫𝒃𝒋

(11)

Also, The convergence conditions are the same as those in Proto-

col.1, and the initial vector 𝒛𝑎𝑖 , 𝒛𝑏𝑖 can only be generated by B in

the execution of Protocol. 2.

Furthermore, due to the complexity of ciphertext comparison un-

der fully homomorphic encryption and its significant computational

and communication overhead, traditional solutions are generally

divided into two types: 1. Completely decompose the data. 2. Nego-

tiate in advance the number of features to be retained. Nevertheless,

when the data’s dimensionality is elevated, its complete decomposi-

tion’s computational efficiency becomes significantly compromised.

Moreover, negotiating in advance the number of features to retain

can lead to inaccurate dimension reduction results. The accuracy

can only be improved by guessing or continuously trying to retain

different numbers of features, but the computational efficiency re-

mains suboptimal. Therefore, we present this scheme’s most critical

protocol (Stop criteria). Firstly, two parties will negotiate the pro-

portion 𝜃 of information to be eliminated, then calculate the square

of maximum eigenvalue 𝑐𝜎2

𝑚𝑎𝑥
(the ciphertext of 𝜎2

𝑚𝑎𝑥 ) according

Protocol 3: Stop criteria

Input A :𝑋 , 𝑝𝑘 , 𝑠𝑘

Input B :𝑌 , �̄�𝑎 , �̄�𝑏
Output A:𝐵𝑜𝑜𝑙

1 A: 𝜎𝑎 = �̄�𝑇𝑎𝑋𝑋
𝑇 �̄�𝑎 , 𝒕 = 𝑋𝑇 �̄�𝑎

2 A: 𝑐𝜎𝑎 , 𝑐𝒕 = 𝐸𝑛𝑐 (𝜎𝑎, 𝒕 ; 𝑝𝑘)
3 A: send 𝑐𝜎𝑎 , 𝑐𝒕 to B

4 B: 𝜎𝑏 = �̄�𝑇
𝑏
𝑌𝑌𝑇 �̄�𝑏

5 B: 𝑐𝜎2 = 𝑐𝜎𝑎 + 2(�̄�𝑇
𝑏
𝑌 · 𝑐𝒕 ) + 𝜎𝑏

6 B: 𝑐𝜎𝑟𝑒𝑠 = 𝑟 · (𝑐𝜎2 − 𝜃2 · 𝑐𝜎2

𝑚𝑎𝑥
) // 𝑟 ← Q

7 B: send 𝑐𝜎𝑟𝑒𝑠 to A

8 A: 𝜎𝑟𝑒𝑠 = 𝐷𝑒𝑐 (𝑐𝜎𝑟𝑒𝑠 ; 𝑠𝑘)
9 A: if 𝜎𝑟𝑒𝑠 < 0 then
10 return True

11 else
12 return False

13 end

to Eq. 12, and calculate the termination threshold 𝜃2 · 𝜎2

𝑚𝑎𝑥 . It is

noteworthy that in the actual operation process, the max singular

value(𝜎𝑚𝑎𝑥 ) is the first singular value(𝜎1) of the data. Equation
Eq. 12 shows how both parties calculate the singular value.

𝜎2 = ∥𝑋𝑇 𝒖𝑎 + 𝑌𝑇 𝒖𝑏 ∥2

= (𝑋𝑇 𝒖𝑎 + 𝑌𝑇 𝒖𝑏 )𝑇 (𝑋𝑇 𝒖𝑎 + 𝑌𝑇 𝒖𝑏 )

= (𝒖𝑇𝑎𝑋 + 𝒖𝑇𝑏𝑌 ) (𝑋
𝑇 𝒖𝑎 + 𝑌𝑇 𝒖𝑏 )

= 𝒖𝑇𝑎𝑋𝑋
𝑇 𝒖𝑎 + 2(𝒖𝑇

𝑏
𝑌𝑋𝑇 𝒖𝑎) + 𝒖𝑇𝑏𝑌𝑌

𝑇 𝒖𝑏

(12)

Through the method demonstrated in Eq. 13, we can accurately

determine whether the singular values have reached the threshold,

ensuring the confidentiality of data from both parties. We give an

example when the user sets the calculation stop condition(𝜃 = 10%):

when the latest calculated singular value result is less than 10% of

the maximum singular value, where 𝑟 is a random number required

to ensure information security and the specific security analysis

will be introduced in Section 4.

𝜎 < 0.1 · 𝜎𝑚𝑎𝑥

𝜎2 < 0.01 · 𝜎2

𝑚𝑎𝑥

𝜎2 − 0.01 · 𝜎2

𝑚𝑎𝑥 < 0

𝑟 (𝜎2 − 0.01 · 𝜎2

𝑚𝑎𝑥 ) < 0, 𝑟 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟

(13)

Following the methods mentioned in Eq. 12 and Eq. 13, we construct

protocol. 3 for the stop condition. To ensure security, the protocol

stipulates that user B only shares the product of the difference

between the current and maximum singular values multiplied by

the perturbation 𝑟 .

Following the protocol described previously, we now provide

the protocol for the complete system, as outlined in Protocol. 4.

During the actual execution of Protocol.4, we can not only obtain

relatively accurate results through the termination conditions in

Protocol.2, but also calculate according to the number of features



Protocol 4: HE-DR
Input :𝑋 , 𝑌 , 𝑝𝑘 , 𝑠𝑘 , 𝜃 , 𝑛

Output :𝑈

1 A: Initializing the encryption parameters

2 A/B: Running Protocol. 1

3 A/B: 𝑖 = 1

4 while 𝑖 < 𝑛 do // 𝑛 is max number of rank
5 A/B: Running Protocol. 2

// 𝜃 is the proportion of noise information

6 if Protocol. 3 with 𝜃 then
7 break the while loop
8 else
9 continue

10 end
11 B:𝑈𝑎 = [�̄�𝑎1, · · · , �̄�𝑎𝑖 ],𝑈𝑏 = [�̄�𝑏1

, · · · , �̄�𝑏𝑖 ]
12 B:𝑈 = [𝑈𝑎 ;𝑈𝑏 ]
13 𝑖 + +
14 end

that users desire. Moreover, in solving each orthogonal basis, we

found that most of the time, only 3-5 iterations are needed to reach

the convergence condition.

4 SECURITY ANALYSIS
In this section, we perform a security analysis on the previously

designed computation protocol. We only have two parties in the

computation system: user A and user B. Secondly, all our work is

established based on the semi-honest model stated in [15]: compu-

tation parties strictly follow the protocol but remain curious about

each other’s data.

4.1 Proof of Protocol. 1
Correctness For arbitrary matrix 𝑀 and an initial random vector

𝒖, the principal eigenvector �̄� is finally obtained by using power

method iteration on𝑀𝑀𝑇
, and the specific convergence analysis

can refer to [20].

�̄� = 𝑀𝑀𝑇 𝒖 (14)

Then, for our scheme, we divide the original matrix 𝑀 into two

matrices𝑀𝑎 ,𝑀𝑏 with consistent dimensions in the horizontal di-

rection. The initial random vector 𝒖 is also divided into two column

vectors 𝒖𝑎 , 𝒖𝑏 with the same dimension in the horizontal direction,

which is shown in Fig. 4. Then we have:(
�̄�𝑎
�̄�𝑏

)
=

(
𝑀𝑎

𝑀𝑏

) (
𝑀𝑇
𝑎 𝑀𝑇

𝑏

) (𝒖𝑎
𝒖𝑏

)
(15)

Each party only needs to calculate their parts separately:

�̄�𝑎 = 𝑀𝑎𝑀
𝑇
𝑎 𝒖𝑎 +𝑀𝑎𝑀

𝑇
𝑏
𝒖𝑏

�̄�𝑏 = 𝑀𝑏𝑀
𝑇
𝑎 𝒖𝑎 +𝑀𝑏𝑀

𝑇
𝑏
𝒖𝑏

(16)

Then, integrate the results to obtain those consistent with those

obtained by directly performing power iteration in Eq. 14.

SecurityAccording to the proof idea in [4], we need to construct

a simulator first. The protocol is secure if we can prove that the

protocol is computationally indistinguishable between the real and

the simulator.

A’s view is 𝑉𝑎 (𝐼𝑎, 𝑐𝑜𝑖𝑛𝑠,𝑚𝑎), where 𝐼𝑎 = (𝑋, 𝒖𝑎, 𝑝𝑘, 𝑠𝑘) are the
input of A, 𝑐𝑜𝑖𝑛𝑠 represents the outcome of the A’s internal coin

tosses,𝑚𝑎 = (𝑌𝑇 𝒖𝑏 , 𝑐�̄�𝑏𝑒 , ∥�̄�𝑏 ∥2) are all information obtained by

A during the execution of the protocol. Also, we assume that the

initial vector is sampled from P distribution. Since the data and

initial vector are two independent variables and come from two

independent distributions, the distribution of the product of two

variables is equal to the product of two distributions. We denote

this new distribution as P′, 𝑌𝑇 𝒖𝑏 ← P′. The above assumptions

and notations for distributions also apply to other protocols.

Given 𝐼𝑎 , ˜̄𝒖𝑎 , we build the simulator 𝑆𝑎 :

(1) Pick
�𝑌𝑇 𝒖𝑏 ← P′

(2) Pick
�∥�̄�𝑏 ∥2 ← R̃

(3) Encrypt ˜̄𝒖𝑏𝑒 under CKKS: 𝑐�̄�𝑏𝑒
(4) Let �̃� be random coins for CKKS encryption

(5) Compute ˜̄𝒖𝑎 by normalization

(6) Output (𝐼𝑎, �𝑐𝑜𝑖𝑛𝑠,𝑚𝑎, ˜̄𝒖𝑎)
For vectors 𝑌𝑇 𝒖𝑏 and

�𝑌𝑇 𝒖𝑏 , both are sampled from distribution

P′. The variable �̄�𝑏 is taken from the R distribution, but after

taking the normalization and square operation, the distribution of

the new variable
�∥�̄�𝑏 ∥2 changes, we donate it as distribution R̃.

For distribution R̃, according to the Theorem. 2.2 and Eq. 10, when

the dimension of �̄�𝑏 is large enough(≥ 50), we can say R ·∼ R̃,
∥�̄�𝑏 ∥2 and

�∥�̄�𝑏 ∥2 are sampled from distribution R. According to

Smudging Lemma [2], when Q is larger enough, (𝒖𝑟 , �̄�𝑏𝑒 ) ← Q
and (�̄�𝑏𝑒 , ˜̄𝒖𝑏𝑒 ) ← Q. Thus, for ciphertext 𝑐�̄�𝑏𝑒 , its distribution is

the same as that of 𝑐�̄�𝑏𝑒 , and we conclude that the distributions

𝑉𝑎 = (𝐼𝑎, 𝑐𝑜𝑖𝑛𝑠,𝑚𝑎) and 𝑆𝑎 = (𝐼𝑎, ˜̄𝒖𝑎) are the same.

User B is constructed in a similar way as user A. Again, for

simplicity of expression, we denote the input of user B by 𝐼𝑏 =

(𝐵, 𝒖𝑏 , 𝑝𝑘, 𝑠𝑘) and all information accepted by user B during proto-

col execution by𝑚𝑏 = (𝑐𝒕 , 𝑐𝐴𝐵𝑇 𝒖𝑏 , ∥�̄�𝑎 ∥
2).

B’s view is𝑉𝑏 = (𝐼𝑏 , 𝑐𝑜𝑖𝑛𝑠,𝑚𝑏 ) where 𝑟 are random internal coin

tosses of B. The simulator 𝑆𝑏 = (𝐼𝑏 , ˜̄𝒖𝑏 ) is shown below:

(1) Pick
�∥�̄�𝑎 ∥2 ← R̃

(2) Encrypt �̃� and �𝐴𝐵𝑇 𝒖𝑏 under CKKS: 𝑐𝒕 and �𝑐𝐴𝐵𝑇 𝒖𝑏
(3) �𝑐𝑜𝑖𝑛𝑠 is random coins for CKKS encryption

(4) Compute ˜̄𝒖𝑏 by normalization

(5) Output (𝐼𝑏 , �𝑐𝑜𝑖𝑛𝑠,𝑚𝑏 , ˜̄𝒖𝑏 )
For B, the distribution of

�∥�̄�𝑎 ∥2 can also be approximated by

R and the remaining ciphertext variables come from the same

distribution because of the RLWE assumption. So we have,

𝑆𝑎 (𝐼𝑎, ˜̄𝒖𝑎) 𝑐≡ 𝑉𝑎 (𝐼𝑎, 𝑐𝑜𝑖𝑛𝑠,𝑚𝑎)

𝑆𝑏 (𝐼𝑏 , ˜̄𝒖𝑏 ) 𝑐≡ 𝑉𝑏 (𝐼𝑏 , 𝑐𝑜𝑖𝑛𝑠,𝑚𝑏 )
(17)

Thus, we conclude that protocol. 1 is secure in the semi-honest

model.



4.2 Proof of Protocol. 2
Correctness Combining the knowledge of Rank-Revealing men-

tioned before, the subsequent singular vectors are calculated as

shown in Eq. 18.

𝒖 = 𝑀𝑀𝑇 (𝒛 −𝑈𝑈𝑇 𝒛) (18)

where, 𝒛 is initial random vector, 𝑈 = [𝒖1, · · · , 𝒖𝑘 ] is orthogonal
matrix.

As in Protocal. 1, we horizontally split the matrix and vectors,

and we get:

( �̄�𝑎
�̄�𝑏 ) = (

𝑀𝑎

𝑀𝑏
) (𝑀𝑇

𝑎 𝑀𝑇
𝑏 )

[
( 𝒛𝒂𝒛𝒃 ) − (

𝑈𝑎

𝑈𝑏
) (𝑈𝑇

𝑎 𝑈𝑇
𝑎 ) ( 𝒛𝒂𝒛𝒃 )

]
(19)

To simplify the formula, we let

𝚫𝒂 = 𝒛𝒂 −𝑈𝑎𝑈
𝑇
𝑎 𝒛𝒂 −𝑈𝑎𝑈

𝑇
𝑏
𝒛𝒃

𝚫𝒃 = 𝒛𝒃 −𝑈𝑏𝑈𝑇
𝑎 𝒛𝒂 −𝑈𝑏𝑈𝑇

𝑏
𝒛𝒃

(20)

and then, we get:

�̄�𝑎 = 𝑀𝑎𝑀
𝑇
𝑎 𝚫𝒂 +𝑀𝑎𝑀

𝑇
𝑏
𝚫𝒃

�̄�𝑏 = 𝑀𝑏𝑀
𝑇
𝑎 𝚫𝒂 +𝑀𝑏𝑀

𝑇
𝑏
𝚫𝒃

(21)

Therefore, as with Protocol. 1, the left singular vector of matrix𝑀

can be obtained after re-concatenating the results of both parties.

Security The proof process is similar to that of Protocol. 1,

A’s view is 𝑉𝑎 = (𝐼𝑎, 𝑐𝑜𝑖𝑛𝑠,𝑚𝑎) where 𝐼𝑎 = (𝑋,𝑈𝑎, 𝑝𝑘, 𝑠𝑘), 𝑚𝑎 =

(𝚫𝒂𝒋 , 𝒕, 𝑐𝒛𝒂𝒆𝒆 , 𝑐𝒛𝒃𝒆𝒆 ).
Given the 𝐼𝑎 , the simulator 𝑆𝑎 :

(1) �̃� , �𝑐𝒛𝒂𝒆𝒆 and �𝑐𝒛𝒃𝒆𝒆 are generated by CKKS encryption

(2) Pick 𝚫𝒂𝒋 ← P′
(3) Pick �̃� ← Q
(4) Output (𝐼𝑎, �𝑐𝑜𝑖𝑛𝑠,𝑚𝑎)

As shown above, we assume the initial vector (𝒛𝒂, 𝒛𝒃 ) ← P, and
𝚫𝒂𝒋 ← P′. For the simulator 𝑆𝑎 , 𝚫𝒂𝒋 is directly sampled from P′

so that 𝚫𝒂𝒋 and 𝚫𝒂𝒋 is picked from the same distribution. Also,

the distribution of 𝒕 and �̃� are the same because we use a larger

distribution Q to replace the original distribution [2]. Thus, we can

say the view and simulator of A have followed the same distribution.

B’s view is 𝑉𝑏 = (𝐼𝑏 , 𝑐𝑜𝑖𝑛𝑠,𝑚𝑏 ), where 𝐼𝑏 = (𝑌,𝑈𝑏 , 𝑐𝑋𝑌𝑇 𝒖𝑏 , 𝑝𝑘),
𝑚𝑏 = (𝑐𝒛𝒂𝒆 , 𝑐𝑋𝑇

𝚫𝒂
, 𝒛𝒂𝒆𝒆, 𝒛𝒃𝒆𝒆).

We build simulator 𝑆𝑏 by giving 𝐼𝑏 :

(1) �𝑐𝑜𝑖𝑛𝑠, 𝑐𝒛𝒂𝒆 and �𝑐𝐴𝑇
𝚫𝒂

are computed from CKKS encryption

system

(2) Pick 𝒛𝒂𝒆𝒆, 𝒛𝒃𝒆𝒆 ← Q
(3) Output (𝐼𝑏 , �𝑐𝑜𝑖𝑛𝑠,𝑈𝑎,𝑈𝑏 )

Since the distribution Q is large enough, 𝒛𝒂𝒆𝒆, 𝒛𝒃𝒆𝒆 and 𝒛𝒂𝒆𝒆, 𝒛𝒃𝒆𝒆
are chosen from the same distribution [2]. Thus, we can say the B’s

view 𝑉𝑏 and simulator 𝑆𝑏 are computed from the same distribution

and we have:

𝑆𝑎 (𝐼𝑎)
𝑐≡ 𝑉𝑎 (𝐼𝑎, 𝑐𝑜𝑖𝑛𝑠,𝑚𝑎)

𝑆𝑏 (𝐼𝑏 ,𝑈𝑎,𝑈𝑏 )
𝑐≡ 𝑉𝑏 (𝐼𝑏 , 𝑐𝑜𝑖𝑛𝑠,𝑚𝑏 )

(22)

Thus, we conclude that Protocol. 2 is secure in the semi-honest

model.

4.3 Proof of Protocol. 3
Correctness it is obvious according to Eq. 12. Security A’s view is

𝑉𝑎 = (𝑋, 𝑝𝑘, 𝑠𝑘, 𝑐𝑜𝑖𝑛𝑠, 𝜎𝑟𝑒𝑠 ), we build A’s simulator 𝑆𝑎 :

(1) 𝜎𝑟𝑒𝑠 ← Q
(2) �𝑐𝑜𝑖𝑛𝑠 is random coins for CKKS encryption

(3) Output (𝑋, 𝑝𝑘, 𝑠𝑘, �𝑐𝑜𝑖𝑛𝑠, 𝜎𝑟𝑒𝑠 )
Since A has the private key, the accepted information is 𝜎𝑟𝑒𝑠 . Also,

Q is large enough that 𝜎𝑟𝑒𝑠 and 𝜎𝑟𝑒𝑠 are sampled from the same

distribution [2], we can say that the distributions of 𝑉𝑎 and 𝑆𝑎
coincide. B’s view is𝑉𝑏 = (𝑌, �̄�𝑎, �̄�𝑏 , 𝑐𝑜𝑖𝑛𝑠, 𝑐𝜎𝑎 , 𝑐𝒕 ) and B’s simulator

is 𝑆𝑏 = (𝑌, �𝑐𝑜𝑖𝑛𝑠, ˜̄𝒖𝑎, ˜̄𝒖𝑏 ):
(1) Encrypt 𝜎𝑎 , �̃� by CKKS encrytion: 𝑐𝜎𝑎 , 𝑐𝒕

(2) �𝑐𝑜𝑖𝑛𝑠 is random coins for CKKS encryption

(3) Output (𝑌, �𝑐𝑜𝑖𝑛𝑠, 𝑐𝜎𝑎 , 𝑐𝒕 )
Based on RLWE assumption, 𝑐𝜎𝑎 , 𝑐𝑡 and 𝑐𝜎𝑎 , 𝑐𝒕 choose from the

same distribution, we conclude that Protocol. 3 is security in semi-

honest model.

𝑆𝑎 (𝑋, 𝑝𝑘, 𝑠𝑘, 𝜎𝑟𝑒𝑠 )
𝑐≡ 𝑉𝑎 (𝑋, 𝑝𝑘, 𝑠𝑘, 𝑐𝑜𝑖𝑛𝑠, 𝜎𝑟𝑒𝑠 )

𝑆𝑏 (𝑌, �𝑐𝑜𝑖𝑛𝑠, ˜̄𝒖𝑎, ˜̄𝒖𝑏 ) 𝑐≡ 𝑉𝑏 (𝑌, �̄�𝑎, �̄�𝑏 , 𝑐𝑜𝑖𝑛𝑠, 𝑐𝜎𝑎 , 𝑐𝒕 ) (23)

Therefore, by combining Eq. 17, Eq. 22 and Eq. 23, our designed

computation protocol is secure in the semi-honest model.

4.4 Proof of Protocol. 4
Since the entire algorithm is executed sequentially according to each

sub-protocol, the output of one sub-protocol becomes the input for

the next. Therefore, the security of each sub-protocol is guaranteed.

Based on the sequential modular composition mentioned in [6], we

can conclude that the system still maintains its security under the

semi-honest model.

5 APPLICATION AND EXPERIMENT
Based on the previously designed protocols, we design the experi-

mental scenario as follows: there are two parties, A and B, involved,

both of which have data with the same dimension, and they want

to realize the joint Dimensionality Reduction(DR) of data through

privacy computation, to achieve more accurate data dimensional-

ity reduction. Since the scheme is a joint DR for two-party user

data, the matrix data are horizontally or vertically combinations

according to users’ needs, as shown in Fig. 3.

It is worth noting that although our scheme only obtains the left

orthogonal matrix at last, it is only necessary to change whether

it is 𝐴𝑇𝐴 or 𝐴𝐴𝑇 to achieve dimensionality reduction of different

parameters. For example, assume that the data consists of samples

and features, then when we iterate over 𝐴𝑇𝐴, the final output left

singular matrix can achieve dimensionality reduction of features.

Conversely, when we exchange samples and features, the result is

a dimensionality reduction of samples. In real life, most of the time,

both sides have the same characteristics, and the data of different

samples are so that the data of both parties in this experiment is

divided into horizontal cuts through the data matrix𝑀 (𝑚 × 𝑛), as
shown in Fig. 4.



Figure 4: Experiment data settings

5.1 Experiment Setting
This section gives the scheme’s computation efficiency, communi-

cation overhead, and accuracy test. Meanwhile, a comparison with

other similar homomorphic encryption-based schemes is also given.

Regarding the security factor of CKKS, to meet the executable mul-

tiplication depth, we set the polynomial modulus degree as 16384,

and at the same time, to meet the requirements of accuracy, the

scale factor is set as 2
60
. Furthermore, in the previous protocol,

we introduce a perturbation sampled from Q, where the range of
Q is [0, 2𝜆] and 𝜆 is represented as security parameter, according

to the Smudging Lemma [2]. In practical experiments, due to the

limitations of the CKKS scheme and Tenseal library [3], when the

polynomial modulus degree equals 16384, the max coefficient modu-

lus bit-length equals 438. With the scaling factor is set as 2
60

and the

multiplication depth as 5, if 𝜆 = 128, the max coefficient modulus

bit-length required will exceed 438. Therefore, to better illustrate

our scheme’s feasibility, computational efficiency, and accuracy, we

set 𝜆 = 40.

All the computations are carried out in PyCharm on a personal

computer with Intel Core i9-12900KF CPU (3.19GHz) and 64GB

RAM. In addition, to compare with the previous experiments, we

did not use multithreading to implement parallel computation in

this experiment. All experiments have identical testing settings

with the same security parameters.

5.2 Previous experiment
Our scheme has higher computational efficiency and supports

higher data dimensions than previous privacy-preserving dimen-

sionality reduction schemes. For example, The scheme in [1] takes

more than 100 minutes to process a 50 × 50 data, while our scheme

only needs 45 seconds to decompose a 128 × 128 data. Schemes in

[24] takes several years to decompose an 80𝑘 × 1𝑘 matrix, while

our scheme only takes several hours.

5.3 Synthetic dataset
First, we use synthetic data to test the homomorphic encryption

dimensionality reduction scheme(HE-DR) performance. To test

the performance of the HE-DR method with different dimensions

(𝑚×𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒× 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒), we divide the dataset into three groups
with feature numbers 2048, 4096, and 8192. The number of samples

in each group gradually increases from 8192 to 40k. In addition,

we set the value of the matrix to be randomly selected within the

interval [0, 10], which obeys a uniform distribution.

Figure 5: Time Consumption

We tested the computational efficiency of the HE-DR method

with three groups of different feature numbers as the sample num-

ber increases, and its results are shown in Fig. 5. It can be known

from the figure that when the number of features is 2048, as the

sample number increases and when the sample number reaches

40k, which is to say that both sides cooperate to calculate one of the

orthogonal bases of a matrix with more than 80 million elements in

no more than the 30s, then it is extrapolated to the actual scene, the

time to extract ten orthogonal bases, which is only several minutes.

In addition, since the whole algorithm is the multiplication of plain-

text matrix and ciphertext vector, the influence of the number of

features on the calculation time is greater than that of the growth of

the number of samples. Therefore, our scheme will be advantageous

in dealing with data with many samples.

Meanwhile, to better reflect that the HE-DR method still has

high computational efficiency in high-dimensional data, we also

compared the computational efficiency of ciphertext and plaintext,

as shown in Fig. 6, by calculating the ratio of computation time to

illustrate that this scheme still has good computational efficiency

performance under high-dimensional data. Also, with the increase

in sample size, the ratio of ciphertext time to plaintext time gradu-

ally decreases, and finally, both stabilize around 5 times.

5.4 Real world dataset
In addition to testing HE-DR with synthetic datasets, we also use

some real datasets. To compare the performance of our scheme

and Homomorphic PCA(HPCA) scheme[29], we select four classi-

fication datasets which are the same as the test dataset of HPCA,

Winequailty-white [31], Winequailty-red [31], Air Quality [34], and

Parkinson’s telemonitoring [22]. We additionally add one Breast

Cancer Wisconsin dataset [35]. To guarantee the consistency of

experiments, we only test the time cost of computing the same num-

ber of singular values and communication overhead when N=16384

and the results are shown in Table 1. For each data set with dimen-

sion𝑚×𝑛,𝑚 denotes the number of samples, 𝑛 denotes the number

of features, and 𝑙 refers to the number of principal components

extracted.



Table 1: Performance of HPCA and HE-DR algorithm

Dataset m n l

Computation(Sec) Communication(MB)

HPCA HE-DR HPCA HE-DR

Winequailty-white 4898 11 3 183.912 3.3262 424 150

Winequailty-red 1599 11 3 118.626 2.6627 424 150

Air Quality 9357 13 4 290.094 5.2901 563 198

Parkinsons 5875 16 4 209.946 4.8089 563 198

Breast Cancer Wisconsin 569 30 2 125.574 2.0822 286 103

Figure 6: The ratio of cipher and plain text time consumption

Then, it can be seen from Table 1 that when the dimensions are

the same, and the same number of principal components are ex-

tracted, our scheme is nearly 60 times faster than HPCA regarding

computational efficiency. Furthermore, we conduct a comparative

analysis of the communication overhead. Given that both are com-

puted iteratively, the magnitude of the communication overhead

is primarily contingent upon the total number of principal com-

ponents calculated and the associated communication overhead

for each extraction. As Table 1 shows that our proposed scheme

requires approximately 50MB of communication overhead to ex-

tract each principal component. In contrast, HPCA requires roughly

150MB. Consequently, our scheme only demands one-third of the

communication overhead required by HPCA.

5.5 Error analysis
To demonstrate that the computational results of our ciphertext

scheme maintain a high level of accuracy as the plaintext scheme,

we present in this section the error results obtained when different

schemes perform matrix decomposition on the same dataset. Firstly,

we choose the CRANFIELD dataset as the test set, with dimensions

of 3000 × 1400. According to previous data partitioning methods,

the dimensions of datasets for User A and User B are both 1500 ×
1400. We then use the SVD, RR, DR(Plain algorithm), HE-DR(cipher

algorithm), and HPCA schemes to decompose the dataset𝑀 (3000×
1400) into orthogonal matrices𝑈 . Finally, we measure the accuracy

of the results from two aspects: orthogonality and the distance

between two subspaces, as shown in Table 2.

According to the definition of orthogonal matrices, when the

column vectors or row vectors of a matrix are pairwise orthogonal,

and each vector has a length of 1,𝑈𝑇𝑈 = 𝑈𝑈𝑇 = 𝐼 . The matrix𝑈

we seek is a left orthogonal matrix, so we use ∥𝐼 −𝑈𝑇𝑈 ∥2 to verify

the results’ orthogonality. Table 2 shows that the errors in orthogo-

nality of our plaintext and ciphertext algorithms are 2.61𝑒−15
and

2.43𝑒−15
, respectively. The results can be approximated to 0, indi-

cating that the outputs of our algorithm satisfy orthogonality. It is

important to note that all error results are calculated under the scale

factor of 2
60
. This choice is primarily due to two reasons: Firstly

since the final solution is derived through iterative processes, the

accumulation of errors in the ciphertext occurs relatively rapidly.

Secondly, the nature of the task demands high precision, and each

computational outcome can significantly influence subsequent cal-

culations. Consequently, if the retained precision is insufficient,

even minor errors introduced will impact future calculation results.

In practical testing scenarios, if the value of the scale factor is less

than 2
60
, then only the first two feature vectors are correct.

Secondly, there are infinitely many choices for the unit orthogo-

nal basis of a subspace, so we measure the accuracy of the results

by the distance between the subspace. When the subspace distance

approaches 0, it indicates that the subspaces almost coincide, demon-

strating the results’ accuracy. Based on the definition of subspace

distance, let 𝑆1, 𝑆2 ⊆ R𝑛 as two subspaces with the same dimen-

sion, and their subspace distance is 𝑑𝑖𝑠𝑡 (𝑆1, 𝑆2) = ∥𝑃1 − 𝑃2∥2. Here,
𝑃 is the orthogonal projection of 𝑆 and satisfies 𝑃𝑇 = (𝑈𝑈𝑇 )𝑇 =

𝑈𝑈𝑇 = 𝑃 . We use the orthogonal matrix obtained from QR de-

composition as a standard and calculate the distance between the

left orthogonal matrices obtained by different methods and the

subspace spanned by the standard orthogonal matrix. The results

are shown in Table 2. According to the results, it can be seen that

the distance between the subspaces obtained by plaintext(DR) and

ciphertext(HE-DR) algorithms and the subspace of the standard

algorithm is very small, almost equal to 0, which means that the

subspaces overlap. Therefore, we can assert the correctness of the

results obtained by our method.

6 CONCLUSION AND FUTUREWORK
This paper introduces a new CKKS-based homomorphic encryption

dimensionality reduction scheme that offers superior computational

Table 2: The error of each method

SVD Rank-Revealing DR HE-DR HPCA

∥𝐼 −𝑈𝑇𝑈 ∥2 1.79e-14 2.54e-15 2.61e-15 2.43e-15 1.34

𝑑𝑖𝑠𝑡 (𝑆1, 𝑆2) 6.42e-15 8.68e-15 5.52e-13 1.46e-11 /



efficiency and reduced communication overhead. In our scheme, we

consistently perform operations on the plaintext matrix and cipher-

text vector, avoiding computations between ciphertexts or matrices

as in traditional schemes. Moreover, unlike previous schemes that

required transmission of the ciphertext matrix, our approach only

requires transmission of the ciphertext vector, significantly reduc-

ing communication overhead while ensuring data security. From

a security perspective, our scheme obviates the need for a trusted

third party and eliminates collusion concerns inherent in previous

models[7, 16, 23, 24, 32].

Since the current scheme is developed based on Tenseal, some

ciphertext calculations and parameter selection are not optimal,

such as packing ciphertext data, parallel computing, scaling factors,

𝜆, etc. In subsequent work, we will further optimize the ciphertext

calculation to improve computational efficiency.
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