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Abstract

Private Set Union (PSU) protocol allows parties, each holding an input set, to jointly compute
the union of the sets without revealing anything else. In the literature, scalable PSU protocols follow
the “split-execute-assemble” paradigm (Kolesnikov et al., ASIACRYPT 2019); in addition, those fast
protocols often use Oblivious Transfer as building blocks. Kolesnikov et al. (ASIACRYPT 2019) and Jia
et al. (USENIX Security 2022), pointed out that certain security issues can be introduced in the “split-
execute-assemble” paradigm. In this work, surprisingly, we observe that the typical way of invoking
Oblivious Transfer also causes unnecessary leakage, and only the PSU protocols based on additively
homomorphic encryption (AHE) can avoid the leakage. However, the AHE-based PSU protocols are far
from being practical.

To bridge the gap, we also design a new PSU protocol that can avoid the unnecessary leakage. Unlike
the AHE-based PSU protocols, our new construction only relies on symmetric-key operations other than
base OTs, thereby being much more scalable. The experimental results demonstrate that our protocol can
obtain at least 873.74× speedup over the best-performing AHE-based scheme. Moreover, our performance
is comparable to that of the state-of-the-art PSU protocol (Chen et al., USENIX Security 2023), which
also suffers from the unnecessary leakage.

1 Introduction

In a Private Set Union (PSU) protocol, two players, a sender and a receiver, holding input sets X and Y ,
respectively, can jointly compute the union X ∪ Y as output. To ensure the joint computation is private,
any additional information except the union X ∪ Y , is not allowed to be learned by the players. Especially,
information about the items in the intersection set X ∩ Y should not be learned by the players. Often we
consider a simplified version of PSU: Instead of having both players to obtain the same output X ∪ Y , in
the simplified version of PSU, only the receiver obtains the output X ∪ Y .

Symmetric Key-based PSU protocols. Kolesnikov et al. [20] is the first to only leverage symmetric
key techniques to design a PSU protocol, such that their protocol is truly practical and scalable. Multiple
followup results then are developed [13, 18, 8, 28, 30, 1]. In this work, we observe that all of these symmetric
key-based protocols suffer from unnecessary leakage.
Kolesnikov et al.’s “split-execute-assemble” based PSU. Kolesnikov et al. [20] introduce for the first
time the “split-execute-assemble” paradigm into the design of scalable PSU protocols: First, the pair of input
sets X and Y are split into multiple much smaller pairs of subsets, i.e., {(X1, Y1), (X2, Y2), · · · , (Xβ , Yβ)},
where β ∈ N; Here, |X| = N1 and |Y | = N2; for all i ∈ [β], |Xi| ≪ N1 and |Yi| ≪ N2. Then, the two parties
execute β number of PSU protocol instances, as subroutine, and each instance is on pair of subsets (Xi, Yi).

† Part of the work was done at Shanghai Jiao Tong University.
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The receiver obtains Zi = Xi ∪ Yi. Finally, the receiver assembles the outputs of all subroutine protocol
instances, and obtains the output Z = Z1 ∪ Z2 ∪ · · · ∪ Zβ .
Security concerns in the “split-execute-assemble” based PSU. Applying the above paradigm to the
PSU design is a natural and interesting idea. However, as discussed by Kolesnikov et al. [20], in the “split-
execute-assemble” paradigm, the receiver can learn if a subset Yi includes items that are in the intersection
X∩Y , which is not allowed in PSU. In order to eliminate the information leakage, Kolesnikov et al. developed
a careful padding strategy in [20]. Unfortunately, Jia et al. [18] pointed out that this padding strategy is
insufficient to eliminate the leakage: Roughly, whenever the output Zi = Xi ∪ Yi is equal to Yi for the i-th
PSU sub-protocol instance, the receiver will be aware that the i-th subset Yi includes the items in X ∩ Y
with an overwhelming probability (see Section 3.1 and Appendix A for more details).

In our work, we observe that the leakage pointed out by Jia et al. [18] can actually be deduced from the
output X ∪ Y . In other words, as long as the receiver obtains the output X ∪ Y , he can learn the leakage.
At first glance, the protocol by Kolesnikov et al. [20] seems to be secure enough. However, we find that
the receiver in Kolesnikov et al. [20] can learn the leakage during the execution, rather than after receiving
the output, and we call this leakage as “during-execution leakage”. Unlike obtaining leakage only after
protocol execution is completed, during-execution leakage may lead the receiver to terminate the protocol
upon learning sufficient leakage1.
OT-based PSU, and its security concerns. The subsequent works [13, 8, 28, 30, 18, 1] do not leverage
the “split-execute-assemble” paradigm, but we find that these solutions still suffer from the during-execution
leakage. More specifically, for each item in the input set X, the receiver first learns whether it is a member
of the set Y , and then obtains the output Z = X ∪ Y by invoking the underlying Oblivious Transfer
(OT) instances with the membership information. In other words, the OT-based PSU protocols leaks the
membership information before the execution of the protocol is completed.

AHE-based PSU. The during-execution leakage is not necessary for a PSU protocol, as we observe that
the AHE-based protocols can avoid it. Using additively homomorphic encryption (AHE), Frikken et al. [12]
construct the first efficient PSU protocols. Later Davidson et al. [10] improve the performance along this
line. More concretely, the receiver generates a representation P (·) of his set Y such that if x ∈ Y , then
P (x) = 0, and sends Enc(P (·)) to the sender. Then, for each x ∈ X, the sender calculates a ciphertext
based on Enc(P (·)). Finally, the receiver can obtain the items in X \Y by decrypting the ciphertexts without
needing extra information in advance. However, the AHE-based PSU protocols are still far from being
practical and scalable.

Main question. Based on the discussions so far, we can see that existing provably secure PSU protocols:
(1) either avoid the during-execution leakage but are not scalable, as in AHE-based PSU protocols;
(2) or are scalable but suffer from the during-execution leakage, as in symmetric key-based PSU protocols.

It will be desirable to achieve the “best of the two worlds”. Therefore, we have the following research
question: Is it possible to design a provably secure scalable PSU that does NOT suffer from the leakage?

1.1 Our results

In this paper, we give an affirmative answer to the above question through the following results.

Revisiting the existing PSU protocols. In Section 3, we investigate existing PSU protocols, and find
that scalable symmetric key-based PSU protocols suffer from the during-execution leakage, but non-scalable
AHE-based PSU protocols do not. To provide a formal analysis, we define a new enhanced ideal functionality
for PSU, denoted as Fn1,n2

ePSU in Section 4, that does not allow the leakage during the execution. The formal
analysis is provided in Section 6.

A new PSU protocol. In Section 5, we provide the first PSU protocol which achieves both scalability and
the enhanced PSU functionality Fn1,n2

ePSU simultaneously.

1In practice, the receiver may be required to pay a fee to the sender after completing the execution. If the execution is
terminated, the receiver may not be obligated to pay the fee.
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Our design: The main difference between the OT-based and the AHE-based PSU lies in the method the
receiver uses to obtain items in X \ Y . In the AHE-based PSU, the receiver obtains the items in X \ Y via
decryption, without knowing membership information in advance. Whereas, the receiver in the OT-based
PSU needs to use the membership information to obtain the items in X \ Y through OTs. To achieve the
enhanced PSU functionality Fn1,n2

ePSU as in the AHE-based PSU, our core idea is to “mimic” the decryption
process in the AHE-based PSU: For each item x ∈ X, the sender randomly chooses a secret key r and sends
the ciphertext c = x ⊕ r to the receiver. Then, if x /∈ Y , the receiver obtains the identical secret key r,
otherwise, the receiver obtains a distinct secret key r′ ̸= r. This way enables the receiver to obtain x by
calculating c⊕ r′ only when x /∈ Y .

To this end, we employ the following two steps. First, we transform the problem of determining whether
an item x belongs to a set Y into the problem of evaluating the equality of two strings, using Oblivious
Programmable PRF (OPPRF). More concretely, if x ∈ Y , the PRF value t obtained by the sender will be
equal to the receiver’s PRF value t′. Then, we propose a novel building block, called “Equality-Conditional
Random Generation (ECRG)”, where the sender inputs (t, r) and the receiver inputs t′, then the receiver
obtains r′ = r if t′ ̸= t, or another random string r′ ̸= r otherwise. Obviously, through ECRG, the receiver
can obtain x only when x /∈ Y .

A straightforward way to support the general case, where the sender holds multiple items, is to repeat
the above process while using a batched ECRG (bECRG). However, this will incur a quadratic cost. To
reduce the cost, we use Cuckoo hashing, and the leakage incurred by Cuckoo hashing can be avoided by
leveraging Permute+Share. As in the OT-based PSU, our new PSU construction only relies on symmetric-key
operations other than base OTs, and is thus significantly more scalable than AHE-based PSU.

Performance comparision: We implement our protocol in C++. The experimental results in Table 2 (see
Section 5.5) show that our protocol can obtain at least 873.74× speedup over the latest AHE-based scheme
[10] in a LAN setting, and our communication cost is 5× less than theirs. Moreover, the performance of our
protocol is comparable to that of the state-of-the-art PSU protocol [30] for large balanced sets, in a LAN
setting; Note that the PSU protocol in [30] cannot achieve Fn1,n2

ePSU due to the during-execution leakage.

2 Preliminaries

In this section, we briefly recall “generalized Reversed Private Membership Test (g-RPMT)”, “Oblivi-
ous Transfer (OT)”, “Oblivious Programmable PRF (OPPRF)”, “Private Equality Test (PET)”, “Per-
mute+Share (PS)”, simple hashing and Cuckoo hashing.

Generalized Reversed Private Membership Test. Reversed Private Membership Test (RPMT) was
first proposed and formalized in [20]. More concretely, the sender P0 holding an item x and the receiver P1

holding a set Y . Then, the receiver P1 can learn a bit b without obtaining any information else about item
x; if x ∈ Y , b = 1, otherwise, b = 0. Meanwhile, the sender P0 knows nothing about P1’s set Y . Based on
the RPMT, a generalized RPMT was proposed in [18] where the sender P0 inputs a set X, rather than an
item x. We give the functionality Fg-RPMT in Figure 1.

1-out-of-2 Oblivious Transfer. 1-out-of-2 oblivious transfer (OT) is a two-party protocol, where party
P0 takes as input two strings {x0, x1}, and the other party P1 chooses a random bit b and obtains nothing
other than xb while P0 learns nothing about b. The first OT protocol was proposed by Rabin in [26]. And
due to the lower bound in [16], all the OT protocols require expensive public-key operations. To improve
the performance, Ishai et al. [17] introduced the concept of OT extension that enables us to carry out many
OTs based on a small number of basic OTs. The functionality FOT is shown in Figure 2.

Oblivious Programmable PRF. Oblivious Programmable PRF was first proposed and formalized in [19].
Compared to oblivious PRF (OPRF), OPPRF allows the sender P0 to additionally “program” the PRF
values of some inputs, and outputs pseudorandom PRF values everywhere else. More specifically, the sender
P0 inputs T = {(xi, yi)}i∈[n], which means that the PRF value of xi is set to be yi. The receiver P1 inputs
(q1, · · · , qt). After the execution, the sender obtains (k, hint), and the receiver obtains {F (k, hint, qi)}i∈[t] and
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Parameters:

• Two parties: sender S and receiver R;
• Set size for sender S is n1, set size for receiver R is n2.

Functionality:

1. Wait for input X = {x1, · · · , xn1} from S, abort if |X| ̸= n1;

2. Wait for input Y = {y1, · · · , yn2} from R, abort if |Y | ̸= n2;

3. For each i ∈ [n1], if X[i] ∈ Y , set bi = 1, otherwise, bi = 0;

4. Send ⟨Request⟩ to the simulator Sim;

5. Upon receiving ⟨Response,OK⟩ from Sim, send {b1, · · · , bn1} to R;

Functionality Fg-RPMT

Figure 1: Generalized Reversed Private Membership Test Functionality.

Parameters:

• Two parties: P0 and P1.

Functionality:

1. Wait for input {x0, x1} from P0;

2. Wait for input b ∈ {0, 1} from P1;

3. Send ⟨Request⟩ to the simulator Sim;

4. Upon receiving ⟨Response,OK⟩ from Sim, send output xb to P1.

Functionality FOT

Figure 2: 1-out-of-2 Oblivious Transfer functionality.

hint. Note that if qj = xi, F (k, hint, qi) = yi, otherwise, F (k, hint, qi) is pseudorandom. The functionality
FOPPRF is given in Figure 3.

Parameters:

• Two parties: P0 and P1;

• A programmable PRF F with function KeyGen(·);
• Upper bound n on the number of points to be programmed;

• Upper bound t on the number of queries.

Functionality:

1. Wait for input T = {(x1, y1), · · · , (xn, yn)} from P0;

2. Wait for input {q1, · · · , qt} from P1;

3. Generate (k, hint)← KeyGen(T ) and {F (k, hint, qi)}i∈[t];

4. Send ⟨Request⟩ to the simulator Sim;

5. Upon receiving ⟨Response,OK⟩ from Sim, send {F (k, hint, qi)}i∈[t] and hint to P1, and (k, hint) to P0.

Functionality FOPPRF

Figure 3: Oblivious Programmable PRF Functionality.

Private Equality Test. Private Equality Test (PET) is used to test whether two strings are equal. More
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concretely, the two parties P0 and P1 hold strings x0 and x1 respectively. PET outputs a bit b0 to P0 and
b1 to P1 such that if x0 = x1, b0 ⊕ b1 = 0, otherwise, b0 ⊕ b1 = 1. The existing works [11, 9, 6] designed
efficient PET protocols. We give the functionality FPET in Figure 4.

Parameters:

• Two parties: P0 and P1;

Functionality:

1. Wait for input x0 from P0;

2. Wait for input x1 from P1;

3. Generate b0 and b1 such that if x0 = x1, b0 ⊕ b1 = 0, otherwise b0 ⊕ b1 = 1;

4. Send ⟨Request⟩ to the simulator Sim;

5. Upon receiving ⟨Response,OK⟩ from Sim, send b1 to P1, and b0 to P0.

Functionality FPET

Figure 4: Private Equality Test Functionality.

Permute + Share. The Permute+ Share functionality FPS is defined by Chase et al. in [7]. There are
two parties P0 and P1 in this functionality, where P0 possesses a set X = {x1, · · · , xn} of size n and P1

picks a permutation π on n elements. The goal of FPS is to let P0 learn the shares {sπ(1), sπ(2), · · · , sπ(n)}
and P1 learn nothing but the other shares {xπ(1) ⊕ sπ(1), xπ(2) ⊕ sπ(2), · · · , xπ(n) ⊕ sπ(n)}. As mentioned
in [7], some earlier works [15, 22] can also be used for securely realizing FPS. These solutions all have
computation/communication complexity O(n log n). The functionality FPS is shown in Figure 5.

Parameters:

• Two parties: P0 and P1;

• Set size n for P0;

• Length of element ℓ.

Functionality:

1. Wait for input X = {x1, · · · , xn} from P0, abort if |X| ≠ n, or ∃ xi ∈ X such that |xi| > ℓ;

2. Wait for input a permutation π from P1, abort if π is not a permutation on n items;

3. Send ⟨Request⟩ to the simulator Sim;

4. Upon receiving ⟨Response,OK⟩ from Sim, give output shuffled shares {sπ(1), sπ(2), · · · , sπ(n)} to P0, and
another shuffled shares {xπ(1) ⊕ sπ(1), xπ(2) ⊕ sπ(2), · · · , xπ(n) ⊕ sπ(n)} to P1.

Functionality FPS

Figure 5: Permute+ Share functionality.

Simple Hashing. In the simple hashing scheme, there are γ hash functions hi : {0, 1}∗ → [b], where
i ∈ [γ], used to map n items into b bins B1, · · · , Bb. An item x will be added into Bh1(x), Bh2(x), · · · , Bhγ(x),
regardless of whether these bins are empty. The maximum bin size ρ can be set to ensure that no bin will
contain more than ρ items except with probability 2−λ when hashing n items into b bins.

Cuckoo Hashing. Cuckoo hashing was introduced by Pagh and Rodler in [23]. In this hashing scheme,
there are γ hash functions h1, · · · , hγ used to map n items into b = ϵn bins and a stash, and we denote the
i-th bin as Bi. Unlike the simple hashing, the Cuckoo hashing can guarantee that there is only one item in
each bin, and the approach to avoid collisions is as follows: For an item x, it can be inserted into any empty
bin of Bh1(x), Bh2(x), · · · , Bhγ(x). If there are no empty bins in the k bins, randomly select a bin Bhr(x) in
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Figure 6: The leakage of protocol in [20].

these γ bins, and evict the prior item y in Bhr(x) where hr(x) = hr(y) to a new bin Bhi
(y) where i ̸= r.

The above procedure is repeated until no more evictions are necessary, or until the number of evictions has
reached a threshold. In the latter case, the last item will be put in the stash. According to the empirical
analysis in [25], we can adjust the values of γ and ϵ to reduce the stash size to 0 while achieving a hashing
failure probability of 2−40. Moreover, the works [29, 21] have shown that Cuckoo hashing can theoretically
achieve negligible failure probability.

3 Leakage Analysis

In this section, we thoroughly analyze the leakage in existing PSU constructions. Specifically, we observe
that the symmetric key-based PSU constructions [18, 13, 8, 28, 30, 20, 1] suffer from the during-execution
leakage, whereas the AHE-based PSU protocols [12, 10] can avoid it.

3.1 Revisiting the Leakage of PSU in [20]

The PSU protocol in [20] is performed in a “split-execute-assemble” paradigm. As shown in Figure 6, the
sender and receiver map their input sets X and Y into two simple hash tables respectively, such that the
set X (resp. Y ) is divided into subsets X1, · · · , Xβ (resp., Y1, · · · , Yβ). Note that each bin of the sender is
filled with a special item, and each bin of the receiver is filled with one special item and some dummy items.
Then, for each pair of bins, the two parties execute a PSU sub-protocol. We briefly recall the leakage pointed
out by Jia et al. [18] in Figure 6; if the receiver does not receive any valid items from the sender in the k-th
bin, the receiver can know that there are items belonging to X ∩ Y in Yk with an overwhelming probability
once the sub-protocol in this bin is finished. Roughly speaking, there are two cases in which the receiver
does not receive any valid items; Case1 is that Xk ̸= ∅ ∧ Xk ⊆ Yk, and Case2 is that Xk = ∅. According
to the analysis in [18], the receiver can learn that Case1 happens with an overwhelming probability, which
means that she can know that there are items belonging to X ∩ Y in Yk with the same probability. Please
see Appendix A for more details about the leakage.

After reviewing the security proof in [20], we find that the protocol in [20] can indeed securely realize
Fn1,n2

PSU (recalled in Figure 7), which means that the functionality Fn1,n2

PSU actually allows the leakage. Next,
we will analyze the leakage from the perspective of ideal functionality.

3.2 Leakage Allowed in Fn1,n2

PSU

According to Fn1,n2

PSU , the simulator for the corrupted receiver only obtains the output, i.e., X ∪ Y , which
means that the leakage recalled above can be deduced from X ∪Y . Therefore, in any protocols that securely
realize Fn1,n2

PSU , the receiver can obtain the leaked information once receiving all the items in X ∪ Y , which
will be explained by the following example:

Assuming the receiver’s set Y = {y1, y2, · · · , y10} and X \ Y = {x7, x2, x4, x6, x8}, the receiver can map
X \ Y and Y into two simple hash tables respectively as shown in Figure 8. Note that even if the PSU
protocol does not use the bucketing technique as in [20], the receiver can choose some hash functions to
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Parameters:
• Set size for sender S is n1, set size for receiver R is n2.

Functionality:
1. Wait for X = {x1, · · · , xn1} from S, abort if |X| ̸= n1;
2. Wait for Y = {y1, · · · , yn2} from R, abort if |Y | ̸= n2;
3. Give output X ∪ Y to R.

Functionality Fn1,n2
PSU

Figure 7: The Original Ideal Functionality for PSU.

 

Figure 8: The receiver maps X \ Y and Y into two simple hash tables respectively.

perform the mapping. We can see that in the left table, no items in X \Y are mapped to the 4th bin marked
in gray. Then, according to the analysis in [18], the receiver can learn that items belonging to X ∩ Y are in
{y5, y7} with a high probability.

3.3 Leakage Occurring in Symmetric Key-based PSU Protocols

In this section, we further analyze the leakage of PSU protocol in [20] and the subsequent symmetric key-
based PSU protocols [18, 13, 8, 28, 30, 1].

PSU Protocol in [20]. As analyzed before, the leakage of PSU protocol in [20] is actually allowed by the
functionality Fn1,n2

PSU . However, we notice that the receiver in [20] can learn the leakage during the execution,
rather than after receiving all the items in X ∪Y . We call the leakage occurring in [20] as “during-execution
leakage”. Recall the example shown in Figure 6, once completing the execution in the k-th bin, the receiver
learns with an overwhelming probability that there are intersection items in Yk.

Intuitively, the during-execution leakage in protocol [20] is incurred by the “split-execute-assemble”
paradigm. Therefore, a natural question is “Do the subsequent OT-based PSU protocols (including [1, 13, 8,
28, 30, 18] and the basic scheme in [20]) avoid the during-execution leakage?” While these OT-based PSU
protocols do not leverage the split-execute-assemble paradigm, we observe the answer is still negative.

OT-based PSU Protocols. We observe that all the OT-based PSU protocols in [1, 18, 13, 8, 28, 30]
and the basic scheme in [20] follow the design framework shown in Figure 9. Concretely, the sender first
randomly permute his set X. Then, through generalized Reversed Private Membership Test (g-RPMT), the
receiver can learn a bit bi for each item in X; bi = 0 means xi /∈ Y , otherwise xi ∈ Y . The receiver knows
no more information about xi beyond whether it belongs to Y , and the sender learns nothing about Y . At
last, the receiver obtains xi if bi = 0, otherwise, obtains ⊥. Intuitively, in the design framework shown in
Figure 9, the set Y is processed as a whole and the receiver obtains the items in X \ Y in random order.
Therefore, the receiver in the design framework cannot obtain the leakage shown in Figure 6 during the
execution. However, it can be observed that the receiver obtains {b1, · · · , bn1

} before obtaining the output
X ∪ Y . In other words, even if the receiver does not perform OTs with the sender after executing g-RPMT,
the receiver can still learn {b1, · · · , bn1}. Therefore, {b1, · · · , bn1} is also during-execution leakage.

Practical Influence. If any PSU protocol can ensure that the receiver obtains the entire output, it does
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Sender ( ) Receiver ( )

-

OT-based 

Randomly permute 

Figure 9: OT-based solutions [1, 18, 13, 8, 28, 30, 20].

not matter whether the leakage happens after the execution or during the execution2. However, in practice,
many realistic factors (e.g., network interruptions and server failures) may interrupt the execution. Moreover,
the receiver may refuse to finish the execution once he obtains sufficient leakage, and leverage the during-
execution leakage to launch attacks.

More specifically, in some attacks, the attacker needs to collect information across multiple executions.
However, in practice, victims may limit the number of executions for a period of time, but they may allow
executions to be restarted after interruptions. Therefore, when the protocol suffers from during-execution
leakage, the attacker could utilize the during-execution leakage: the attacker interrupts the execution once
obtaining the leakage and then initiates a new execution. In this way, the attacker obtains more information
within a certain period of time. As an example, we next explain how an attacker can use the during-execution
leakage {b1, · · · , bn1} in OT-based PSU to launch the attack shown in [14].

Guo et al. [14] launched attacks on protocols that aim to hide intersections but allow leaking intersection
sizes, including Private Set Intersection Cardinality (PSI-CA), Private Intersection-Sum with Cardinality
(PSI-SUM) and PSU. Specifically, the attacker can leverage the intersection sizes obtained across multiple
executions to infer whether some elements are in a set (that is, intersection). They implemented the attack on
practical datasets to obtain the tokens of COVID-19 patients, and the interest of the person associated with
specific personal id. The during-execution leakage {b1, · · · , bn1} in OT-based PSU actually leaks intersection
size. By launching the attack in [14] on the OT-based PSU, the attacker can interrupt the execution
upon obtaining {b1, · · · , bn1

}; the attacker can interact with the sender more times, thereby obtaining more
intersection sizes to infer intersections.

Guo et al. [14] also mentioned that limiting the number of protocol invocations may be a potential
defense. However, if the targeted protocol suffers from the during-execution leakage, only limiting the number
of protocol invocations is not enough. Being attentive to interruption events and limiting the number of
restarts after interruptions are also necessary.

Given the above example, we know that the during-execution leakage could be exploited by attackers.
Fortunately, we observe that the during-execution leakage is unnecessary, as the AHE-based solutions [12, 10]
can avoid it.

3.4 AHE-based PSU Protocols avoiding the During-Execution Leakage

Different from the symmetric key-based solutions [1, 13, 8, 28, 30] following the design framework shown in
Figure 9, the receiver in the AHE-based solutions [12, 10] do not need to first obtain the membership test
result (i.e., {b1, · · · , bn1}) and then interact with the sender to obtain the items in X \Y . We give the design
framework used by the AHE-based solutions [12, 10] in Figure 10.

2Here, we ignore the difference in the time of obtaining the leakage.
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Figure 10: AHE-based solutions [12, 10].

More specifically, the two parties in the schemes [12, 10] actually perform a encrypted g-RPMT, rather
than a g-RPMT. The “encrypted” means that from the output of encrypted g-RPMT, the receiver can obtain
a ciphertext ci for each item xi in the set X and a decryption key sk. Then, if the receiver can decrypt
the ciphertext ci to obtain a valid item xi, this means that the corresponding bit bi = 0, otherwise, bi = 1.
Note that in the AHE-based solutions [12, 10], the decryption key sk is the secret key of a key pair (pk, sk)
chosen by the receiver. It can be observed that in this design framework shown in Figure 10, for an item in
the set X, the receiver directly obtains the item itself or ⊥ without needing to obtain extra information in
advance. Therefore, the AHE-based protocols [12, 10] do not suffer from the during-execution leakage.

In summary, we discover that during-execution leakage is prevalent in symmetric key-based PSU proto-
cols, but can be avoided by AHE-based PSU protocols. Given that attackers could exploit during-execution
leakage to launch attacks, it is necessary to analyze whether a PSU protocol is susceptible to during-execution
leakage when designing it. However, as previously analyzed, in the existing PSU functionality Fn1,n2

PSU (see
Figure 7), the during-execution leakage is allowed. Therefore, we next in Section 4 define a new PSU func-
tionality in which the during-execution leakage is not allowed. In addition, since that the AHE-based PSU
protocols are not efficient enough, in Section 5, we design a new symmetric key-based PSU while avoiding
the during-execution leakage.

4 Defining a New PSU Functionality Fn1,n2

ePSU

As discussed above, the previous scalable protocols [1, 13, 8, 28, 30, 18, 20] all suffer from the during-
execution leakage. However, these protocols have been proven to securely realize the functionality Fn1,n2

PSU

shown in Figure 7. This means that the functionality Fn1,n2

PSU cannot capture the security without during-
execution leakage. Therefore, in Figure 11, we define a new enhanced PSU functionality Fn1,n2

ePSU that can
subtly capture the security where the receiver cannot obtain any during-execution leakage before obtaining
the output X ∪ Y .

Differences from Fn1,n2

PSU . The main difference from the original PSU functionality Fn1,n2

PSU in Figure 7 is
that the enhanced functionality Fn1,n2

ePSU additionally sends an output ⟨Finished⟩ to the sender once the joint
computation is completed. We remark that returning ⟨Finished⟩ to the sender is reasonable: in a natural
real-world PSU protocol execution, the sender should be aware if the protocol execution has been completed
or not; therefore, in the ideal world, the sender should also be informed of the completion. In addition,
in the original functionality Fn1,n2

PSU , the interactions between the functionality and the simulator (i.e., ideal
world adversary), are not explicitly described. This presentation is consistent with that in [5], in which the
simulator is in charge of the message delivery in the ideal world execution. In this work, to address the subtle
issues in existing PSU protocols, we follow Canetti’s original formulation [3, 4]; thus, we explicitly present
the interactions between the functionality and the simulator. For example, when the PSU functionality
receives an input, the simulator must be notified; when a player is corrupted, the simulator must be allowed
to “see” the corresponding “ideal state”.
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Parameters:
• The functionality interacts with two parties, the sender S and the receiver R, and the simulator Sim;
• Set size for the sender S is n1, and the set size for the receiver R is n2.

Functionality:
0. Initialize an ideal state stateU = ∅ for party U where U ∈ {S,R}; if U is corrupted, the simulator Sim is

allowed to access stateU;
1. Upon receiving input X = {x1, · · · , xn1} from the sender S, abort if |X| ̸= n1; otherwise, update state

stateS = ⟨X⟩, and send ⟨Request,S⟩ to Sim;
2. Upon receiving input Y = {y1, · · · , yn2} from the receiver R, abort if |Y | ̸= n2; otherwise, update state

stateR = ⟨Y ⟩, and send ⟨Request,R⟩ to Sim;
3. Upon receiving ⟨Response,OK⟩ from Sim, compute Z = X ∪ Y , and add ⟨Finished⟩ to the sender’s state

stateS and ⟨Z⟩ to the receiver’s state stateR;
4. Output Z to R, and ⟨Finished⟩ to S.

Functionality Fn1,n2
ePSU

Figure 11: An enhanced ideal functionality for PSU.

During-Execution Leakage Not Allowed in Fn1,n2

ePSU . Next, we take the OT-based design framework
shown in Figure 9 as an example to intuitively explain how ⟨Finished⟩ can help us to recognize that a
protocol suffers from the during-execution leakage (i.e., a protocol with the during-execution leakage cannot
securely realize Fn1,n2

ePSU ).
We assume that there is an adversary who corrupts the receiver and that at a certain moment t3, g-RPMT

has finished while OTs have not yet started. Then, the simulator needs to simulate B = {b1, · · · , bn1
} for the

adversary. The simulator only has the two strategies: (1) Do send ⟨Response,OK⟩ to Fn1,n2

ePSU immediately;
(2) Do not send ⟨Response,OK⟩ to Fn1,n2

ePSU immediately.
Following the first strategy, the simulator can simulate B = {b1, · · · , bn1}, but the sender will forward

⟨Finished⟩ to the environment in the ideal world, while the environment in the real world will not obtain
⟨Finished⟩ since the execution has not been completed in the real world. Therefore, the environment can
distinguish the two worlds. On the other hand, if following the second strategy, regardless of whether in
the real or ideal world, the environment will not obtain ⟨Finished⟩. However, in the real world, the number
of 1 in B is equal to |X ∩ Y |. Note that the environment knows |X ∩ Y |, as X and Y are chosen by
the environment. Whereas, in the real world, the probability that the simulator does not guess |X ∩ Y |
successfully is overwhelming. Therefore, the environment can still distinguish the two worlds. The idea of
proof can be naturally extended to the protocol of [20] following the split-execute-assemble paradigm. We
postpone the rigorous proof to Section 6.2.

As for the AHE-based protocols following the design framework shown in Figure 10, the simulator for
corrupted receiver does not need extra information before simulating the ciphertexts of the encrypted g-
RPMT. In order to simulate the ciphertexts, the simulator needs to obtain the output X ∪ Y from Fn1,n2

ePSU ,
which means that the environment will receive ⟨Finished⟩. Note that in the real world, once sending the
ciphertexts, the sender completes the execution, so the environment can also obtain ⟨Finished⟩. Therefore,
the environment cannot distinguish the two worlds. Please refer to Section 6.3 for more details.

5 A New PSU ΠbECRG
PSU realizing Fn1,n2

ePSU

In the previous section, we find that only the protocols following the AHE-based framework shown in Fig-
ure 10 can securely realize our new enhanced PSU functionality Fn1,n2

ePSU . However, the AHE-based protocols
are not efficient enough in practice, especially for large datasets. In this section, we design a scalable PSU
protocol ΠbECRG

PSU that can securely realize Fn1,n2

ePSU by using symmetric-key operations. Next, we first give

3Note that the environment can know the internal state of the adversary, and thus know when the execution starts and when
g-RPMT has finished while OTs have not yet started.
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Sender ( ) Receiver ( )

OPPRF

-

ECRG

If                                     ;
Else,                        ;

(a) (1, n) − PSU. Here, OPPRF and ECRG constitute
the “encrypted g-RPMT” in Figure 10 with one element
x; r′ corresponds to the key sk and c = x⊕r corresponds
to the ciphertext of x.

batched
ECRG

PS

-

Sender ( ) Receiver ( )

If                                  ,
                                        ;
Else,                                ;

(b) (n, n) − PSU. Similarly, the OPPRF (to generate
ti and t′i, but omitted here), the batched ECRG and
PS constitute the “encrypted g-RPMT” in Figure 10
with input {XC [1], · · · , XC [b]}; {s21, · · · , s2b} corresponds
to the key sk and ci corresponds to the ciphertext of
XC [π(i)].

Figure 12: Our new design framework achieving the “encrypted g-RPMT” based on symmetric-key tech-
niques.

an overview of ΠbECRG
PSU , and then describe two new building blocks ΠeqOTe and ΠbECRG. Finally, we explain

ΠbECRG
PSU in detail and give a performance evaluation and comparison.

5.1 Overview

We observe that the difference in the way of “transmitting” the items in X \ Y can lead to the difference
in the security of PSU. More specifically, in the OT-based PSU (see Figure 9), the receiver “picks up” the
items in X \Y from the sender’s set X by using the information about X \Y obtained in advance. Whereas,
the AHE-based PSU (see Figure 10) allows the receiver to directly obtain the items in X \ Y by decryption
without knowing any information about X \ Y in advance, thus achieving Fn1,n2

ePSU . However, the expensive
public-key operations result in that the AHE-based PSU is not practical. Therefore, in order to design an
efficient PSU protocol achieving Fn1,n2

ePSU , a promising way is to design the “encrypted g-RPMT” only based
on symmetric-key operations.

Our core idea is to use one-time pad (OTP) to encrypt the items in X \ Y , i.e., ci = xi ⊕ ri where ri is
the secret key. Then, we need to guarantee that if xi ∈ X \ Y , the receiver can obtain ri and then learn xi,
otherwise, the receiver will obtain another randomness r′i ̸= ri such that the receiver cannot recover xi by
calculating ci ⊕ r′i. Moreover, we need to guarantee that ri and r′i are pseudorandom, and thus not leaking
extra information. Following the core idea, we propose a new design. For the sake of presentation, we first
consider a simple case, denoted as (1, n)− PSU, where the sender holds an item x and the receiver holds a
set Y = (y1, · · · , yn). The design framework for (1, n)− PSU is shown in Figure 12a.

Simple case: (1,n)−PSU. We first transfer the problem of testing whether x ∈ Y to the problem of testing
whether two strings t and t′ are the same by leveraging “Oblivious Programmable PRF” (OPPRF). More
specifically, in OPPRF, the receiver can set the PRF values of all the items in set Y to be a pseudorandom
value t′, such that the PRF value t of the sender’s item would be equal to t′ when x ∈ Y . Then, we propose
a new protocol called “Equality-Conditional Randomness Generation” (ECRG) as a building block, such
that if t = t′, ECRG outputs a pseudorandom string r′ to the receiver, otherwise, outputs a string r′ that is
equal to r chosen by the sender. At last, following the above core idea, the receiver can obtain x only when
x /∈ Y .

General case: (n,n)−PSU. It is natural to repeat (1, n)− PSU (shown in Figure 12a) n times to achieve
(n, n) − PSU, i.e., the sender’s input set is X = {x1, · · · , xn}. However, according to the existing OPPRF
constructions [6, 24], the size of the hint in OPPRF is O(n) and the corresponding computation cost is at
least O(n). Therefore, no matter how we design ECRG, the overall cost would be at least O(n2), which is
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1. Wait for input {(x1,0, x1,1), (x2,0, x2,1), · · · , (xm,0, xm,1)} and b0 = (b01, b
0
2, · · · , b0m), where b0i ∈ {0, 1} and

xi,j ∈ {0, 1}ℓ from the sender P0;

2. Wait for input b1 = (b11, b
1
2, · · · , b1m) from the receiver P1 where b1i ∈ {0, 1};

3. Send ⟨Request⟩ to the simulator Sim;

4. Upon receiving ⟨Response,OK⟩ from Sim, output {xi,b0i⊕b1i
}i∈[m] to P1, and Finished to P0.

Functionality FeqOTe

Figure 13: Equality Oblivious Transfer Extension Functionality.

not acceptable for large datasets. To reduce the cost, we insert set X and set Y into Cuckoo hashing and
simple hashing with b = ϵn bins respectively, by using γ hash functions, such that OPPRF is performed on
small subsets of set Y . We give the design framework for (n, n)− PSU in Figure 12b.

More specifically, we denote the Cuckoo hash table and the simple hash table after insertion as XC and
YS , respectively. Each bin i of the Cuckoo hash table contains only one item XC [i], and each bin i of the
simple hash table contains a subset YS [i]. Then, we perform an OPPRF to generate (ti, t

′
i) for all i ∈ [b].

Note that there are γn items in the simple hash table, and thus the overall cost for generating {(ti, t′i)}i∈[b]

is O(γn). Also, we designed a batched ECRG (see Section 5.2) that can generate {r′i}i∈[b] in a batched way
and the cost is O(n). At first glance, the sender can directly send ci = XC [i] ⊕ ri for all i ∈ [b], and the
receiver can recover X \ Y by using {r′1, · · · , r′b}. However, the receiver will learn which bin each item in
X \ Y is mapped to, which will leak the information about set X (please refer to [20] for more discussions).
Furthermore, like in [20], the receiver will know which subsets of the set Y contain items in X∩Y . To achieve
the enhanced functionality Fn1,n2

ePSU , we leverage Permute+Share (PS) to share {r′}i∈[b] while permuting it
by using a random permutation π only known by the sender, i.e., s1i ⊕ s2i = r′π(i). Finally, the sender

calculates ci = XC [π(i)] ⊕ rπ(i) ⊕ s1i for all i ∈ [b], then the receiver recovers X \ Y by using {s21, · · · , s2b}.
Note that the receiver can not learn the corresponding bin of each item in X \ Y without knowing the
permutation π. Some earlier works [7, 15, 22] can be used for securely realizing FPS. These solutions all
have computation/communication complexity O(n log n). Therefore, after optimization, the overall cost of
our protocol is O(γn+ n+ n log n) = O(n log n).

We can see that the above process is actually an encrypted g-RPMT as shown in Figure 10. Specifically,
the sender uses rπ(i) ⊕ s1i as a one-time secret key to encrypt the item XC [π(i)] as a ciphertext ci, and the
receiver can obtain s2i that is equal to rπ(i) ⊕ s1i only when XC [π(i)] /∈ Y , to decrypt ci.

It is worth mentioning that our protocol does not incur the security issues as in [20], although we leverage
bucketing technique. This is because that for each pair of subsets, our protocol just generates intermediate
states not leaking extra information, rather than executing a whole PSU sub-protocol where a subset of
union is generated.

5.2 New Building Blocks

As mentioned before, our protocol ΠbECRG
PSU is based on a new building block called “batched Equality-

Conditional Randomness Generation (bECRG)”. In this section, we define the functionality of bECRG,
denoted as FbECRG. To design protocol ΠbECRG that UC-realize FbECRG, we also propose another new building
block called “Equality Oblivious Transfer extension (eqOTe)”. Next, we first introduce eqOTe, and then
give the functionality and protocol of bECRG.

Equality Oblivious Transfer extension. “Equality Oblivious Transfer extension (eqOTe)” is a variant of
OT extension (OTe) [17]. Roughly speaking, the sender holdsm pairs {(xi,0, xi,1)}i∈[m] and the receiver holds
m bits {b1i }i∈[m]. Through OT extension, the receiver obtains {xi,b1i

}i∈[m] by using only κ base OTs, where

m ≫ κ. In eqOTe, the sender additionally holds m bits {b0i }i∈[m], and the receiver obtains {xi,b0i⊕b1i
}i∈[m].

An eqOTe can be easily obtained from an OTe. Specifically, the sender sets ai,b0i = xi,0 and ai,1⊕b0i
= xi,1.
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Parameters:
• An OT extension protocol ΠOTe;

Inputs:
• The sender P0: {(x1,0, x1,1), (x2,0, x2,1), · · · , (xm,0, xm,1)} and b0 = (b01, b

0
2, · · · , b0m) where b0i ∈ {0, 1} and

xi,j ∈ {0, 1}ℓ;
• The receiver P1: b1 = (b11, b

1
2, · · · , b1m) where b1i ∈ {0, 1};

Protocol:
1. Sender P0 sets ai,b0i

= xi,0 and ai,1⊕b0i
= xi,1;

2. The parties invoke ΠOTe, where P0 acts as the sender with input {(ai,0, ai,1)}i∈[m] and P1 acts as the
receiver with input b1, and P1 can obtain {ai,b1i

}i∈[m]. (If b0i = b1i , ai,b1i
= ai,b0i

= xi,0, else

ai,b1i
= ai,b0i⊕1 = xi,1.)

Protocol ΠeqOTe

Figure 14: Equality Oblivious Transfer Extension Protocol.

Parameters:
• The functionality interacts with two parties, P0 and P1, and the simulator Sim;
• Let ℓ1 be the bit-length of each input items, and ℓ2 be the bit-length of each output items;

Functionality:
0. Initialize an ideal state stateU = ∅ for party U where U ∈ {P0, P1}; if U is corrupted, the simulator Sim is

allowed to access U’s state stateU;
1. Upon receiving input {t1, · · · , tm} and {r1, · · · , rm} from P0 where ti ∈ {0, 1}ℓ1 and ri ∈ {0, 1}ℓ2 , update

state statep0 = ⟨{t1, · · · , tm}, {r1, · · · , rm}⟩, and send ⟨Request, P0⟩ to the simulator Sim;
2. Upon receiving input {t′1, · · · , t′m} from P1 where t′i ∈ {0, 1}ℓ1 , update state stateP1 = ⟨{t′1, · · · , t′m⟩, and

send ⟨Request, P1⟩ to the simulator Sim;

3. Upon receiving ⟨Response,OK⟩ from Sim, if ti ̸= t′i, set r
′
i = ri, otherwise, randomly choose r′i

$←− {0, 1}ℓ2 ;
4. Add ⟨{r′1, · · · , r′m}⟩ to P1’s stateP1 ;
5. Output {r′1, · · · , r′m} to P1.

Functionality FbECRG

Figure 15: Batched Equality-Conditional Randomness Generation Functionality.

Then, the two parties perform OTe with {(ai,0, ai,1)}i∈[m] and {b0i }i∈[m] as inputs, respectively. Obviously,
through OTe, if b1i = b0i (i.e., b0i ⊕ b1i = 0), the receiver can obtain ai,b1i = ai,b0i = xi,0, otherwise (b

1
i = b0i ⊕1),

the receiver can obtain ai,b1i = ai,b0i⊕1 = xi,1. We give the functionality FeqOTe and protocol ΠeqOTe in
Figure 13 and Figure 14, respectively.

Batched Equality-Conditional Randomness Generation. Two parties P0 and P1 input strings t and
t′, respectively, and P0 additionally inputs r. “Equality-Conditional Randomness Generation (ECRG)”
generates another string r′ to P1 such that if t ̸= t′, r = r′, otherwise, r′ is a random string. In Figure 15,
we give the functionality FbECRG of a batched version, where m pairs {ti, t′i}i∈[m] are as input, and {r′i}∈[m]

are output to P1 based on whether ti = t′i.
We design protocol ΠbECRG (shown in Figure 16) by using FeqOTe and FPET (see Figure 4) as building

blocks. More specifically, for each pair (ti, t
′
i), the two parties P0 and P1 invoke FPET and obtain b0i and b1i

respectively, such that if ti = t′i, b
0
i ⊕ b1i = 0, otherwise, b0i ⊕ b1i = 1. To realize the functionality FbECRG (i.e.,

if ti ̸= t′i, r
′
i = ri, otherwise, r

′
i is a random string), P0 sets xi,0 as a random string and xi,1 = ri, and the

two parties invoke FeqOTe such that if b0i ⊕ b1i = 0, P0 obtains xi,0 (namely, a random string), otherwise, P0

obtains xi,1 = ri. We show the security of ΠbECRG in Theorem 5.1.

Theorem 5.1. The protocol ΠbECRG shown in Figure 16) UC-realizes the functionality FbECRG (as in Fig-
ure 15) in the {FPET,FeqOTe}-hybrid model, against static, semi-honest adversaries.

Proof. We will show that for any adversary A, we can construct a simulator Sim that can simulate the

13



Inputs:
• P0: set {t1, · · · , tm} and set {r1, · · · , rm} where ti ∈ {0, 1}ℓ1 and ri ∈ {0, 1}ℓ2 ;
• P1: set {t′1, · · · , t′m}, t′i ∈ {0, 1}ℓ1 ;

Protocol:
• For i ∈ [m]:

– P0 and P1 invoke FPET (see Figure 4):
∗ P0 inputs ti, and P1 inputs t′i;
∗ P0 obtains b0i , and P1 obtains b1i ;

– P0 chooses xi,0
$←− {0, 1}ℓ2 and sets xi,1 = ri;

• P0 and P1 invoke FeqOTe (see Figure 13):
– P0 inputs {(x1,0, x1,1), (x2,0, x2,1), · · · , (xm,0, xm,1)} and b0 = (b01, b

0
2, · · · , b0m), and P1 inputs

b1 = (b11, b
1
2, · · · , b1m);

– P1 obtains {r′1, · · · , r′m}, where r′i = xi,b0i⊕b1i
;

• P1 outputs {r′1, · · · , r′m}.

Protocol ΠbECRG

Figure 16: Batched Equality-Conditional Randomness Generation Protocol.

view of the corrupted P0 and the corrupted P1, such that any PPT environment E cannot distinguish the
execution in the ideal world from that in the real world.

Corrupted P0: Simulator Sim simulates a real execution in which P0 is corrupted. Since A is semi-honest,
Sim can obtain the input {t1, · · · , tm} and {r1, · · · , rm} of P0 directly, and externally send {t1, · · · , tm} and
{r1, · · · , rm} to FbECRG and then receives ⟨Request, P0⟩. When receiving ti from A, Sim randomly selects

b0i
$←− {0, 1}, and simulates the execution of ΠPET. When receiving {(xi,0, xi,1)}i∈[m] and b0, the input of

ΠeqOTe, from A, Sim simulates the execution of ΠeqOTe. Finally, Sim sends ⟨Response,OK⟩ to FbECRG.
We argue that the outputs of Sim are indistinguishable from the real view of P0 by the following hybrids:
Hyb0: P0’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of ΠPET is replaced by b0i chosen by Sim, and Sim runs the

FPET simulator to produce the simulated view for P0. The security of protocol ΠPET guarantees the view in
simulation is computationally indistinguishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that Sim runs the FeqOTe simulator to produce the simulated view for P0.
The security of protocol ΠeqOTe guarantees the view in simulation is computationally indistinguishable from
the view in Hyb1. The hybrid is the view output by Sim.

Corrupted P1: Simulator Sim simulates a real execution in which P1 is corrupted. Since A is semi-honest,
Sim can obtain the input {t′1, · · · , t′m} of P1 directly, and externally send {t′1, · · · , t′m} to FbECRG and then
receives ⟨Request, P1⟩. When receiving {t′1, · · · , t′m} from A, Sim randomly selects b1i , and simulates the
execution of ΠPET. Once receiving b1, the input of ΠeqOTe, from A, Sim sends ⟨Response,OK⟩ to FbECRG and
obtains {r′1, · · · , r′m}. Finally, Sim simulates the execution of ΠeqOTe with {r′1, · · · , r′m} as output.

We argue that the outputs of Sim are indistinguishable from the real view of P1 by the following hybrids:
Hyb0: P1’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of ΠPET is replaced by b1i chosen by Sim, and Sim runs the

FPET simulator to produce the simulated view for P1. The security of protocol ΠPET guarantees the view in
simulation is computationally indistinguishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that the output of ΠeqOTe is replaced by {r′1, · · · , r′m} output by FbECRG and
Sim runs the FeqOTe simulator to produce the simulated view for P1. Regardless of whether r′i is generated
by ΠeqOTe or FbECRG, it would be equal to ri when t′i = ti, and be pseudorandom when t′i ̸= ti. The security
of protocol ΠeqOTe guarantees the view in simulation is computationally indistinguishable from the view in
Hyb1. The hybrid is the view output by Sim.
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5.3 The Details of Protocol ΠbECRG
PSU

In this section, we detail our PSU protocol ΠbECRG
PSU (see Figure 17). As explained in Section 5.1, to achieve

the enhanced functionality Fn1,n2

ePSU , the core idea of ΠbECRG
PSU is to design the encrypted RPMT as in the AHE-

based PSU: Each item xi ∈ X is encrypted by a one-time secret key ri; if xi ∈ X \Y , the receiver will obtain
ri, otherwise, the receiver will obtain another random string r′i ̸= r′i, and thus cannot learn xi. Due to the
fact that our ΠbECRG

PSU only relies on symmetric-key operations other than base OTs, our ΠbECRG
PSU is much more

efficient than the AHE-based PSU.

Parameters:
• Hash functions h1, · · · , hγ : {0, 1}ℓ1 → [b];
• A Cuckoo hash table based on h1, · · · , hγ , with b = ϵ · n1 bins, stash size s = 0;
• A simple hash table based on h1, · · · , hγ , with b = ϵ · n1 bins and bin size ρ, where ρ = O(log(γn2));

Inputs:
• Sender S: set X = {x1, · · · , xn1}, xi ∈ {0, 1}ℓ1 ;
• Receiver R: set Y = {y1, · · · , yn2}, yi ∈ {0, 1}ℓ1 ;

Protocol:
1. S inserts set X into the Cuckoo hash table, and fills empty bins with the dummy item d, then denotes

the filled Cuckoo hash table as XC and the item in i-th bin as XC [i]; R inserts set Y into the simple
hash table, then denotes the set of items in the i-th bin as YS [i];

2. S randomly chooses t′i from {0, 1}ℓ2 for all i ∈ [b];
3. S and R invoke FOPPRF (see Figure 3):

– S acts as P1 with input {XC [i]}i∈[b], and R acts as P0 with input
{(YS [i][1], t

′
i), · · · , (YS [i][ρ], t

′
i)}i∈[b];

– R obtains {ki}i∈[b] and hint, and S obtains hint and {F (ki, hint, XC [i]))}i∈[b] (note that if
XC [i] ∈ YS [i], F (ki, hint, XC [i]) = t′i, otherwise, F (ki, hint, XC [i]) ̸= t′i );

4. S and R invoke FbECRG (see Figure 15):

– S randomly chooses ri
$←− {0, 1}ℓ1 for i ∈ [b];

– S acts as P0 with input {F (ki, hint, XC [i])}i∈[b] and {r1, · · · , rb}, and R acts as P1 with input
{t′1, · · · , t′b};

– R obtains {r′1, · · · , r′b} (if F (ki, hint, XC [i]) = t′i, r
′
i ̸= ri, otherwise, r

′
i = ri);

5. S and R invoke FPS (see Figure 5):
– R acts as P0 with input set {r′1, · · · , r′b}, and S acts as P1 with a random permutation π;
– S and R obtains the shuffled share sets {s11, s12, · · · , s1b} and {s21, s22, · · · , s2b} respectively, where

s1i ⊕ s2i = r′π(i);
6. S performs permutation π on set {XC [1]⊕ r1, XC [2]⊕ r2, · · · , XC [b]⊕ rb} and obtains {e1, e2, · · · , eb}

where ei = XC [π(i)]⊕ rπ(i);
7. For i ∈ [b]:

– S sends ci = ei ⊕ s1i to R;
– If ci ⊕ s2i ̸= d, R sets Z = Z ∪ {ci ⊕ s2i };

8. R outputs Y ∪ Z, and S outputs Finished;

Protocol ΠbECRG
PSU

Figure 17: A new PSU protocol that can realize Fn1,n2

ePSU and only relies on symmetric-key techniques (ignoring
base OTs).

The sender and receiver first insert their sets X and Y into a Cuckoo hash table and a simple hash
table, respectively, and the two filled tables are denoted as XC and YS . Each bin i of the Cuckoo hash table
contains only one item XC [i], whereas each bin i of the simple hash table contains a set YS [i]. By invoking
FOPPRF, the receiver can set the PRF values of the items in YS [i] as the same t′i. If XC [i] ∈ YS [i], the sender
will obtain F (ki, hint, XC [i]) = t′i, otherwise, F (ki, hint, XC [i]) ̸= t′i. Then, the sender randomly chooses ri
that is used to encrypt XC [i] for all i ∈ [b]. Through FbECRG, if F (ki, hint, XC [i]) ̸= t′i (i.e., XC [i] /∈ YS [i]),
the receiver can obtain r′i = ri and thus learning XC [i] later, otherwise, the receiver can obtain r′i ̸= ri. By
invoking FPS, {r′1, · · · , r′b} are shuffled and shared into {s11, · · · , s1b} and {s21, · · · , s2b} such that s1i ⊕s2i = r′π(i).
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Finally, the sender sends {XC [π(i)] ⊕ rπ(i) ⊕ s1i }i∈[b], and the receiver calculates XC [π(i)] ⊕ rπ(i) ⊕ s1i ⊕ s2i
for all i ∈ [b]. Obviously, only when rπ(i) = s1i ⊕ s2i (i.e., XC [π(i)] /∈ YS [i]), the receiver can obtain XC [π(i)].

The correctness of ΠbECRG
PSU shown in Figure 17 is guaranteed unless collisions occur. The collisions can

only come from ΠOPPRF, i.e., XC [i] /∈ YS [i] but F (ki, hint, XC [i]) = t′i. By setting the output length ℓ2 of
F (k, ·, ·) as λ+log(ϵn1), we can bound the probability of collision happening to 2−λ, where λ is the statistical
security parameter. Next, we state the security of ΠbECRG

PSU in Theorem 5.2.

Theorem 5.2. The protocol ΠbECRG
PSU shown in Figure 17 UC-realizes the functionality Fn1,n2

ePSU (as in Fig-
ure 11) in the {FOPPRF,FbECRG,FPS}-hybrid model, against static, semi-honest adversaries.

Proof. We will show that for any adversary A, we can construct a simulator Sim that can simulate the view
of the corrupted sender and the corrupted receiver, such that any PPT environment E cannot distinguish
the execution in the ideal world from that in the real world.

Corrupted Sender: Simulator Sim simulates a real execution in which the sender S is corrupted. Since
A is semi-honest, Sim can obtain the input X of S directly, and externally send the set X to Fn1,n2

ePSU and

then receives ⟨Request,S⟩. When receiving XC [i] from A, Sim randomly selects ti
$←− {0, 1}ℓ2 and hint, and

simulates the execution of ΠOPPRF. Once receiving {t1, · · · , tb} and {r1, · · · , rb}, the input of ΠbECRG, from
A, Sim simulates the execution of ΠbECRG. Upon receiving a permutation π from A, Sim checks if it is a
permutation of b items. If so, Sim randomly selects {s11, · · · , s1b} where s1i ∈ {0, 1}ℓ1 , and simulates the
execution of ΠPS. After receiving {c1, · · · , cb}, Sim sends ⟨Response,OK⟩ to Fn1,n2

ePSU .
We argue that the outputs of Sim are indistinguishable from the real view of S by the following hybrids:
Hyb0: S’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of ΠOPPRF is replaced by (hint, ti) chosen by Sim, and Sim

runs the FOPPRF simulator to produce the simulated view for S. The security of protocol ΠOPPRF guarantees
the view in simulation is computationally indistinguishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that Sim runs the FbECRG simulator to produce the simulated view for S.
The security of protocol ΠbECRG guarantees the view in simulation is computationally indistinguishable from
the view in Hyb1.

Hyb3: Same as Hyb2 except that the output of ΠPS is replaced by {s11, · · · , s1b} chosen by Sim, and Sim
runs the FPS simulator to produce the simulated view for S. The security of protocol ΠPS guarantees the
view in simulation is computationally indistinguishable from the view in Hyb2. The hybrid is the view output
by Sim.

Note that after A sends {c1, · · · , cb}, Fn1,n2

ePSU receives ⟨Response,OK⟩ from Sim and outputs X ∪Y to the
receiver R. This guarantee that the receiver R outputs X ∪ Y after the sender S sends {c1, · · · , cb} in both
worlds.

Corrupted Receiver: Simulator Sim simulates a real execution in which the receiver R is corrupted. Since
A is semi-honest, Sim can obtain the input Y of R directly, and externally send the set Y to Fn1,n2

ePSU and
then receives ⟨Request,R⟩. When receiving {(YS [i][1], t

′
i), · · · , (YS [i][ρ], t

′
i)} from A, Sim randomly selects

(ki, hint), and simulates the execution of ΠOPPRF. Once receiving {t′1, · · · , t′b}, the input of ΠbECRG, from

A, Sim randomly selects {r′1, · · · , r′b} where ri
$←− {0, 1}ℓ1 and simulates the execution of ΠbECRG. Upon

receiving {r′1, · · · , r′b} from A, Sim randomly selects {s21, · · · , s2b} where s2i ∈ {0, 1}ℓ1 , and simulates the
execution ΠPS. Sim sends ⟨Response,OK⟩ to Fn1,n2

ePSU . After receiving Z = X ∪ Y from Fn1,n2

ePSU , Sim calculates
X ′ = X \ Y = Z \ Y and randomly selects a subset S′ of {s21, · · · , s2b}, where |S′| = |X \ Y |. For each item

s′i ∈ S′, Sim sets ci = X ′[i]⊕ s′i. Finally, Sim randomly chooses ci
$←− {0, 1}ℓ1 for i ∈ {|S′|+1, |S′|+2, · · · , b}

and sends {c1, · · · , cb} to A in random order.
We argue that the outputs of Sim are indistinguishable from the real view of R by the following hybrids:
Hyb0: R’s view in the real protocol.
Hyb1: Same as Hyb0 except that the output of ΠOPPRF is replaced by (hint, ki) chosen by Sim, and Sim

runs the FOPPRF simulator to produce the simulated view for R. The security of protocol ΠOPPRF guarantees
the view in simulation is computationally indistinguishable from the view in Hyb0.
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Table 1: The theoretical complexities of ΠbECRG
PSU

ΠOPPRF ΠbECRG ΠPS Ciphertexts

Comp. O(γn2 + ϵn1) O(ϵn1) O(ϵn1 log(ϵn1)) O(ϵn1)
Comm. O(γn2) O(ϵn1) O(ϵn1 log(ϵn1)) O(ϵn1)
1. Here, n1 is the sender’s set size and n2 is the receiver’s set size.
2. The Cuckoo hash table and the simple hash table use γ hash
functions and ϵn1 bins.

Hyb2: Same as Hyb1 except that the output of ΠbECRG is replaced by the {r′1, · · · , r′b} chosen by Sim,
and Sim runs the FbECRG simulator to produce the simulated view for S. The security of protocol ΠbECRG

guarantees the view in simulation is computationally indistinguishable from the view in Hyb1.
Hyb3: Same as Hyb2 except that the output of ΠPS is replaced by {s21, · · · , s2b} chosen by Sim, and Sim

runs the FPS simulator to produce the simulated view for S. The corresponding {c1, · · · , cb} are also changed
according to {s21, · · · , s2b}. The security of protocol ΠPS and the random permutation π guarantee the view
in simulation is computationally indistinguishable from the view in Hyb2. The hybrid is the view output by
Sim.

Note that after A receives {s21, · · · , s2b}, F
n1,n2

ePSU receives ⟨Response,OK⟩ from Sim and outputs Finished
to the sender S. This guarantees that no matter whether in the ideal world or the real world, the sender S
outputs Finished after completing the interaction with the receiver.

5.4 Cost Analysis

We describe the theoretical complexities of our new construction ΠbECRG
PSU in Table 1; here, we assume that

the sender’s set size is n1 and the receiver’s set size is n2. Recall that in ΠbECRG
PSU (see Figure 17), the sender’s

set and the receiver’s set are initially inserted into a Cuckoo hash table and a simple hash table, respectively,
using γ hash functions, and the number of bins is ϵn1. After insertion, the Cuckoo hash table contains ϵn1

items, and the simple hash table includes γn2 items. Then, the two parties proceed with the subsequent
steps on the two tables, which involve performing ΠOPPRF, ΠbECRG, ΠPS, as well as computing and sending
ciphertexts.

Protocol
set size n

28 210 212 214 216 218 220 222

Time (s)

LAN

[10] 11.78 44.73 175.7 702.4 2836.5 11341.2 - -
[30] - - - 0.68 2.70 10.82 44.78 -

ΠbECRG
PSU

Total 1.6 1.64 1.77 2.23 4.61 12.98 49.38 202.49
w/o setup 1.04 1.08 1.2 1.61 3.73 11.12 43.49 180.55

WAN

[10] - - - - - - - -
[30] - - - 12.87 16.04 28.58 86.31 -

ΠbECRG
PSU

Total 5.31 5.86 7.06 10.22 21.07 77.56 225.32 987.945
w/o setup 2.92 3.47 4.62 7.51 16.59 71.19 200.32 889.88

Comm.(MB)
[10] 2.83 11.32 45.28 181.12 724.49 2897.97 - -
[30] - - - 6.52 26.03 103.85 414.43 -

ΠbECRG
PSU 2.03 2.88 8.59 32.92 137.42 577.73 2430.47 10204.7

Table 2: Comparisons of total runtime (in seconds) and communication (in MB) between ΠbECRG
PSU and [10]

in WAN (100Mbps bandwidth, 80 ms RTT) and LAN (10Gbps bandwidth, 0.02 ms RTT) settings, where
n1 = n2 = n. The results4 of [10] and [30] are both sourced from their papers. The implementation of
[10] is in Go using 8 threads. The implementation of SKE-PSU [30] is in Java using a single thread; when
using the OKVS in [1], the communication and runtime can be improved 2% and 6-9%, respectively. Our
protocol ΠbECRG

PSU is implemented in C++, using a single thread. Setup in our protocol refers to base OTs
and generating triples for PET. Our ΠbECRG

PSU and [10] can achieve the enhanced functionality Fn1,n2

ePSU , while
SKE-PSU [30] can not.
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We use the batched OPPRF in [6] that can hide the number of items in each bin, to implement ΠOPPRF.
Thus, padding each bin in the simple hash table up to the maximum bin size, is not required. Specifically,
the complexity for hint computation and communication is linear (i.e., O(γn2)) and the sender additionally
needs O(ϵn1) to compute the PRF values. As in Figure 16, our ΠbECRG consists of ΠPET and ΠeqOTe, both
exhibiting linear complexity; thus the computation and communication costs of ΠbECRG are O(ϵn1). We use
the construction in [22] to implement ΠPS, leading to O(ϵn1 log(ϵn1)) costs. Finally, the sender needs to
compute and send a ciphertext for each item in the Cuckoo hash table, and the costs are O(ϵn1). Overall,
the computation and communication complexity of our protocol ΠbECRG

PSU is O(n1 log n1+n2), making ΠbECRG
PSU

more suitable for balanced sets, i.e., the sizes of the two sets are comparable.

5.5 Performance Evaluation

In this section, we experimentally evaluate our protocol ΠbECRG
PSU and compare with the previous works.

Benchmarking Environment. We implement our protocol ΠbECRG
PSU in C++, which will be available on

GitHub. Our experiments are conducted on a server equipped with two Intel Xeon Silver 4116 CPUs
(2.10GHz) and 128GB RAM, running Ubuntu. We evaluate our protocol ΠbECRG

PSU in two network settings,
LAN network with 10Gbps bandwidth and 0.02 ms RTT and WAN network with 100Mbps and 80ms RTT,
which are emulated using Linux tc command. We leverage the constructions in [6] to implement ΠOPPRF and
ΠPET (the building block of ΠbECRG). We implement ΠPS using the code from [18] that is based on Oblivious
Switching Network (OSN) [22]. As for OT extension, we use libOTe library [27].

Parameters. We set the computational security parameter κ = 128 and the statistical security parameter
λ = 40, and item length is 128 bits. We use γ = 3 hash functions to insert sets X and Y into the Cuckoo
hash table and simple hash table, respectively, and ϵ for Cuckoo hash table is set as 1.27.

Comparisons. We show performance comparisons with the previous works [10, 30] in Table 2. Before
our work, only two AHE-based schemes in [12, 10] that can achieve the enhanced PSU functionality, i.e.,
Fn1,n2

ePSU . The design by Davidson et al. [10] can be seen as an improvement of the one in [12]. Moreover, only
Davidson et al. [10] provided experimental results. Therefore, we compare the performance of our ΠbECRG

PSU

with that of the scheme in [10] in Table 2. We can see that, for n1 = n2 = 218, our total runtime is 873.74×
faster than that of [10] in the LAN setting, while their implementation is in 8 threads and ours is in a single
thread; our total communication cost is 5× less than theirs.

Currently, the PSU by Zhang et al. [30] is the state-of-the-art work for large balanced sets, but it can
not achieve the enhanced PSU functionality Fn1,n2

ePSU . Zhang et al. [30] gave two designs: (i) SKE-PSU,
using symmetric key techniques, and (ii) PKE-PSU5, using public key techniques. Given that SKE-PSU
demonstrates better performance than PKE-PSU when the Internet speed exceeds 100Mbps, we compare
the performance of our ΠbECRG

PSU with that of SKE-PSU in [30] in Table 2. It shows that the performance
of our protocol ΠbECRG

PSU is comparable to that of SKE-PSU in the LAN setting. However, the performance
of SKE-PSU in the WAN setting is better than ours, due to the less communication cost. In addition,
the new OKVS structure designed by Bienstock et al. [1] could be used as a building block to improve the
performance of the design in [30]. Specifically, as reported in [1], in a 1Gbps network, the combination can
obtain a 16-22% improvement in communication and a 28-40% reduction in runtime compared to PKE-PSU;
it also shows a 2% improvement in communication and a 6-9% reduction in runtime compared to SKE-PSU.
Nonetheless, it is important to note that the designs in [30] cannot achieve the enhanced PSU functionality
Fn1,n2

ePSU , whereas our ΠbECRG
PSU can.

To the best of our knowledge, the PSU protocol by Blanton et al. [2] is the only one based on generic
MPC techniques, and it can achieve the enhanced PSU functionality Fn1,n2

ePSU . Since its security is guaranteed
by the generic MPC techniques, it is out of scope for this work. Nonetheless, here, we still compare the
performance of our protocol with that of their scheme. Their paper provided experimental results on small
input sets in a three-party and honest majority setting for 32-bit sized elements, using 1Gbps bandwidth.
For n1 = n2 = 212, their runtime is 24.88s, while ours is 8.42s in the WAN setting. In addition, Kolesnikov

5Zhang et al. [30] used PKE-PSU* to represent the version that does not perform point compression.
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et al. [20] calculated the communication cost of [2] for 2PC and 128-bit items; for n1 = n2 = 218, its
communication cost would be 163208.76MB, which is 282.5× higher than ours.

6 Proofs for Previous Works

In this section, we formally show that the protocol in [20] and the OT-based PSU protocols cannot UC-realize
Fn1,n2

ePSU , whereas the AHE-based PSU protocols can. Given that the OT-based design framework is currently
mainstream, we also define a relaxed PSU functionality Fb

rPSU to capture its security.

6.1 Protocol in [20]

We give the design framework ΠKRTW
Unified of the protocol in [20] in Figure 18. More specifically, the sender and

the receiver first use simple hashing to split their input sets X and Y into multiple subsets {X1, · · · , Xβ}
and {Y1, · · · , Yβ}, respectively. Then the sender pads each subset Xi with special items e to obtain X̃i,

and the receiver pads Yi with a special item e and dummy items to obtain Ỹi. After that, for each subset
pair (X̃i, Ỹi), the two parties perform a PSU sub-protocol ΠOT

Unified shown in Figure 19. The formal security
analysis of ΠOT

Unified is shown in Section 6.2. Since the PSU sub-protocol instances can be executed sequentially
or simultaneously, we will analyze the security of sequential version and simultaneous version, respectively.

Parameters:
• Let n1 and n2 denote the size of the sender S’s and the receiver R’s input set, respectively; Let ℓ be the

bit-length of each item in the sender’s set or the receiver’s set.
• Let β be the number of bins, and m be the maximum bin size;
• Let H(·) be a hash function H : {0, 1}ℓ → [β];
• Let e denote a special item, where e ∈ {0, 1}ℓ, and d1, d2, · · · , dn ∈ {0, 1}ℓ \ (X ∪ Y ) be the distinct

dummy items; n denotes the maximum set size, i.e., n = max(n1, n2).
Inputs:

• Sender S: set X = {x1, · · · , xn1}, where xi ∈ {0, 1}ℓ;
• Receiver R: set Y = {y1, · · · , yn2}, where yi ∈ {0, 1}ℓ.

Protocol:
1. S and R split their input sets X and Y into β bins using hash function H. Let Xi and Yi denote the set

of items in the sender’s and receiver’s i-th bin, respectively;
2. S pads each Xi with special items e up to the maximum bin size m, then randomly permutes all items in

the bin and gets X̃i;
3. R pads each Yi with one special item e and different dummy items chosen from {d1, d2, · · · , dn} to the

maximum bin size m, then get the padded set Ỹi;
4. R initializes set Z = ∅;
5. The sender S and the receiver R execute the PSU sub-protocol instances ΠOT

Unified sequentially /
simultaneously (see Figure 19 for the sub-protocol description); the i-th sub-protocol instance is based
on the input sets X̃i and Ỹi, where i ∈ [β]. More concretely,

– S acts as sender with input set X̃i;
– R acts as receiver with input set Ỹi;
– R obtains output Z̃i, then R discards the special item e and dummy items from Z̃i and obtains

Zi = Xi ∪ Yi; S obtains output Finished;
6. R outputs Z = Z1 ∪ Z2 ∪ · · · ∪ Zβ , and S outputs Finished.

Protocol ΠKRTW
Unified

Figure 18: The design framework in [20]. The formal security analysis of ΠOT
Unified is given in Section 6.2.

Theorem 6.1. The sequential version of protocol following the framework ΠKRTW
Unified in Figure 18 cannot UC-

realize functionality Fn1,n2

ePSU (as in Figure 11), against static, semi-honest adversaries.
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Proof. To complete the proof, we now first construct an environment E . Then we will show that for any
simulator Sim, this constructed E can tell the difference between the execution in the real world and that in
the ideal world, with at least non-negligible probability.

Construction of environment E. The environment E chooses sets X and Y as the inputs of the sender and
receiver, respectively. Without loss of generality, let the real world semi-honest adversary A be a dummy
adversary who will follow environment E ’s instructions, and immediately forward each corrupted player’s
state to the environment.

Based on function H(·), the environment E knows that set X will be split into subsets X1, X2, · · · , Xβ ,
and set Y will be split into subsets Y1, Y2, · · · , Yβ . Thus, E knows sets Z1, Z2, · · · , Zβ where Zi = Xi ∪ Yi

for each i ∈ [β].
The environment E , instructs the dummy adversary A, to corrupt the receiver at the beginning of the

protocol execution. The environment E chooses an integer k, where 1 < k < β. Finally, if the tuple
(Z1, Z2, · · · , Zk) has been reported by the dummy adversary A and message Finished has not been reported
by the honest sender S, the environment E outputs 1, otherwise, outputs 0.

The real world execution. In the real world, the PSU sub-protocol instances are executed sequentially. We
divide time into non-overlapping slots t1, t2, · · · , tβ . In time slot ti, the i-th PSU sub-protocol instance is
executed based on the i-th pair of subsets, and thus the receiver obtains the output Zi at the end of the
time slot. Therefore, at the end of time slot tk, the receiver obtains Z1, Z2, · · · , Zk. Note that, the receiver
is corrupted and under the control by the semi-honest real world adversary A, the tuple (Z1, Z2, · · · , Zk)
must be reported to the environment at the end of time slot tk. Note also that, the protocol execution has
not been finished, the honest sender S is not supposed to return the message Finished to the environment E
at the end of time slot tk.

The ideal world execution. In the ideal world, since the (dummy) receiver is corrupted, the simulator Sim
is allowed to access to the ideal state stateR = ⟨Y ⟩. To simulate (Z ideal

1 , Z ideal
2 , · · · , Z ideal

k ), the simulator Sim
must face the following two simulation strategies:

1. Do send ⟨Response,OK⟩ to the functionality Fn1,n2

ePSU , immediately. Note that, now the functionality
will update the ideal states into stateS = ⟨X,Finished⟩ and stateR = ⟨Y,Z⟩, and immediately report
Finished to the environment E .

2. Do not send ⟨Response,OK⟩ to Fn1,n2

ePSU , immediately. Note that, now the functionality will not update
the ideal states into stateS = ⟨X,Finished⟩ and stateR = ⟨Y,Z⟩; of course, no output Finished will be
reported to the environment E immediately.

Security analysis. Now, we can see, if the simulator follows the first simulation strategy, the environment
will tell the difference with probability 1, since in the real world, no output Finished will be reported while
there is Finished in the ideal world.

If the simulator follows the second simulation strategy, the probability that E outputs 1 in the real world
is 1 except negligible probability. However, in the ideal world, assuming that the items in set X are selected
from a large range, the probability that Z ideal

i = Zi for all i ∈ [k] is far less than 1. Thus, the probability
that E outputs 1 in the ideal world is far less than 1. Therefore, E can distinguish the two worlds with
non-negligible probability.

Note that, all simulations must follow one of the two strategies. Therefore, for all simulators, our con-
structed environment can tell the difference between the two worlds with at least non-negligible probability.
This completes the proof.

Theorem 6.2. The simultaneous version of protocol following the framework ΠKRTW
Unified in Figure 18 cannot

UC-realize the functionality Fn1,n2

ePSU (as in Figure 11), against static, semi-honest adversaries.

Proof. Similar to the proof of Theorem 6.1, we first construct an environment E . Then we will show that
for any simulator Sim, the constructed E can tell the difference between the execution in the real world and
that in the ideal world, with at least non-negligible probability.
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Construction of environment E. The environment E chooses sets X and Y as the inputs of the sender and
receiver, respectively. Without loss of generality, let the real world semi-honest adversary A be a dummy
adversary who will follow E ’s instructions, and immediately forward each corrupted player’s state to E .

Based on the function H(·), E knows that the set X will be split into subsets X1, X2, · · · , Xβ , and Y will
be split into subsets Y1, Y2, · · · , Yβ . Therefore, E knows X1 \ Y1, X2 \ Y2, · · · , Xβ \ Yβ , and thus the number

of 0 in each B̃i.
The environment E instructs the dummy adversary A to corrupt the receiver at the beginning of the

protocol execution, and then chooses a time t. Finally, if the tuple (B̃1, B̃2, · · · , B̃β) has been reported by
the dummy adversary A and the message Finished has not been reported by the honest sender S at that
time, the environment E outputs 1, otherwise, outputs 0.

The real world execution. In the real world, the ΠOT sub-protocol instances will not be executed until the
execution of Πg-RPMT sub-protocol instance is finished. Therefore, there is a time t when the receiver obtains

(B̃1, · · · , B̃β) but not the items in subset Zi. Note that, the receiver is corrupted and under the control of

the semi-honest real world adversary A, the tuple (B̃1, · · · , B̃β) must be reported to the environment at the
time t. Note also that, the protocol execution has not been finished, the honest sender S is not supposed to
return the message Finished to E at the time t.

The ideal world execution. In the ideal world, since the (dummy) receiver is corrupted, the simulator Sim is
allowed to access to the ideal state stateR = ⟨Y ⟩. To simulate (B̃ideal

1 , B̃ideal
2 , · · · , B̃ideal

k ), the simulator Sim
must face the following two simulation strategies:

1. Do send ⟨Response,OK⟩ to the functionality Fn1,n2

ePSU , immediately. Note that, now the functionality
will update the ideal states into stateS = ⟨X,Finished⟩ and stateR = ⟨Y,Z⟩, and immediately report
Finished to the environment E .

2. Do not send ⟨Response,OK⟩ to Fn1,n2

ePSU , immediately. Note that, now the functionality will not update
the ideal states into stateS = ⟨X,Finished⟩ and stateR = ⟨Y,Z⟩; of course, no output Finished will be
reported to the environment E immediately.

Security analysis. Now, we can see, if the simulator follows the first simulation strategy, the environment
will tell the difference with probability 1, since in the real world, no output Finished will be reported while
Finished is reported in the ideal world.

If the simulator follows the second simulation strategy, the probability that E outputs 1 in the real world
is 1 except negligible probability. In the ideal world, however, the probability that B̃ideal

i = B̃i for all i ∈ [k]
is far less than 1 as the simulator does not know |Xi \ Yi|. Thus, the probability that E outputs 1 in the
ideal world is far less than 1. Therefore, E can distinguish the two worlds with non-negligible probability.

Note that, all simulations must follow one of the two strategies. Therefore, for all simulators, our con-
structed environment can tell the difference between the two worlds with at least non-negligible probability.
This completes the proof.

6.2 OT-based PSU Protocols

We unify the OT-based protocols [1, 13, 20, 8, 28, 30] into the same framework ΠOT
Unified as shown in Figure 19.

Next, we show that the protocols unified in Figure 19 cannot UC-realize the new enhanced PSU functionality
Fn1,n2

ePSU . Formally, the security is stated in Theorem 6.3.

Theorem 6.3. The protocol following the framework ΠOT
Unified in Figure 19 cannot UC-realize functionality

Fn1,n2

ePSU (as in Figure 11) in the {Fg-RPMT,FOT}-hybrid model, against static, semi-honest adversaries.

Proof. To complete the proof, we first construct an environment E . Then we show that for any simulator
Sim, this constructed E can tell the difference of the execution in the real world from that in the ideal world,
with non-negligible probability.

Construction of environment E. The environment E chooses sets X and Y as the inputs of the sender and
the receiver, respectively. Since the environment E knows both X and Y , E of course knows the size of
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Inputs:
• Sender S: set X = {x1, · · · , xn1}, where xi ∈ {0, 1}ℓ
• Receiver R: set Y = {y1, · · · , yn2}, where yi ∈ {0, 1}ℓ;

Protocol:
1. The sender S randomly permutes the set X into the set X∗;
2. The two players S and R invoke the “generalized Reversed Private Membership Test” Fg-RPMT (see

Figure 1):
– S acts as sender with input set X∗;
– R acts as receiver with input set Y ;
– R obtains output bi for each i ∈ [n1];

3. R initializes set Z = Y ;
4. The two players S and R simultaneouslya invoke n1 number of FOT (see Figure 2) instances.

In the i-th instance, where i ∈ [n1],
– R acts as receiver with input bi;
– S acts as sender with input (X∗[i],⊥);
– If R obtains X∗[i], R sets Z = Z ∪ {X∗[i]};

5. R outputs Z, and S outputs Finished.

aNote that, in practice, the n1 number of OT instances can be implemented by OT extension [17], so that the re-
ceiver can obtain all the items in X \ Y at the same time.

Protocol ΠOT
Unified

Figure 19: The design framework unifying PSU protocols in [20, 18, 13, 8, 28, 30, 1]. Here, the protocol in
[20] is the basic scheme without using “split-execute-assemble” paradigm.

X ∩Y , denoted as m. In other words, the environment E knows the number of 1’s in {b1, · · · , bn1
} is m. The

environment E instructs the dummy adversary A to corrupt the receiver at the beginning of the protocol
execution, and then chooses a time t. Finally, if the number of 1’s in {b1, · · · , bn1} reported by the dummy
adversary A is m and the message Finished has not been reported by the honest sender S at the time t, the
environment E outputs 1, otherwise, outputs 0.

The real world execution. In the real world, the ΠOT sub-protocol instances will not be executed until the
execution of Πg-RPMT sub-protocol instance is finished. Therefore, there is a time t when the receiver obtains
{b1, · · · , bn1

} but not the items in the set X \ Y . Note that, the receiver is corrupted and under the control
by the semi-honest real world adversary A, the bit set {b1, · · · , bn1} must be reported to the environment at
the time t. Note also that, the protocol execution has not been finished, the honest sender S is not supposed
to return the message Finished to the environment E at the time t.

The ideal world execution. In the ideal world, since the (dummy) receiver is corrupted, the simulator
Sim is allowed to access the ideal state stateR = ⟨Y ⟩. After receiving from the functionality Fn1,n2

ePSU the
message ⟨Request,R⟩, to simulate {bideal1 , · · · , bidealn1

}, the simulator Sim must face the following two simulation
strategies:

1. Do send ⟨Response,OK⟩ to the functionality Fn1,n2

ePSU , immediately. Note that, now the functionality
will update the ideal states into stateS = ⟨X,Finished⟩ and stateR = ⟨Y, Z⟩, and immediately report
Finished to the environment E .

2. Do not send ⟨Response,OK⟩ to the functionality Fn1,n2

ePSU , immediately. Note that, now the functionality
will not update the ideal states into stateS = ⟨X,Finished⟩ and stateR = ⟨Y,Z⟩; of course, no output
Finished will be reported to E immediately.

Security analysis. Now, we can see, if the simulator follows the first simulation strategy, the environment will
tell the difference with probability 1, since in the real world, no output Finished will be reported while there
is Finished in the ideal world. If the simulator follows the second simulation strategy, the probability that
E outputs 1 in the real world is 1 except negligible probability. However, in the ideal world, the simulator
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Sim does not know m. The probability that there are m 1’s in {bideal1 , · · · , bidealn1
} is 1/n1, which is far less

than 1 when n1 is large enough. Thus, the probability that E outputs 1 in the ideal world is far less than 1.
Therefore, E can distinguish between the two worlds with non-negligible probability.

Note that, all simulations must follow one of the two strategies. Therefore, for all simulators, our
constructed environment can tell the difference between the two worlds with non-negligible probability. This
completes the proof.

We define a relaxed PSU ideal functionality Fb
rPSU to capture the security of OT-based design framework,

and formally show the security in Theorem 6.4.

Parameters:
• The functionality interacts with two parties, the sender S and the receiver R, and the simulator Sim;
• Set size for sender S is n1; set size for receiver R is n2.

Functionality:
0. Initialize an ideal state stateU = ∅ for party U where U ∈ {S,R}; if U is corrupted, the simulator Sim is

allowed to access to U’s state stateU;
1. Upon receiving input X = {x1, · · · , xn1} from the sender S, abort if |X| ̸= n1; otherwise, update state

stateS = ⟨X⟩, and send ⟨Request,S⟩ to the simulator Sim;
2. Upon receiving input Y = {y1, · · · , yn2} from the receiver R, abort if |Y | ̸= n2; otherwise, update state

stateR = ⟨Y ⟩, and send ⟨Request,R⟩ to the simulator Sim;
3. Upon receiving ⟨Response,OK⟩ from Sim, send ⟨Request If⟩ to the simulator Sim;
4. Upon receiving ⟨Response If,OK⟩ from Sim, for each i ∈ [n1], set bi = 1 if X[i] ∈ Y , otherwise set bi = 0,

then record {b1, · · · , bn1} to the receiver’s state stateR and send ⟨Request Item⟩ to Sim;
5. Upon receiving ⟨Response Item,OK⟩ from Sim, compute Z = X ∪ Y , and record ⟨Finished⟩ and ⟨Z⟩ to the

sender’s sate stateS and the receiver’s state stateR, respectively;
6. Output Z to R, and Finished to S.

Functionality Fb
rPSU

Figure 20: A relaxed PSU ideal functionality leaking set membership in advance. Compared to the
enhanced PSU functionality Fn1,n2

ePSU in Figure 11, Fb
rPSU additionally adds {b1, · · · , bn1

} into the receiver’s
state stateR as shown in steps 3 - 4.

Theorem 6.4. The protocol following the framework ΠOT
Unified in Figure 19 UC-realizes the functionality Fb

rPSU

(as in Figure 20) in the {Fg-RPMT,FOT}-hybrid model, against static, semi-honest adversaries.

Proof. To prove this theorem, we will show that for any efficient adversary A, we can construct a simulator
Sim to properly simulate the view of the corrupted sender and the corrupted receiver, such that any PPT
environment E cannot distinguish between the execution in the ideal world from that in the real world. In
particular, according to the modular design of ΠOT

Unified from the sub-protocols Πg-RPMT and ΠOT, the simulator
Sim can be constructed by invoking the simulator Sim′ in [20, 18, 13, 8, 28, 30, 1].

Corrupted Sender: Simulator Sim first sends the input set X to Fb
rPSU. After receiving ⟨Request If⟩ from

Fb
rPSU, Sim first invokes Sim′ to simulate the execution of the sub-protocol Πg-RPMT. Then, Sim sends
⟨Response If,OK⟩ to the functionality Fb

rPSU. Once receiving ⟨Request Item⟩ from Fb
rPSU, Sim simulates the

execution of sub-protocol ΠOT by invoking Sim′. When A sends items in all ΠOT instances, Sim sends
⟨Response Item,OK⟩ to Fb

rPSU and then obtains ⟨Finished⟩ from the sender’s state stateS . Compared to the
simulator for corrupted sender in [20], [18], [8], [28] or [13], Sim just additionally receives some request
messages and additionally sends some response messages. Moreover, due to the request/response messages,
the environment E will receive the honest receiver’s output X ∪ Y at the same time in the real and ideal
worlds. Therefore, Sim can simulate A’s view such that E cannot distinguish the two worlds.

Corrupted Receiver: Likewise, simulator Sim first sends the input set Y to Fb
rPSU. After receiving ⟨Request If⟩

from Fb
rPSU, Sim first invokes Sim′ to simulate the execution of the sub-protocol Πg-RPMT except for the last

step. To simulate the last step of Πg-RPMT, Sim sends ⟨Response If,OK⟩ to the functionality Fb
rPSU and then
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obtains {b1, b2, · · · , bn1}. Given {b1, b2, · · · , bn1}, Sim can invoke Sim′ to simulate the last step of Πg-RPMT.
Once receiving ⟨Request Item⟩ from Fb

rPSU, Sim invokes Sim′ to simulate the execution of the sub-protocol
ΠOT except for the last step (i.e., sending items). Then, Sim sends ⟨Response Item,OK⟩ to Fb

rPSU and then
obtains set Z. By using the items in setX\Y , Sim can simulate the last step of each ΠOT instance. Compared
to the simulator for corrupted receiver in [20, 18, 13, 8, 28, 30, 1], Sim just additionally receives some request
messages and additionally sends some response messages. Likewise, due to the request/response messages,
the environment E will receive the honest sender’s output Finished at the same time in the real and ideal
worlds. Therefore, Sim can simulate A’s view such that E cannot distinguish the two worlds.

6.3 AHE-based PSU Protocols

In Figure 21, we show more details on how to achieve encrypted g-RPMT in AHE-based protocols [12, 10].
We can see that if the receiver R is corrupted, the simulator does not need to simulate anything for R before
simulating {c1, · · · , cn1

}. Therefore, the simulator does not need to obtain information from Fn1,n2

ePSU before
simulating {c1, · · · , cn1

}. Intuitively, the AHE-based protocols can UC-realize Fn1,n2

ePSU . The formal security
is stated in Theorem 6.5.

Parameters:
• An AHE scheme includes an encryption algorithm Encpk(·) and a decryption algorithm Decsk(·).

Inputs:
• Sender S: set X = {x1, · · · , xn1}, where xi ∈ {0, 1}ℓ
• Receiver R: set Y = {y1, · · · , yn2}, where yi ∈ {0, 1}ℓ;

Protocol:
1. The receiver R generates a key pair (pk, sk) and sends pk to the sender S;
2. R represents set Y as fY (·), generates c = Encpk(fY ) and then sends c to S;
3. S randomly permutes set X to X∗;
4. R initializes set Z = ∅;
5. For each i ∈ [n1], S chooses a uniformly random value ri, then generates

ci = (Encpk(rifY (X∗[i])),Encpk(riX
∗[i]fY (X∗[i]))) based on the additive homomorphic property;

S sends {c1, · · · , cn1} to R;
6. For each i ∈ [n1], R decrypts ci to get (d1i , d

2
i ); if d

1
i ̸= 0, R obtains X∗[i] = d2i /d

1
i and sets

Z = Z ∪ {X∗[i]}, otherwise R obtains nothing;
7. R outputs Z, and S outputs Finished.

Protocol ΠAHE
Unified

Figure 21: The design framework unifying PSU protocols in [12, 10]. Note that fY (·) in [12] is a polynomial
P (x) =

∏n2

i=1(x− yi) such that P (x∗) = 0 if x∗ ∈ Y , and fY (·) in [10] is an inverted Bloom Filter B where
Y is inserted by using hash functions h1, · · · , hγ such that

∑γ
i=1 B[hi(x

∗)] = 0 if x∗ ∈ Y (the “inverted”
means that each bit value of the Bloom Filter containing Y is flipped).

Theorem 6.5. Given an IND-CPA secure AHE scheme, the protocol following the framework ΠAHE
Unified in

Figure 21 UC-realizes the functionality Fn1,n2

ePSU (as in Figure 11), against static, semi-honest adversaries.

Proof. We will show that for any adversary A, we can construct a simulator Sim that can simulate the view
of the corrupted sender and the corrupted receiver, such that any PPT environment E cannot distinguish
the execution in the ideal world from that in the real world.

Corrupted Sender: The simulator Sim for the corrupted sender first sends the input set X to Fn1,n2

ePSU . After
receiving ⟨Request,S⟩ from Fn1,n2

ePSU , Sim generates a key pair (pk, sk) and sends pk to A. To simulate the
ciphertext c from R, Sim randomly generates a fY (·) according to the set size n2 of Y , then encrypts it to c
by using pk and sends c to A. After A sends back {c1, · · · , cn1

} to R, Sim sends ⟨Response,OK⟩ to Fn1,n2

ePSU .
We can see that the only difference between the ideal world and the real world is that fY (·) is randomly
generated in the ideal world while fY (·) is generated based on Y in the real world. The IND-CPA security
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of AHE scheme guarantees that any PPT environment E cannot distinguish between the real world from the
ideal world.

Corrupted Receiver: The simulator Sim for the corrupted receiver first sends the input set Y to Fn1,n2

ePSU

and then receives ⟨Request,R⟩. Sim will receive a public key pk and a ciphertext c from A. To simulate
{c1, · · · , cn1

}, the simulator sends ⟨Response,OK⟩ to Fn1,n2

ePSU and obtains the union Z = X ∪ Y . Then for
i ∈ {1, 2, · · · , |Z \Y |}, Sim randomly picks αi and generates ci = (Encpk(αi),Encpk(αixi)), where xi ∈ Z \Y .
After that, for all i ∈ {|Z \ Y | + 1, · · · , n1}, Sim generates ci = (Encpk(0),Encpk(0)) by using pk. After
randomly permuting the set {c1, · · · , cn1}, the simulator Sim sends the ciphertexts to A. In both the ideal
world and the real world, if xi ∈ X \ Y , the corresponding ci is a pair of ciphertexts for two messages αi

and αixi, otherwise it is the encryption of 0’s. Moreover, A receives the items in X \ Y in a random order
in both worlds. Therefore, the ideal world and the real world are indistinguishable.

7 Conclusion

In this work, we conduct a thorough analysis of the leakage in the typical PSU protocols. We identify a
prevalent form of leakage in current PSU designs, called “during-execution leakage”, which is implied by the
output but can be obtained before the complete output is received. In addition, we find that the commonly
used functionality Fn1,n2

PSU cannot capture the security without during-execution leakage. Therefore, we define
a new enhanced functionality Fn1,n2

ePSU to capture it.
Concretely, our investigation reveals that although symmetric key-based PSU constructions offer scalabil-

ity, they are vulnerable to the during-execution leakage. On the other hand, only AHE-based PSU solutions
can avoid the during-execution leakage, but their performance falls short of meeting practical requirements.
To bridge the gap, we design a new PSU protocol ΠbECRG

PSU that is the first scalable PSU protocol to UC-realize
the enhanced PSU functionality Fn1,n2

ePSU in the semi-honest setting, by using a new building block ΠbECRG.
Like OT-based PSU protocols, our ΠbECRG

PSU only relies on symmetric key operations other than base OTs,
obtaining significant performance improvement over AHE-based protocols.
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A Recall the leakage in [20]

To be self-contained, we recall the leakage analysis in [18] here.
In order to improve the performance, Kolesnikov et al. [20] proposed to optimize their protocol by using

the bucketing technique, as shown in Figure 22. More specifically, the sender and receiver in [20] first assign
their items in X and in Y , into two simple hash tables with the same number of bins, and the maximum
bin sizes are assumed to be ρ1 and ρ2, respectively. Then they perform the (ρ1, ρ2)-PSU sub-protocol on the
items of each bin separately. As pointed out by Kolesnikov et al. in [20], however, the bucketing technique
will leak the information “which bins contain items in X ∩ Y ” to the receiver. To avoid this leakage, in [20]
the receiver is required to put a special item ⊥ into each bin, and to pad the bins with different dummy items
d, while the sender pads his bins with the special item ⊥. For example, in Figure 22, the items {x6, x2, x10}
of X are mapped to the first bin of the sender’s simple hash table, and the items {y3, y8} of Y are mapped
to the first bin of the receiver’s hash table. Without the special item ⊥, if x2 = y3, the receiver can learn
that an item belonging to X ∩ Y is in {y3, y8} after executing the (ρ1, ρ2)-PSU. By adding the special item
⊥ to both sides, if the receiver learns that an item from the sender belongs to {y3,⊥, y8, d}, it seems that the
receiver cannot know whether the item is a real item (namely, in X) or the special item ⊥. Unfortunately,
Jia et al. [18] pointed out that this strategy is insufficient to avoid the leakage incurred by the bucketing
technique, and the detailed analysis is given below.

For ease of exposition, we take the 4th (ρ1, ρ2)-PSU sub-protocol in Figure 22 as an example to explain
why the optimization in [20] fails to hide the intersection information. After the execution of the sub-protocol
over the 4th bins, if the receiver does not obtain any items from the sender (that is, all items in the sender’s
4th bin belong to the subset in the receiver’s 4th bin i.e., {d,⊥, y5, y7}), then the receiver could obtain
additional information about the intersection. Concretely, one of the following will occur:

• Case1: all the real items that are mapped to the sender’s bin (say x4 in Figure 22) belong to {y5, y7};

• Case2: no real items are mapped to the sender’s bin (i.e., all items are special item ⊥).
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Figure 22: The bucketing technique in [20].

The probabilities that Case1 and Case2 occur are denoted as Pr[Case1] and Pr[Case2], respectively. Clearly,
if the receiver is able to determine that Case1 occurs with certain (high) probability, she will know that items
belonging to X ∩ Y are in {y5, y7} with the same probability. According to the parameters in [20], Jia et al.
[18] estimated Pr[Case2] in Table 3. Note that Pr[Case1] = 1− Pr[Case2]. From the results, we can see that
the probability Pr[Case2] is very small. For example, when the set size is n = 220, Pr[Case2] = 5.778× 10−8.
This means that when the receiver finds that all items in a bin belong to the intersection, she can learn
that this bin has at least one real item with probability 1 − 5.778 × 10−8, and that her corresponding bin
contains at least an item in X ∩ Y with the same probability. Hence, their approach is insufficient to avoid
the leakage incurred by the bucketing technique.

Table 3: The probability of Case2 for different set sizes

parameters
set size n

28 210 212 214 216 218 220 222

α 0.043 0.055 0.05 0.053 0.058 0.052 0.06 0.051

Pr(×10−11) 7.946 1270 206.1 639.4 3252 444.8 5778 305.1

Here, αn is the number of bins.
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