
1

Efficient 2PC for Constant Round Secure

Equality Testing and Comparison
Tianpei Lu∗‡, Xin Kang†‡, Bingsheng Zhang∗§, Zhuo Ma†§, Xiaoyuan Zhang∗, Yang Liu† and Kui Ren∗

∗The State Key Laboratory of Blockchain and Data Security, Zhejiang University, China
†Xidian University, China

lutianpei@zju.edu.cn, kangxin@stu.xidian.edu.cn,bingsheng@zju.edu.cn, mazhuo@mail.xidian.edu.cn,

zhangxiaoyuan@zju.edu.cn, bcds2018@foxmail.com, kuiren@zju.edu.cn

Abstract

Secure equality testing and comparison are two important primitives that have been widely used in many secure

computation scenarios, such as privacy-preserving machine learning, private set intersection, secure data mining, etc.

In this work, we propose new constant-round two-party computation (2PC) protocols for secure equality testing and

secure comparison. Our protocols are designed in the online/offline paradigm. Theoretically, for 32-bit integers, the

online communication for our equality testing is only 76 bits, and the cost for our secure comparison is only 384 bits.

Our benchmarks show that (i) our equality is 9× faster than the Guo et al. (EUROCRYPT 2023) and 15× of the

garbled circuit scheme (EMP-toolkit). (ii) our secure comparison protocol is 3× faster than Guo et al. (EUROCRYPT

2023), 6× faster than both Rathee et al. (CCS 2020) and garbled circuit scheme.

‡Tianpei Lu and Xin Kang contributed equally to this work.
§Corresponding author: Bingsheng Zhang and Zhuo Ma.



CONTENTS

I Introduction 3

I-A Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II Preliminaries 6

III Equality Testing 10

III-A One-round equality testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

III-B Two-round equality testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

IV Secure Comparison 16

IV-A Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

IV-B Realize Fozc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

V Performance Evalutaion 25

V-A Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

VI Conclusion 26

References 26

Appendix A: Other building block 28

A-A OLE protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A-B The functionality of oblivious short list zero check . . . . . . . . . . . . . . . . . . . . . . . 28

A-C Oblivious short-list zero check with OLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Appendix B: Other benchmarks 30

B-A Offline of Equality Testing and Secure Comparison . . . . . . . . . . . . . . . . . . . . . . . 30

B-B 32-bit Secure comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

B-C Running time in different input length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B-D Running time in different input length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



I. INTRODUCTION

Secure multiparty computation (MPC) [7], [25], [49] enables multiple untrusted parties to perform joint computations

without revealing their private data. In the early stages, general-purpose MPC protocols [25], [29], [49] were widely

studied and significantly improved in performance. Recently, researchers have focused on specific functions that

benefit from tailor-made protocol designs and achieve performance far beyond general-purpose implementations [37],

[42], [52]. The secure comparison and equality testing problem as typical cases have been considered, in which

the parties joint calculate a > b or a = b for the private input a, b without disclosing them. Secure comparison

and equality testing enjoy numerous applications as fundamental building blocks for various primitives in privacy

computing, such as federated learning, privacy-preserving machine learning, advertising bidding systems, biometric

authentication, and so on. We provide thereafter a non-exhaustive list of applications for secure comparison or

equality testing.

• Privacy-preserving machine learning. Secure comparison is an important component for privacy-preserving

machine learning [12], [16], especially for non-linear functions such as ReLU, MaxPool, and so on [52].

Furthermore, a series of works [29], [31], [36] evaluate arbitrary functions, including Sigmod, GeLU, softmax,

etc., through piecewise function fitting based on comparison and polynomial evaluation.

• Private set intersection. Private Set Intersection (PSI) [14], [32], [44] is a widely used protocol that enables

two parties to securely compute a function over the intersected part of their shared datasets and has been a

significant research focus over the years. Currently, in PSI instantiations, equality testing accounts for more

than 50% of the total communication cost of the protocol [41]. Therefore, optimizing the communication cost

of equality testing is of great importance for PSI.

• Secure Data Mining. Secure data mining [27], [39] can facilitate the identification of the most relevant items

or patterns without exposing raw data. In secure data mining, secure comparison is used in data mining tasks

such as identifying the top-k items [23], outlier detection [46], and other analytics, where comparisons are

necessary to draw insights from distributed datasets without compromising data privacy. Therefore, optimizing

the performance and efficiency of secure comparison can drive the development and application of data mining

technologies.

In general, the performance improvement of secure comparison can benefit a wide range of MPC applications.

A series of secure comparison protocols [37], [52] in multi-party scenarios have achieved significant improvements

resulting in efficient secure comparison/equality testing. Nevertheless, in two-party computation (2PC) scenarios,

secure comparison and equality testing remain major performance bottlenecks in practice. The state-of-the-art

(SOTA) [14], [29], [40] unanimously lead to the conclusion that secure 2PC comparison/equality-testing is magnitude

slower than other secure operations, e.g., secure multiplication.

A sequence of efforts [19], [40] has been made to optimize the communication of comparison or equality testing.

In contrast, in these works, the benefit of communication volume inevitably makes sacrifices on the communication

rounds, i.e., logarithmic rounds, suffered a poor performance in the high network delay. The other approaches

focus on the constant-round protocols. The typical solutions are based on the garbled circuit [45], [50] scheme or

3



the function secret sharing (FSS) [10], [11] scheme. The garbled circuit scheme requires massive communication

and computation in the circuit evaluation (in the online phase), leading to inferior practical performance to the

protocols with logarithmic rounds. FSS gains prior online communication compared to the garbled circuit scheme.

In contrast, its online computation cost is close to garbled circuit (GC). Only considering the online phase, to

the best of our knowledge, FSS is the most efficient solution for both equality testing and secure comparison.

However, conventional FSS is performed on the three-party scenario, which requires the third party to generate the

correlated keys. Migrating to the 2PC, the correlated keys should be performed under MPC (Equivalent to running

massive PRGs under MPC), which is completely beyond the practical. Recently, a line of works [20], [26] design

correlated keys generation protocols that move the PRGs evaluation to the local. As a trade-off, its computation

cost is exponential to the data size n. Considering a large n, it is even impossible to output the result.

So far as we know, there doesn’t exist a practical constant round secure comparison or equality testing protocol

while holding very efficient online phase performance with a practical offline phase.

Our Result. In this work, we focus on secure equality testing and comparison in the two-party computation setting,

i.e., Alice and Bob hold the secret input respectively, and look for the shared result of the comparison or equality

testing on the inputs. We design low (constant) communication rounds protocols with relatively efficient offline

communication volume, ultimately improving overall performance. We show that our protocols are secure against

passive adversarial in the universal composability framework of Canetti [13].

2-round Equality testing. We first propose a dimension reduction scheme for a and b, reducing them to a′ and b′

such that a′ = b′ if and only if a = b. The length of a′ and b′ is log n. Subsequently, we construct a look-up table

with linear communication. Both parties sample random numbers ε0 and ε1 and then share a look-up table T⃗ such

that only the (ε0 + ε1)
th value is 1, this is tε0+ε1 = 1, and all other values are 0 in the offline phase. The parties

obtain the result of the equality testing by locally selecting the sharing of tε0+ε1+a′−b′ in the online phase.

Secure comparison. We propose a novel 3-round secure comparison protocol Πcmp in the semi-honest setting.

Intuitively, we start from the high bit and check the first different bit of a and b, where the value of a on the

position of different bit corresponds to the result of the comparison. We construct a secret shared list {s}n that

highlights such a position. Consequently, we let P0 guess the comparison result ∆, and open all the possible

positions of such comparison result, namely, the position ζi for aζi = ∆, to P1. P1 checks if there exists ζi, such

that sζi is highlighted. If P0 guess wrong (no highlighted sζi ), P1 set output z1 = 1 to flap ∆. Otherwise P1

outputs z1 = 0.

Performance. Table I depicts the communication comparison between our protocols and SOTA 2PC solutions.

Our equality testing protocol requires 2 rounds of O(n) bits communication in the online phase, which is close

to function secret sharing scheme [20], [26], where our computation cost is much slighter than FSS (without

invoking any PRF) leading to a faster online phase, i.e. the running time of FSS is over 7× more than ours, in

LAN/MAN/WAN setting. Moreover, compared to FSS, the offline of our protocol is magnitude efficient, i.e. over

1000× faster than it. For the other baseline – garbled circuit [49], [50], its online phase communication is 200×

higher than ours. Specifically, our benchmark shows that in the MAN setting, our protocol achieves 15× prior

4



performance.

Our secure comparison protocol requires 3 round of 2n+2n log n bits communication in the online phase. Similar

to equality testing, our protocol outperforms the SOTA protocols. Compared to FSS [26], our protocol achieves

over 3× online phase performance improvement, and over 1000× in the offline phase. Compared to the SOTA

comparison CrypTflow2 [43], our protocol achieves over 6× improvement in both MAN and WAN settings.

Paper Organization. Section II introduces the preliminary including notations and the primitives to construct our

protocols. The rest of the paper is organized as follows. In Section III, we propose our equality testing protocol

involving one-round and two-round construction. In Section IV, we introduce our three-round secure comparison

protocol. Section V conducts the performance evaluation of our equality testing and secure comparison protocols.

A. Related work

The concept of secure comparison was first proposed by Yao [49], a.k.a, millionaire’s problem. Subsequently,

equality testing called socialist millionaires’ problem [30] has been successively proposed. The research in the

areas has experienced rapid and consistent development. Due to the primitive similarities between secure protocols

for equality tests and comparisons, we provide a unified representation. We categorize the works into five types

based on the involved fundamental building blocks: GC-based-CMP/EQ, HE-based-CMP/EQ, OT-based-CMP/EQ,

FSS-based-CMP/EQ, and Generic Two-Party Computation. In the following, we let n denote the input length.

GC-based-CMP/EQ. The secure comparison and equality testing protocols were initially constructed by Yao cir-

cuits [49]. Kolesnikov et al. [35] proposed a protocol for constructing universal circuits almost exclusively composed

of XOR gates, which relies on the random oracle (RO) assumption. Then, they [34] optimize the assumption by

allowing one party to garble circuits containing comparison gates, achieving secure comparison through AND gates.

Zahur et al. [51] introduced an approach to garbling AND gates using two ciphertexts and XOR gates using zero

ciphertexts concurrently, resulting in half the communication cost to compute AND gates. Despite the constant

round complexity protocol realized, their communication amount is usually significant.

HE-based-CMP/EQ. The beginning of solving the millionaire problem from homomorphic encryption (HE) can

be traced back to the protocol proposed by Blake et al. [9]. Subsequently, Garay et al. [24] proposed a secure

comparison scheme based on threshold homomorphic encryption. However, the comparison can only be performed

by a trusted third party. Cheon et al. [17] proposed a comparison scheme based on HE by using a composite

polynomial approximation to obtain an approximate comparison result. However, this scheme is unable to achieve

equality testing.

OT-based-CMP/EQ. When multiple instances of secure comparison or equality testing are needed, the approach

based on oblivious transfer extension is commonly used. The method requires a constant number of public key

operations and only inexpensive symmetric operations for each invocation. Couteau [18] proposed a scheme that

relied on oblivious transfer (OT) to securely perform a bitwise comparison with n AND gates. Rathee et al. proposed

a framework named CrypTflow2 [43], which recursively equated the comparison of two integers to the comparison

of sub-integers of length (m ≤ n). The sub-integer comparison was facilitated by 1-out-of-2m OT.Therefore, the

5



comparison could be implemented through n/m − 1 AND gates. Subsequently, Chandran et al. [14] extends the

idea to equality testing. Huang et al. [29] further optimized communication cost in CrypTflow2 [43] by replacing

the OT with VOLE-type OT.

FSS-based-CMP/EQ. Function secret sharing (FSS) [10], [11] allows two parties to evaluate a secure function with

correlated keys locally, and output a shared result, whereas the typical solution requires a third party to generate

the corresponding keys. The distributed point function (DPF) [11] can be used to realize the equality test directly

and the distributed comparison function (DCF) [10] can be used to realize secure comparison. The correlated keys

generation scheme [20], [26] employs FSS on the two parties’ computation.

Generic Two-Party Computation. Generic two-party computation techniques enable secure computation of functions

expressed as boolean circuits. Demmler et al. [19] presented a framework named ABY that efficiently combines

arithmetic sharing, Boolean sharing, and Yao’s garbled circuits to perform secure two-party computation. Secure

comparison and equality testing could be efficiently instantiated by ABY. The process involved initially converting

the secret input from arithmetic to Boolean form (A2B), followed by conducting bitwise comparisons, and finally

reversing the transformation (B2A). Patra et al. [40] optimized multiplication computations in ABY2.0 by depending

on function precomputation, reducing the communication cost during the online phase to half of that in ABY.

II. PRELIMINARIES

Notation. The frequently used notations are shown in Table II. Let P := {P0, P1} be the two MPC parties. We

denote a vector {a0, . . . , an−1} as A⃗, and ai be the ith element of A⃗. We denote [n] as the index set {0, . . . , n−1},

and [1, n] as the index set {1, . . . , n−1}. Let 1 {b} denote the indicator function that is 1 when b is true and 0 when

b is false. Let (1, n)-OT denote the 1-out-of-n OT. We define shift(X⃗, i) as the operation of shifting the column

vector X⃗ down by i positions. In additional, we define [·]p over finite field Zp as [x]p := ([x]1 ∈ Zp, [x]2 ∈ Zp)

where x = [x]1 + [x]2 (mod p). Pi for i ∈ {0, 1} hold share [x]i. We denote the matrix M as M, and the element

in the ith row and jth column of M as m(i,j).

Threat model and security. Our equality testing and comparison protocols ensure security within the standard semi-

honest setting. In this scenario, the adversary may attempt to extract private information from legitimate messages

but must adhere strictly to the protocol’s procedure. The security proof is based on the Universal Composability

(UC) framework [13], which follows the simulation-based security paradigm. In the UC framework, protocols

are executed across multiple interconnected machines. The network adversary A is allowed to partially control

the communication tapes of all uncorrupted machines, observing messages sent to/from uncorrupted parties and

influencing message sequences. Then, a protocol Π is considered UC-secure in realizing a functionality F if,

for every probabilistic polynomial-time (PPT) adversary A targeting an execution of Π, there exists another PPT

adversary known as a simulator S attacking the ideal execution of F such that the executions of Π with A and

that of F with S are indistinguishable to any PPT environment Z .

The idea world execution IdealF,S,Z(1
λ). In the ideal world, the parties P := {P0, P1} only communicate with

the ideal functionality Ff
2pc with the excuted function f . Both parties send their share to Ff

2pc, and Ff
2pc calculates

and output the result to P0 and P1.

6



TABLE I: Comparison with the state-of-the-art secure comparison and equality testing protocols. λ is the

computational security parameter; µ is ECC group representation length and µ = 256; n is the length of the

element to be compared.

Approach Protocol
Offline Online

Communication Communication Round

Equality Testing

GC-based-EQ Yao [48], [49] - 4λn 2

Generic Two-Party Computation
ABY [19] 6λn+ n 2λn+ 6n logn+ 5

ABY2.0 [40] 5λn+ 2n λn+ 6n logn+ 4

FSS-based-EQ
Half-Tree [26] (n+ 2)λ+ 2n 1

DPF [11] 4n(λ+ 1) + λ+ n† 2n 1

OT-based-EQ

CO [18] 3λn 2n+ 2 logn+ 10 log∗n+ 1

CGS [14] 3
4
λn+ 8n 5n− 4 logn+ 4

Πeq2 (Section III) λ logn+ 2n 2n+ 2 logn+ 2 2

Secure Comparison

GC-based-CMP Yao [48], [49] - 4λn 2

HE-based-CMP GSV [24] - 18µn+ 8µ 9

Generic Two-Party Computation
ABY [19] 6λn+ 17λ+ n 2λn+ 20n logn+ 5

ABY2.0 [40] 5λn+ 17λ+ 2n λn+ 9n logn+ 4

FSS-based-CMP
Half-Tree [26] (n+ 2)λ+ 2n 1

DCF [10] 4n(λ+ 1) + λ+ n† 2n 1

OT-based-CMP

CO [18] 6λn 6n+ 4 logn 4log*λ+ 5

Cryptflow2 [43] λn+ 16n 10n− 8 logn+ 4

Cheetah [29] λn+ 11n 10n− 8 logn+ 4

Πcmp(Section IV) nλ logn+ n logn+ n 2n+ 2n logn 3

* log∗ represents the iterated logarithm.
+ Under correlated keys generation scheme which performs O(2n) times Hash locally.
† Under a trusted third-party dealer.

The real world execution RealΠ,A,Z(1
λ). In the real world, the parties P := {P0, P1} communicate with each

other, it executes the protocol Π. Our protocols work in the pre-processing model, but we analyze the offline and

online protocols together as a whole.

7



TABLE II: Notations

Notations Descriptions

A⃗ The vector A⃗ := {a0, . . . , an−1}.

ai The ith element of vector A⃗, when the context is clear, we abuse ai as the ith bit of value a.

[n] The index set {0, . . . , n− 1}.

[1, n] The index set {1 . . . , n− 1}.

([·]p0, [·]
p
1) The algorithm shares over Zp owned by P0 and P1.

1 {b} The indicator function, which evaluates to 1 when b is true and 0 when b is false.

(m,n)-OT m-out-of-n OT.

shift(X⃗, i) Shift the column vector X⃗ down by i positions.

M The matrix M .

m(i,j) The element in the ith row and jth column of the matrix M.

Ff
2pc interacts with P0, P1 and the adversary S. Let f denote the functionality to be computed.

Input:

• Upon receiving (Input, sid, a) from P0, record a and send (Input, sid, P0) to S, where a ∈ {0, 1}n.

• Upon receiving (Input, sid, b) from P1, record b and send (Input, sid, P1) to S, where b ∈ {0, 1}n.

Execution:

• If both a, b are recorded, compute (y0, y1) = f(a, b).

• Send (Output, y0) to P0 and (Output, y1) to P1.

Functionality Ff
2pc

Fig. 1: The Ideal Functionality Ff
2pc.

Definition 1. We say protocol Π UC-secure realizes functionality F if for all PPT adversaries A there exists a

PPT simulator S such that for all PPT environment Z , it holds:

RealΠ,A,Z(1
λ) ≈ IdealF,S,Z(1

λ)

Oblivious transfer. For an instance of (1, 2)-OT [21], [22], the sender’s inputs to the F(1,2)-OT are the strings

m0 and m1 ∈ {0, 1}l, and the receiver’s input is a bit i ∈ {0, 1}. The receiver obtains mi from the F(1,2)-OT

and the sender receives no output. Random OT (ROT) [8] is a special case of OT where there is no input. The

sender receives two random strings r0 and r1 ∈ {0, 1}l, while the receiver obtains a bit i ∈ {0, 1} and mi. The

F(n−1,n)-ROT [15] makes the sender obtains {m0, . . . ,mn}, while the receiver obtains a element b ∈ [n] and {mi}

for i ∈ [n]\{b}. ROT is input-independent, which can be executed in the offline phase and OT can be constructed

with linear communication in the online phase. The (1, n)-OT [38], [47] is a generalization of (1, 2)-OT. The

8



Input : P0 inputs a binary vector T⃗ ′ ∈ ZN
2 .

Output : P0 receives a share vector T⃗0; P1 receives a offset ε1 ∈ [N ] and T⃗1, where T⃗0 ⊕ T⃗1 = shift(T⃗ ′, ε1).

Execution

1) P0 and P1 invoke F(N−1,N)-ROT:

• P0 receives {mi|i ∈ [N ],mi ∈ ZN
2 }.

• P1 receives ε1 and {mi|i ∈ [N ]\{ε1},mi ∈ ZN
2 }.

2) P0 and P1 generate the binary matrix M ∈ {0, 1}N×N by using mi as the binary column vectors for i ∈ [N ], locally. (Note

that P1 does not have the ε1th column of M.)

3) P0 and P1 left cycle shift the ith row of M by i positions locally for i ∈ [N ].

4) P0 computes vi =
⊕N−1

j=0 m(i,j) and ui =
⊕N−1

j=0 m(j,i) for i ∈ [N ], and denotes V⃗ := {v0, . . . , vN−1} and

U⃗ := {u0, . . . , uN−1}.

5) P1 computes wi = vi ⊕ uε1+i, and denotes W⃗ := {w0, . . . , wN−1}.

6) P0 sends S⃗′ = T⃗ ′ ⊕ U⃗ to P1 and sets T⃗0 := V⃗ .

7) P1 computes T⃗1 := shift(S′, ε1)⊕ W⃗ .

Protocol ΠN
vose(T⃗

′)

Fig. 2: The Vector Oblivious Shift Evaluation Protocol.

sender’s inputs to the F(1,n)-OT are the n strings {m0, · · · ,mn−1}, and the receiver’s input is a choose number

i ∈ [n]. The receiver obtains mi from the F(1,n)-OT and the sender receives no output. The (1, n)-OT can be

constructed via (1, 2)-OT.

Oblivious Linear Evaluation. Oblivious Linear Evaluation (OLE) [6], [33] is a foundational component in various

secure computation protocols [28], [42], [44]. In the standard OLE protocol [6], P0 receives random values a and b,

while P1 receives a random value u and w = au+ b. A symmetric variant of OLE [33], known as product sharing

[6], involves P0 and P1 each sampling a and b, respectively. After the protocol, P0 obtains u and P1 obtains v,

satisfying the condition ab = u+ v. This set of random values (a, b, u, v) constitutes an OLE tuple. In vector OLE

(VOLE) [44], the parties have no input. P0 obtains a random value u and a random vector B⃗. P1 obtains a random

vector A⃗ and the vector V⃗ = A⃗u+ B⃗, where vi = aiu+ bi.

Secure permutation.The secure permutation [15] is a protocol that allows two parties, one of the parties holds the

permutation and the other party holds the list, to jointly permute the list and obtain additive secret shares of the

permutated list. Although this problem could be addressed using generic MPC, the most efficient implementation

[15] currently is constructed by OT. We define the functionality FPermute as follow: the P0 inputs a permutation π,

and P1 inputs a list X⃗ := {x0, · · · , xn−1}. After the protocol, they obtain the secret shares of the permuted list

{xπ(0), · · · , xπ(n−1)}.

9



ii. Dimension reduction

ii. Open

iii. Output

i. Vector sharing

Fig. 3: The Overview of Equality Testing

III. EQUALITY TESTING

In the equality testing, P0 inputs an integer a ∈ Zn
2 and P1 inputs an integer b ∈ Zn

2 . After the protocol, both

parties receive boolean shares of 1{a = b}, which equals 1 if and only if a = b, and 0 otherwise.

In this section, we first design a toy protocol for equality testing with one round of communication in the

online phase. However, this design results in an O(2n) communication complexity in the offline phase. To further

balance the communication cost between the online and offline phases, we propose a dimension reduction scheme

to optimize the toy protocol. This optimization allows for two rounds of communication in the online phase while

ensuring that the O(n) communication complexity in the offline phase.

A. One-round equality testing

We first describe a strawman example for the equality testing, then we design a one-round equality testing

protocol.

A strawman example. A strawman example for equality testing is that P0 generates a binary vector T⃗ as the

look-up table, such that only the ath value of T⃗ is 1, while the value of other positions are 0. P1 then uses b to

privately select tb. Clearly, tb = 1 if and only if a = b. Note that to enumerate all strings of length n, the size of T⃗

is 2n. For convenience, we define N = 2n. However, the current design doesn’t guarantee the privacy of the result

of the equality testing, as the result is public to P1. Keeping tb secret, a simple approach is as follows: P0 first

samples a bit s and then computes t′i = s⊕ ti for i ∈ [N ] to generate T⃗ ′ , and P1 privately select t′b instead of tb.

Obviously, s⊕t′b = 1 if and only if a = b. Nevertheless, the process of P1 privately selecting t′b requires an instance

of F(1,N)-OT, which involves two rounds of communication and incurs an O(2n) communication complexity in the

online phase.

One-round equality testing. Our goal is to design an equality testing protocol that achieves one round of commu-

nication and O(n) communication complexity in the online phase. The protocol is described in Figure 4, and the

overview is shown as follows. In the offline phase, P0 and P1 respectively pick offsets ε0 and ε1, and then they

10



The parameter N is defined as N = 2n.

Input : P0 inputs a ∈ {0, 1}n and P1 inputs b ∈ {0, 1}n.

Output : P0 receives [e]20 and P1 receives [e]21, where [e]20 ⊕ [e]21 = 1 {a = b}.

Offline:

1) For i ∈ {0, 1}, Pi picks εi ← [N ].

2) P0 generates a binary vector T⃗ ′ ∈ ZN
2 , where t′ε0 = 1 and t′i = 0 for i ∈ [N ]\{ε0}.

3) P0 and P1 invoke {T⃗0, T⃗1} ← ΠN
vose(T⃗

′).

Online:

1) P0 computes w0 = a+ ε0 and sends it to P1, while P1 computes w1 = ε1 − b and sends it to P0.

2) P0 and P1 computes w = w0 + w1, locally.

3) For i ∈ {0, 1}, Pi sets [e]2i = [tw]i.

Protocol ΠN
eq1

(a, b)

Fig. 4: One-Round Equality Testing.

generate a shared binary vector T⃗ := {t0, . . . , tN−1}, where only tε0+ε1 = 1. In other words, P0 picks an offset ε0

and generate a binary vector T⃗ ′ with only t′ε0 = 1. As the result, P0 obtains T⃗0 and P1 obtains ε1 and T⃗1, where

T⃗0 and T⃗1 are the shares of T⃗ := shift(T⃗ ′, ε1), such that [ti]0 ⊕ [ti]1 = ti. In the online phase, P0 and P1 reveal

the value w = ε0 + ε1 + a− b, and then select [tw]0 and [tw]1 locally as the result of equality testing. Specifically,

P0 computes w0 = ε0 + a and sends it to P1. At the same round, P1 computes w1 = ε1 − b and sends it to P0.

Subsequently, P0 and P1 can reveal w locally. Clearly, [tw]0 ⊕ [tw]1 = 1 if and only if a = b.

We construct our offline phase based on a primitive – Vector Oblivious Shift Evaluation (VOSE). Before

introducing VOSE, we propose the random VOSE.

Random Vector Oblivious Shift Evaluation. In the random VOSE, P0 receives two random binary vectors U⃗ and

V⃗ , while P1 receives the offset ε1 and a vector W⃗ , such that W⃗ = shift(U⃗ , ε1) ⊕ V⃗ . The random VOSE can be

built from F(N−1,N)-ROT, Specifically, we describe the process as follows.

• P0 and P1 invoke an instance of F(N−1,N)-ROT. After the protocol, P0 receives N messages {m0, . . . ,mN−1}

and mi ∈ ZN
2 . P1 receives ε1 and all messages except for mε1 . We view each message as a N -dimension

binary vector and denote the binary matrix consisting of N column vectors as M. Therefore, P0 obtains the

complete M, while P1 can obtain the M except for the ε1
th column.

• P0 and P1 lift cycle shift the ith row of M by i positions for i ∈ [N ], and denote the new matrix as M′.

• P0 computes vi =
⊕n−1

j=0 m(i,j) and ui =
⊕n−1

j=0 m(j,i) for i ∈ [N ] to generate V⃗ and U⃗ . Obviously, vi is the

XOR value of the N bits in the ith row of M′ and ui is the value of the ith column.

• P1 computes wi = vi ⊕ uε1+i mod N to generate W⃗ = {w0, . . . , wN1
}. Although P1 cannot obtain m(i,ε1+i),

both vi and uε1+i include m(i,ε1+i). Therefore, P1 can correctly compute wi without m(i,ε1+i).

Through steps 2 and 3, P1 obtains wi = vi⊕ uε1+i for i ∈ [N ], while P0 obtains ui and vi. Therefore, the vectors

11



Input : P0 inputs [u]20 ; P1 inputs [u]21.

Output : P0 receives [v]p0 and P1 receives [v]p1 , where [v]p0 + [v]p1 = [u]20 ⊕ [u]21.

Offline:

1) P0 samples [r]20, and P1 samples [r]21.

2) P0 and P1 invoke F(1,2)-OT:

• P0 samples [s]p0 .

• P0 as the sender inputs m0 = [s]p0 − [r]20 and m1 = [s]p0 − (1− [r]20) to F(1,2)-OT;

• P1 as the receiver inputs [r]21 to F(1,2)-OT, and then receives [s]p1 := m[r]21
.

3) P0 sets [t]p0 = [s]p0 and P1 set [t]p1 = −[s]p1 .

Online:

1) For i ∈ {0, 1}, Pi computes [w]2i = [u]2i ⊕ [r]2i and sends [w]2i to P1−i.

2) P0 and P1 computes w = [w]20 ⊕ [w]21, locally.

3) P0 computes [v]p0 = w + [t]p0 − 2w[t]p0 , and P1 computes [v]p1 = [t]p1 − 2w[t]p1 .

Protocol Π2→p
convert([u]

2
0, [u]

2
1)

Fig. 5: The Share Conversion Protocol.

W⃗ , U⃗ and V⃗ satisfy W⃗ = shift(U⃗ , ε1)⊕ V⃗ .

Vector Oblivious Shift Evaluation. Based on the random VOSE, we elaborate on the implementation of VOSE in

the following three steps. The protocol is shown in Figure 2.

• P0 and P1 invoke the random VOSE. After the protocol, P0 receives U⃗ ∈ ZN
2 and V⃗ ∈ ZN

2 , while P1 receives

the offset ε1 and a vector W⃗ ∈ ZN
2 , such that W⃗ = shift(U⃗ , ε1)⊕ V⃗ .

• P0 sends S⃗′ = T⃗ ′ ⊕ U⃗ to P1 and sets T⃗0 = V⃗ .

• P1 computes T⃗1 = shift(S′, ε1)⊕ W⃗ .

For the correctness, T⃗1 = shift(T⃗ ′, ε1)⊕ shift(U⃗ , ε1)⊕ shift(U⃗ , ε1)⊕ V⃗ = shift(T⃗ ′, ε1)⊕ V⃗ = T⃗ ⊕ V⃗ and T⃗0 = V⃗ .

As a result, we have T⃗0 ⊕ T⃗1 = T⃗ .

Efficiency. In the offline phase, P0 and P1 invoke one time of F(N−1,N)-ROT and P0 send S⃗′ ∈ ZN
2 . Therefore,

the communication cost is nλ+N . In the online phase, the communication cost is 2n bits.

B. Two-round equality testing

We observe that, in the aforementioned protocol, the communication in the offline phase is closed to N bits, namely,

2n, which is impractical in real-world applications. the overview is shown in Figure 3 To reduce the communication

cost in the offline phase, we introduce a dimension reduction protocol that can diminish the overall communication,

i.e. O(n) bits communication. The overview of the protocol is shown in Figure 3.

Dimension reduction. The dimension reduction protocol is designed to reduce the integers (a ∈ Zn
2 , b ∈ Zn

2 ) to

(a′ ∈ Zlogn
2 , b′ ∈ Zlogn

2 ) such that a′ = b′ if and only if a = b. The start point of generating a′ and b′ is that,

12



Input : P0 inputs a ∈ {0, 1}n and P1 inputs b ∈ {0, 1}n.

Output : P0 receives [e]20 and P1 receives [e]21, where [e]20 ⊕ [e]21 = 1 {a = b}.

Execution:

1) For i ∈ [n], P0 and P1 invoke {si, ti ∈ Zp} ← Π2→p
convert(ai, bi), where si + ti = ai ⊕ bi.

2) P0 computes [d]0 =
∑n−1

i=0 si, and P1 computes [d]1 =
∑n−1

i=0 ti locally.

3) P0 and P1 invoke ([e]20, [e]
2
0)← Πp

eq1 ([d]0,−[d]1).

Protocol Πn
eq2

(a, b)

Fig. 6: Two-Round Equality Testing.

d =
∑n−1

i=0 (ai ⊕ bi) = 0 if and only if a = b. Notice that the entropy-bit of d is ⌈log n+ 1⌉. Thus, the arithmetic

sharing of d, denoted as [d]0 and [d]1 where d = [d]0 + [d]1, are the expectional a′ and b′ such that a′ = [d]0 and

b′ = −[d]1. The correctness is that a′ − b′ = [d]0 + [d]1 = d.

To generate [d], our approach is to convert the boolean sharing of ai and bi into arithmetic sharing si and ti,

such that si + ti = ai ⊕ bi. Consequently, P0 and P1 obtain the sharing of d by computing [d]0 =
∑n

i=1 si and

[d]1 =
∑n

i=1 ti, respectively. We refer to the above conversion process as sharing conversion. Formally, in an

instance of sharing conversion, P0 and P1 input the boolean sharing [u]20 and [u]21. After the protocol, they receive

the arithmetic sharing [v]p0 and [v]p1, satisfying [v]p0 + [v]p1 = [u]20 ⊕ [u]21. Here, p > n is a prime.

An instance of sharing conversion can be easily constructed based on the F(1,2)-OT. In particular, P0 samples

[s]p0, and inputs m0 = [s]p0 − [u]20 and m1 = [s]p0 − (1 − [u]20). P1 inputs the selection bit [u]21 and receives z,

where z = [s]p0 − ([u]20 ⊕ [u]21). Consequently, P0 sets [v]p0 = [s]p0 and P1 sets [v]p0 = −z. For correctness, we have

[v]p0+[v]p1 = [s]p0−z = [s]p0− [s]p0− ([u]20⊕ [u]21) = [u]20⊕ [u]21 as required. However, all computations are currently

performed in the online phase, resulting in the communication complexity is O(n2) and the round is 2.

Optimization of share conversion. We attempt to shift a significant portion of expensive operations to the offline

phase, resulting in only a small amount of computation and communication in the online phase. The specific

description is illustrated in Figure 5. In the offline phase, P0 and P1 generate a random sharing conversion pair,

i.e. P0 receives ([r]20, [t]
p
0) and P1 receives ([r]21, [t]

p
1), such that [t]p0 + [t]p1 = [r]20 ⊕ [r]21. In the online phase,

P0 computes [w]20 = [a]20 ⊕ [r]20 and sends it to P1, while P1 computes [w]21 = [a]21 ⊕ [r]21 and sneds it to P0.

Subsequently, P0 and P1 compute the public value w = [w]20 ⊕ [w]21. Finally, P0 sets [v]p0 = w+ [t]p0 − 2w[t]p0 and

P1 sets [v]p1 = [t]p1 − 2w[t]p1 locally.

Protocol description. By filling in detailed descriptions, we complete our protocol, which is described in Figure 6.

Next, we will explain our protocol step by step as follows.

• At step 1, P0 and P1 invoke n times of Πconvert for ai and bi simultaneously. Then, they receive si and ti for

i ∈ [n], such that si + ti = ai ⊕ bi.

• At step 2, P0 computes [d]0 =
∑n−1

i=0 si and P1 computes [d]1 =
∑n−1

i=0 ti, where it holds that d =
∑n−1

i=0 ai⊕bi.

13



• At step 3, P0 and P1 invoke [e]← Πp
eq1

([d]0,−[d]1). Then, they output [e] as the shared result of 1{a = b}.

Efficiency. In the offline phase, P0 and P1 invoke n times of F(1,2)-OT and one times of F(p−1,p)-ROT. In addition,

P0 send S⃗′ ∈ Zp
2. The corresponding communication cost is λ log p + 2p + λ = λ⌈log(n + 1)⌉ + 2n + 3 bits. In

the online phase, P0 and P1 send n bits to each other in the share conversion Πconvert, and send p = ⌈log(n+ 1)⌉

bits to each other in the Πp
eq1

. Therefore, the rounds are 2 and the communication cost is 2n+ 2 log n+ 2 bits.

Security. We define the functionality Feq for the equality testing as an instance of F2PC, where Feq receives a

from honest P0 or S and b from honest P1 or S, calculates [e]20 ⊕ [e]21 = 1{a = b} and sends [e]20 to P0 and [e]21

to P1. Next, we prove our protocol Πeq2 UC-realizes functionality Feq.

Theorem 1. The protocol Πeq2 as shown in Fig. 6 UC realizes Feq in the {F(1,2)-OT,F(1,N)-OT}-hybrid model

against semi-honest PPT adversaries with statical corruption.

Proof. To prove Theorem 1, we construct a PPT simulator S, such that no non-uniform PPT environment Z can

distinguish between the ideal world IdealFeq,S,Z(1
λ) and the real world RealΠeq1 ,A,Z(1

λ). We consider the following

cases:

Case 1: P0 is corrupted. We construct the simulator S which internally runs A, forwarding messages to/from Z

and simulates the interface of honest P1.

• Upon receiving (Input, sid) from Feq, S starts simulation.

• For the simulation of ith times of Πconvert, i ∈ [n],

– Upon receiving (Input, sid) from Feq, S starts simulation.

– S picks random [ri]
2 ∈ Z2 and emulates F(1,2)-OT with input [ri]2;

– When corrupted P0 inputs (m0,i,m1,i) to F(1,2)-OT, S records (m0,i,m1,i).

– S calculates si and ti with m0,i,m1,i.

– S picks [wi]
2
1 ∈ Z2 and acts as P1 to send it to P0.

– Upon receiving [wi]
2
0 from P0, S calculate wi = [wi]

2
0 ⊕ [wi]

2
1 and vi = wi + ti − 2wti.

• S calculate d0 =
∑n−1

i=0 vi.

• For the simulation of Πeq1 ,

– S emulates F(N−1,N)-ROT and forward the output mi ∈ Zp
2 for i ∈ [p] to P0.

– S generate the binary matrix M by using the {mi}i∈[p] as the binary column vectors, and left cycle shift

the ith row of M by i positions locally for i ∈ [p].

– S computes vi =
⊕p−1

j=0 m(i,j) to generate T⃗0, such that [ti]0 = vi; S computes ui =
⊕p−1

j=0 m(j,i) to

generate U⃗ .

– Upon receiving S⃗′ from P0, S picks w1 ∈ Zp and acts as P1 to send it to P0. In addition, S computes

T⃗ ′ = S⃗′ ⊕ U⃗ with only t′ε0 = 1 and extract ε0.

– Upon receiving (Output, [e]0) from Feq, S pick a random index ρ satisfying [tρ]0 = [e]0.

– S computes w1 = ρ− (ε0 + d0) and acts as P0 to send it to P1.

– Upon receiving S⃗′ from P0, S picks w1 ∈ Zp and acts as P1 to send it to P0.

14



Claim 1. If PRFZ2 , PRFZp and PRFZp
2 are the secure pseudorandom functions with adversarial advantage AdvPRFZ2 (1

λ,A),

AdvPRFZp (1λ,A) and Adv
PRFZp2

(1λ,A), then the ideal world IdealFeq,S,Z(1
λ) and the real world RealΠeq2 ,A,Z(1

λ)

are indistinguishable with advantage ϵ = n · (AdvPRFZ2 (1
λ,A) + AdvPRFZp (1λ,A)) + p · Adv

PRFZp2
(1λ,A).

Proof. In the ideal world for simulating Πconvert, [wi]
2
1 are picked random rather than calculated by bi ⊕ [ri]

2
1.

Therefore, the advantage in invoking Πconvert is ϵ0 = n · AdvPRFZ2 (1
λ,A). In the ideal world for simulating Πeq1 ,

mi for i ∈ [p] are the output of F(N−1,N)-ROT. In addition, w1 = ρ − (ε0 + d0) are picked random rather than

calculated by ε1−d1, where the ρ is random. Therefore, the advantage in invoking Πeq1 is ϵ1 = AdvPRFZp (1λ,A)+

p · Adv
PRFZp2

(1λ,A). Therefore, the ideal world IdealFeq,S,Z(1
λ) and the real world RealΠeq2 ,A,Z(1

λ) are indistin-

guishable with advantage ϵ = ϵ0 + ϵ1.

Case 2: P1 is corrupted. We construct the simulator S which internally runs A, forwarding messages to/from Z

and simulates the interface of honest P0.

• Upon receiving (Input, sid) from Feq, S starts simulation.

• For the simulation of ith times of Πconvert, i ∈ [n],

– S picks random [ri]
2 ∈ Z2, [si]

p ∈ Zp and emulates F(1,2)-OT with input m0 = [si]
p
0 − [ri]

2
0, m1 =

[si]
p
0 − (1− [ri]

2
0);

– When corrupted P1 inputs [ri]
2
1 to F(1,2)-OT, S records [ri]

2
1 and sends m[ri]21

to P1.

– S calculates ti with m[ri]21
.

– S picks [wi]
2
0 ∈ Z2 and acts as P0 to send it to P1.

– Upon receiving [wi]
2
1 from P1, S calculates wi = [wi]

2
0 ⊕ [wi]

2
1 and vi = ti − 2wti.

• S calculate d1 =
∑n−1

i=0 vi.

• For the simulation of Πeq1 ,

– S picks ε1 ∈ Zp and mi ∈ Zp
2 for i ∈ [p]\{ε1}, and acts as F(N−1,N)-ROT to send them to P1.

– S generate the binary matrix M by using the {mi}i∈[p]\{ε1} as the binary column vectors, and left cycle

shift the ith row of M by i positions locally for i ∈ [p].

– S computes wi = vi ⊕ uε1+i to generate W⃗ , where vi = (
⊕ε1−2

j=0 m(i,j)) ⊕ (
⊕p1

j=ε1
m(i,j)) and ui =

(
⊕ε1−2

j=0 m(j,i))⊕ (
⊕p−1

j=ε1
m(j,i)).

– S picks S⃗′ ∈ Zp
2 and acts as P0 to send it to P1.

– S computes T⃗1 := shift(S⃗′, ε1)⊕ W⃗ .

– Upon receiving (Output, [e]1) from Feq, S pick a random ρ satisfying [tρ]1 = [e]1.

– S computes w0 = ρ− (ε1 + d1) and acts as P0 to send it to P1.

Claim 2. If PRFZ2 , PRFZp and PRFZp
2 are the secure pseudorandom functions with adversarial advantage AdvPRFZ2 (1

λ,A),AdvPRFZp (1λ,A)

and Adv
PRFZp2

(1λ,A), then the ideal world IdealFeq,S,Z(1
λ) and the real world RealΠeq2 ,A,Z(1

λ) are indistinguish-

able with advantage ϵ = n · (AdvPRFZ2 (1
λ,A)) + (n+ 1) · AdvPRFZp (1λ,A) + Adv

PRFZp2
(1λ,A).

Proof. In the ideal world for simulating Πconvert, [si]
p
1 is picked random rather than calculated by [si]

p
0−([ri]20⊕[ri]21).

Therefore, the advantage in this step is ϵ2 = n ·AdvPRFZp (1λ,A) and the ϵ0 is the same as in case 1. In additional,

15



Fozc interacts with the parties in P and the adversary S.

Input:

• Upon receiving (Input, sid, I, X) from P0 ∈ P , record (I, X) and send (Input, sid, P0) to S, where

– X := {x0, · · · , xn−1} ∈ Zn
p ;

– I ∈ Zk
n;

• Upon receiving (Input, sid, Y ) from P1 ∈ P , record Y and send (Input, sid, P1) to S, where Y = {y0, · · · , yn−1} ∈ Zn
p .

Execution:

• If I, X and Y are recorded, Fozc does:

– set b = 1 if ∃i ∈ I, xζi + yζi = 0.

– set b = 0 otherwise.

• Send (Output, sid, b) to P1.

Functionality Fozc[n, k, p]

Fig. 7: The Ideal Functionality Fozc.

in the ideal world for simulating Πeq1 , the offset ε1 ∈ Zp and mi for i ∈ [p]\{ε1} are picked random rather than

the output of F(N−1,N)-ROT. w0 are picked random rather than calculated by d0 + ε0. Therefore, the advantage in

this step is ϵ3 = (n − 1) · Adv
PRFZp2

(1λ,A) + 2AdvPRFZp (1λ,A). In conclusion, the ideal world IdealFeq,S,Z(1
λ)

and the real world RealΠeq2 ,A,Z(1
λ) are indistinguishable with advantage ϵ = ϵ0 + ϵ2 + ϵ3.

This concludes the proof.

IV. SECURE COMPARISON

In this section, we propose a novel secure comparison protocol where P0 inputs a and P1 inputs b, receiving

the shared result 1 {a > b}. We first give an overview of our protocol which is constructed by a new primitive –

oblivious short-list zero check (OZC). Then we propose a two-round OZC protocol as the build block.

A. Protocol Overview

For the integers a held by P0 and b held by P1, the result of comparison 1 {a > b} can be obtained by bitwise

comparing a and b from the big-endian. Formally, it is denoted by 1 {a > b} = aρ, where the position ρ correspond

to the first different bit between a and b. Observe that in the case a = b of which there is no different bits between

a and b, we append 1 to the end of b and 0 to the end of a ( In contrast, we append 1 to a and 0 to b for 1 {a ≥ b}).

Fig. 9 illustrates the overview of our secure comparison protocol. In the first step, we locate the position ρ. In the

second step, we design a protocol to make two parties securely obtain the corresponding bit aρ which implies the

comparison result.

First different bit detection. At first step, we view a and b as the bitwise-XOR share of m. Namely, mi = ai⊕ bi

for i ∈ [n]. The position ρ corresponds to the first non-zero bit of m. We introduce a transformation [37] {si}i∈[n] =

16



ϕ({mi}i∈[n]) where the result list {si} only contains an unique zero-value in the position ρ and non-zero value in

other position.

Transformation ϕ. Let {s′i}i∈[n] be the prefix sum of mi. Specifically, s′i :=
∑j=i

j=0 mj for i ∈ [n]. We define

si = ϕ(mi) := s′i − 2mi + 1. Obviously, when i < ρ, it holds that mi = s′i = 0, therefore, we have si = 1;

when i = ρ, it holds that s′i = mi = 1, therefore, si = 0; when i > ρ, it holds that s′i ≥ mi + 1, therefore,

si ≥ 2 −mi ≥ 1. In general, si = 0 if and only if i = ρ. For instance, if a = 10010 and b = 10101, we have

m = a ⊕ b = 00111, and then s′ = 00123 and s = 11012. Analogously, it holds that si ≤ n ( The maximum si

takes n when s′n−1 = n − 1 and mi = 0). To avoid extra 0 caused by wrapping round, ϕ should be performed

on Zp where p > n, w.r.t. [mi]
p instead of [mi]

2. We apply the sharing conversion protocol Πconvert in Sec. III to

expand [mi]
2 ∈ Z2 to [mi]

p ∈ Zp.

Now we have shared list {[si]p}i∈[n], where its zero element position ρ corresponds to the comparison result

of a and b, this is, aρ = 1 {a > b}. The second challenge is how P0 and P1 can obliviously obtain [aρ] from

{[si]p}i∈[n] and a. To address this issue, we introduce a new primitive – Oblivious Short-list Zero Check (OZC).

Oblivious Short-listed Zero Check. The OZC scheme checks if a shared list contains zero on a subsequence. We

formalize its functionality in Fig. 14. In particular, an OZC scheme allows P0 input k-dimension selective index set

I := {ζ0, . . . , ζk−1}, P0 and P1 input shared list {[xi]}i∈[n]. For xi = [xi]0+[xi]1, it checks if {xζi}i∈[k] contains

zero and sends the check result to P1.

We construct our secure comparison protocol with OZC. At a high level, we let P0 toss a coin ∆ ∈ {0, 1} and

input all the position {ζi}i∈[k], where aζi = ∆, as the indices of Fozc (We assume there are k bits in a equal to

∆). P0 and P1 input aforemationed {[si]p}i∈[n] as the shared list of Fozc. P1 will receive the zero check result

z. For the case z = 0, it indicates that all the bits of aζi = ∆ do not lay on the position ρ for sρ = 0, which

implies aρ = ∆ ⊕ 1. For the case z = 1, P0 successfully guesses the correct result aρ = ∆. Obviously, it holds

that aρ = ∆⊕ z ⊕ 1. We let P0 output the result [c]0 = ∆ and P1 output [c]1 = z ⊕ 1.

Dummy queries. The number of queries k will leak the hamming weight of a to P1. To avoid this leakage, we

introduce dummy queries which pad the overall queries to the maximum possible number of queries. Firstly, we

let P0 and P1 generate non-zero share [sn]
p. We let P0 perform extra n − k queries using index n. Namely, for

i ∈ {k, . . . , n − 1}, P0 sets ζi = n and all parties invoke Fozc with n dimention indices and (n + 1) dimension

shared list {[si]p}i∈[n+1]. Consequently, the overall queries are n.

Protocol description. The full description of our secure comparison protocol is depicted in Figure 8. Next, we

explain our protocol step by step as follows.

• At step 1, P0 and P1 invoke Πp
convert(ai, bi) for each bit ai and bi, receiving [mi]0 and [mi]1 respectively, such

that [mi]0 + [mi]1 = ai ⊕ bi.

• At step 2, P0 and P1 append 0 to a and 1 to b for dealing with a = b.

• At steps 3, P0 and P1 compute [si]0 =
∑i

j=0 xj − 2xi + 1 and [si]1 =
∑i

j=0 yj − 2yi + 1, respectively. It

holds that sρ = 0, where ρ denotes the position of the first differing bit between a and b.

• At steps 4, P0 and P1 sets [sn+1]0 = [sn+1]1 = 1 for dummy queries.

17



Input : P0 inputs a ∈ Z2n ; P1 inputs b ∈ Z2n .

Output : P0 receives [c]20 ∈ Z2; P1 receives [c]21 ∈ Z2; it holds that [c]20 ⊕ [c]21 = 1 {a < b}.

Execution:

1) Let p := ⌈log(n)⌉, for i ∈ [n], P0 and P1 invoke [mi]← Πp
convert(ai, bi), and then Pj holds [mi] ∈ Zp, P1 holds yi ∈ Zp.

2) P0 sets an = [mn]0 = 0; P1 sets bn = [mn]1 = 1;

3) For i ∈ [n+ 1], P0 computes [si]0, where [si]0 =
∑i

j=0[mj ]0 − 2 · [mi]0 + 1, and P1 computes [si]1, where

[si]1 =
∑i

j=0[mj ]1 − 2 · [mi]1 + 1;

4) P0 and P1 sets [sn+1]0 = [sn+1]1 = 1;

5) P0 picks ∆← {0, 1};

6) P0 sets I := {ζj}j∈Zk
= {i|ai = ∆, i ∈ Zn+1}, where we assume the size of I is k;

7) For j ∈ {k, . . . , n}, P0 appends ζj = n to get n+ 1-dimension vector I′;

8) P0 and P1 invoke Fozc[n+ 1, n+ 2] with index list I, shared list {[si]0}i∈[n+2] and {[si]1}i∈[n+2]; P1 receives z ∈ {0, 1};

9) P1 sets [c]21 = z ⊕ 1.

10) P0 set [c]20 = ∆.

Protocol Πn
cmp(a, b)

Fig. 8: The Comparison Protocol

i. Secure
Evaluation

Select

ii. Output

ii. Output

Fig. 9: The Overview of Secure Compariosn

• At step 5-6, P0 picks random ∆, records all indices i where ai = ∆, and denotes the set of these indices as

I. We assume the size of the set I is k, namely, I = {ζj}j∈Zk
.

• At step 7, to prevent the leakage of the hamming weight of a, P0 pads the size of I to n+ 1. Therefore, P0

18



appends ζj = n+ 1 for j ∈ n+ 1.

• At step 8, P0 and P1 invoke Fozc. Specifically, P0 inputs the index list I = {ζj}j∈[n+1] and the shared list

{[si]0}i∈[n+1], and P1 inputs the shared list {[si]0}i∈[n+2]. After the protocol, P1 receives z = 1
{
0 ∈ {sζ0 , . . . , sζk−1

}
}

.

• At steps 9-10, P1 sets output [c]1 = z ⊕ 1 and P0 set output [c]0 = ∆.

Our secure comparison protocol Πn
cmp requires 1-round communication of 2n bits in the online phase for the n

times invoking of Πconvert and one time Fozc[n+ 1, n+ 2].

Security. We define the functionality Fcmp for secure comparison as an instance of F2PC, where Fcmp receives a

and [c]20 ∈ {0, 1} from honest P0 or S, receives b from honest P1 or S, calculates [c]21 = 1{a > b}⊕ [c]20 and sends

to P1. Next, we prove our protocol Πcmp realizes functionality Fcmp.

Theorem 2. The protocol Πcmp as depicted in Fig. 8 UC realizes Fcmp in the (F(1,2)-OT,Fozc)-hybrid model against

semi-honest PPT adversaries with statical curroption.

Proof. To prove Thm. 2, we construct a PPT simulator S, such that no non-uniform PPT environment Z can

distinguish between the ideal world IdealFcmp,S,Z(1
λ) and the real world Real

Fozc,F(1,2)-OT

Πcmp,A,Z (1λ). We consider the

following cases:

Case 1: P0 is corrupted. We construct the simulator S which internally runs A, forwarding messages to/from Z

and simulates the interface of honest P1.

• Upon receiving (Input, sid) from Fcmp, S starts simulation.

• For the simulation of ith times of Πconvert, i ∈ [n],

– S picks random [ri]
2 ∈ Z2 and emulates F(1,2)-OT with input [ri]2;

– When corrupted P0 inputs (m0,i,m1,i) to F(1,2)-OT, S records (m0,i,m1,i).

– S calculate ri and si with m0,i,m1,i;

– S picks [wi]
2
1 ∈ Z2 and acts as P1 to send it to P0.

– Upon receiving [wi]
2
0 from P0, S calculate ai = [wi]

2
0 ⊕ [ri]

2
0

• S emulates Fozc with random list {si}i∈Zn+1 .

• When P0 input I to Fozc, S records I and calculates ∆ := ai for i ∈ I ∧ i ̸= n+ 1.

• If a = 0 or a = 2n − 1 and I := {n+ 1, . . . , n+ 1}, set ∆ = 1⊕ a0.

• S sends (Input, sid, a,∆) to external Fcmp.

Observe that P0 locally set [c]0 = ∆, so that the output of ideal execution keeps consistent with the real execution.

We show that the incoming message of P0 in the ideal world is indistinguishable from the real world.

Claim 3. If PRFZ2 is the secure pseudorandom functions with adversarial advantage AdvPRFZ2 (1
λ,A), then

the ideal world IdealFcmp,S,Z(1
λ) and the real world RealΠcmp,A,Z(1

λ) are indistinguishable with advantage ϵ =

AdvPRFZ2 (1
λ,A).

Proof. In the ideal world, [wi]
2
1 are picked random rather than calculated by [a]2i ⊕ [r]2i , which replace n PRFZ2

outputs to uniformly random; therefore, the overall advantage is ϵ = n · AdvPRFZ2 (1
λ,A).

19



Case 2: P1 is corrupted. We construct the simulator S to simulates the interface of honest P0

• Upon receiving (Input, sid) from Fcmp, S picks a.

• For the simulation of ith times of Πconvert, i ∈ [n],

– S picks random [ri]
2 ∈ Z2, [si]

p ∈ Zp and emulates F(1,2)-OTwith input m0 = [si]
p
0 − [ri]

2
0, m1 =

[si]
p
0 − (1− [ri]

2
0);

– When corrupted P0 inputs [ri]
2
1 to F(1,2)-OT, S records [ri]

2
1 and sends m[ri]21

to P1.

– Upon receiving [wi]
2
1 from P1, S calculate bi = [wi]

2
1 ⊕ [ri]

2
1

– S calculates [wi]
2
1 = [ri]

2
1 ⊕ ai and acts as P1 to send it to P0.

• For simulation of Πcmp,

– S calculates {si}i∈[n+1] with ϕ((a||0)⊕ (b||1)), it holds that sρ = 0 and ρ < n+ 1.

– Upon receiving [c]21 from Fcmp, S does:

∗ if [c]21 = 1, set I ′ := {n+ 1, n+ 1, . . . , n+ 1, n+ 1} with n+ 1 dimension.

∗ if [c]21 = 0, set I ′ := {n+ 1, n+ 1, . . . , n+ 1, ρ} with n+ 1 dimension.

– S emulates Fozc with random list {si}i∈[n+2] and selection list I.

We first show that in the ideal world, P1 reveives same output as the real world: If I ′ := {n+1, n+1, . . . , n+

1, n+1}, Fozc will output all positive value {βi · sn+1}i∈[n/2] to P1 induce P1 to output [c]21 = 1. On the contrary,

if I ′ := {n+1, n+1, . . . , n+1, ρ}, Fozc will output zero-contained list to P1 such that P1 output [c]21 = 0. Next,

we show that the incoming message of P1 in the ideal world is indistinguishable with the real world.

Claim 4. For two sets of list (I, X, Y ) and (I ′, X ′, Y ′), where

• I := {ζi}i∈[k] ∈ Zk
n;I ′ := {ζ ′i}i∈[k] ∈ Zk

n;

• X := {xi}i∈[n] ∈ Zn
p ;X ′ := {x′

i}i∈[n] ∈ Zn
p ;

• Y := {yi}i∈[n] ∈ Zn
p ;Y ′ := {y′i}i∈[n] ∈ Zn

p ;

If it have

• M := {xi + yi}i∈[n] and M′ := {x′
i + y′i}i∈[n] only contains one 0 (denoted by mρ and m′

ρ), and contains

non-zero value in the other position.

• The number of ρ contained in I and I ′ are both ℓ ∈ {0, 1}.

It holds that

Pr[A(Fozc(Ib, Xb, Yb), {Ii, Xi, Yi}i∈[2]) = b] <
1

2
+ negl

Claim 5. If PRFZn
2 is the secure pseudorandom functions with adversarial advantage Adv

PRFZn2 (1
λ,A), then

the ideal world IdealFcmp,S,Z(1
λ) and the real world RealΠcmp,A,Z(1

λ) are indistinguishable with advantage ϵ =

AdvPRFZ2 (1
λ,A).

Proof. In the ideal world, [wi]
2
1 are calculated by randomly picked a, which replace random value to n to output

of where the advantage is Adv
PRFZn2 (1

λ,A). For the list {zi}i∈[n+1], from Claim. 4, it is indistinguishable between

the ideal world and real world.

This concludes the proof.

20



Input : Index list I := {ζi}i∈[k] input by P0 which contains k − t non-repeating items, and last t indices equal to n; list X :=

{xi}i∈[n] input by P0; list Y := {yi}i∈[n] input by P1;

Output : P1 receives zi = (xζi + yζi ) · βζi for the random value βζi which is unknown to P1.

Offline:

• P0 and P1 invoke:

– (βi, ri, ui, vi)← Fole[p], for i ∈ [n].

– ({βj}j∈[k−1], r, {uj}j∈[k−1], {vj}j∈[k−1])← Fvole[p, k − 1]

• P1 concatenates {βj}j∈[k−1], r, {uj}j∈[k−1], {vj}j∈[k−1] with βi, ri, ui, vi where copy k − 2 copies of r as alignment

• P0 picks random permutation π : Sn+k−1 7→ Sn+k−1;

• P0 and P1 invoke Fpermute:

– P0 inputs the permutation π, and P1 inputs the list {vi}i∈[n+k−1].

– P0 receives the sharing list {[vπ(i)]0}i∈[n+k−1] and P1 receives {[vπ(i)]1}i∈[n+k−1], respectively.

• P0 sets [wi]0 = [vi]0 + uπ(i); P1 sets [wi]1 = [vi]1

Online:

• P1 sets y′i = yi + ri for i ∈ [n] and sends the set Y ′ = {y′0, · · · , y′n} to P0;

• P0 sets

– ti = βζi · (xζi + y′ζi )− [wπ−(ζi)
]0 for i ∈ [k − t];

– si = π−(ζi) for i ∈ [k − t];

– ti = βn+i−k · (xn + y′n)− [wπ−(n+i−k)]0 for i ∈ [k − t, k];

– si = π−(n+ i− k) for i ∈ [k − t, k];

• P0 sends {ti}i∈[k] and {si}i∈[k] to P1.

• P1 calculates zi = ti − [wsi ] for i ∈ [k − t].

• P1 outputs z = 1 {0 ∈ {z0, · · · , zk−1}}.

Protocol Πk,n,p
ozc (I, X, Y )

Fig. 10: The Oblivious Selective Multiplication Protocol

(a) LAN (b) MAN (c) WAN

Fig. 11: The running time of equality testing protocol Πeq2 compare with ABY [19], GC scheme implemented in

EMP-toolkits [48] and DPF [26] in LAN/MAN/WAN setting. All benchmarks take the data length n = 32.

21



B. Realize Fozc

We propose a naive construction of the OZC protocol, which requires heavy communication in the online phase.

After that, we optimize the communication of the online phase by introducing the permutation tuples in the offline

phase.

OLE-based implement. Recall the functionality Fozc accepts list X := {x0, . . . , xn−1}, Y := {y0, . . . , yn−1}

and a index list I := {ζ0, . . . , ζk−1}. Fozc sends the information of whether there exists xi + yi = 0 for i ∈ I

to P1. The naive approach to implementing OZC is to scale all selected items xζi + yζi with non-zero random

value βi and directly reveal to P1, namely, ci = βi · (xζi + yζi). P1 check whether there exist ci = 0 for i ∈ [k]

to verify xi + yi = 0. To hide the index ζi, we let P0 first take yζi using (1, n)-OT, then P0 picks βi and

calculates ci = βi · (xζi + yζi). Avoiding reveal yζi to P0, we employ P1 generate r to mask yζi and rewrite z

as [z] = β · (xζi + yζi + r) − [β · r]. P0 takes y′ζi = yζi + r from OT instead of yζi . For the part of [β · r], it

can be produced by OLE tuple generation protocol with random β ∈ Zp and r ∈ Zp, where P0 holds {β, [β · r]0}

and P1 holds {r, [β · r]1}. At present, P1 can locally calculate [ci]0 = βi · (xζi + y′ζi) − [β · r]0 and P1 calculate

[ci]1 = −[β · r]1. When P0 reveal [ci]0 to P1 for reconstruction ci. The naive approach is illustrated in Fig. 15 (CF.

Appendix. A-C).

Remark. To avoid the 0 caused by wrapping round βi · (xi+yi) with non-zero xi+yi, βi and p should be coprime.

We exclude such cases by taking p as prime and βi ∈ Z∗
p.

Online Phase Communication Optimization. For k indices, Πozc requires invoking k times 1-out-of-n OT in

the online phase, which is a huge communication cost. We optimize the online phase communication through the

oblivious permutation. Our starting point is that y′i in Πozc can be masked with different ri and directly reveal to P0.

Instead of OT, P0 can directly select y′ζi and calculate βζi(xζi + y′ζi) = βζi(xζi + yζi + rζi). The challange is how

to cancel βζi · rζi when P1 doesn’t know ζi. We introduce permutation tuples to address this issue. In particular,

the permutation tuple ({βi, ri, [wi]0, [wi]1}i∈[n], π) is generated in the offline phase, where it holds that,

• π is a random permutation held by P0 (we use π(i) to denote the permuted result of i);

• βi · ri = [wπ(i)]0 + [wπ(i)]1 are the permuted OLE tuples, where P0 holds ({βi, [wi]0}i∈[n]) and P1 holds

({ri, [wi]1}i∈[n]).

Considering zi = βζi(xζi + yζi + rζi) − βζi · rζi , we can replace βζi · rζi with [wπ(ζi)]0 + [wπ(ζi)]1. Namely,

zi = βζi(xζi + yζi + rζi)− [wπ(ζi)]0 − [wπ(ζi)]1. P0 hold βζi , xζi , y
′
ζi

= yζi + rζi , π and [wπ(ζi)]0 so that it can

calculate ti = βζi(xζi + yζi + rζi)− [wπ(ζi)]0. Since π is a uniformly random permutation, π(ζi) can be revealed

to P1 directly without information leakage about ζi. Consequantly, P1 calculates zi = ti− [wπ(ζi)]1 which is equal

to βζi(xζi + yζi) and checks if there exists zi = 0 for i ∈ [k].

Privacy on dummy queries. The foregoing version of the protocol can not deal with the duplicated indices. Because

the same index ζk will obtain the same permuted index π(ζk) which can not be directly revealed to P1, leading to

an incompatible with the original dummy queries approach. Our solution is to generate another k − 1 dimension

VOLE permutation tuple ({βi, [wi]0, [wi]1}i∈[k−1], r), where it holds

• βi · r = [wπ(i)]0 + [wπ(i)]1 are the permuted VOLE tuples;

22



• P0 holds (βi, [wi]0) and P1 holds (r, [wi]1).

The VOLE tuple is concatenated with the original OLE tuples and the π : Zn+k−1
p 7→ Zn+k−1

p is performed on

the overall tuples, namely, ({βi, ri, [wi]0, [wi]1}i∈[n+k−1], π) where rn = rn+1 . . . = rn+k corresponds to the r of

VOLE tuple. We utilize VOLE tuples to deal with the duplicated indices. In particular, assume the last t items of

I is duplicated indices, i.e. ζi = η for i ∈ [k− t, k]. P0 sets ti = βn+i−k+t · (xη + yη + rη)− [wπ(n+i−k+t)]0 and

sends ti and π(n + i − k + t) to P0. Analogously, P1 can recover zi = βn+i−k+t · (xη + yη) for the duplicated

index.

Offline tuples generation. We generate the offline truples with three primitives: Fole,Fvole,Fpermute. We let Fole and

Fvole generate the OLE tuples and VOLEtuple tuples for dummy queries, denote them as {βi, ri, ui, vi} where

βi · ri = ui + vi. We let P0 input random permutation π and P1 input list {vi}i∈[n] to functionality Fpermute. After

that P0 and P1 receive [vπ(i)] and calculate [wi] = [vπ(i)] + uπ(i). Now we have βi · ri = [wπ−(i)]0 + [wπ−(i)]1 for

i ∈ [n]. In our benchmark, we use the SOTA protocol to realize Fole [33],Fvole [44],Fpermute [15].

Our complete protocol design is illustrated in Figure. 10. Our oblivious short-list zero check protocol Πk,n,p
ozc

requires 2-round communication of 2 ·k ·p bits in the online phase. In the offline phase, it requires n times invoking

of Fole[p], one time invoking of Fvole[k − 1, p] and one time invoking of Fpermute[n+ k − 1].

Theorem 3. The protocol Πozc as depicted in Fig. 10 UC realizes Fozc against semi-honest PPT adversaries who

can statically corrupt up to one party.

Proof. To prove Thm. 3, we construct a PPT simulator S, such that no non-uniform PPT environment Z can

distinguish between the ideal world IdealFozc,S,Z(1
λ) and the real world RealΠozc,A,Z(1

λ). We consider the following

cases:

Case 1: P0 is corrupted. We construct the simulator S which internally runs A, forwarding messages to/from Z

and simulates the interface of honest P1.

• S emulates Fole, outputs (βi, ri, ui, vi) for i ∈ [n] and sends (βi, ui) to P0.

• S emulates Fvole, outputs ({βj , r, uj , vj}j∈[k−1]) and sends (βj , uj) to P0.

• S emulates Fpermute with input vi and record π.

• S picks random list {y′i}i∈[n] and acts as P1 to send it to P0.

• Upon receiving {ti}i∈[k] and {si}i∈[k], S does

– calculate ζi = π(si) for i ∈ [k].

– calculate xζi = β−
ζi
(ti + [wπ−(ζi)])

– set xj ← Zp for j ∈ [n]\{ζi}i∈[k]

– send (Input, sid, {ζi}i∈[k], {xj}j∈[n]) to Fozc.

Observe that Fozc will the output each items zi = (xζi + yζi) · βi to P1, which equals to zi in the real world. We

show that the incoming message of P0 in the ideal world is indistinguishable with the real world.

Claim 6. If PRFZp is the secure pseudorandom functions with adversarial advantage AdvPRFZp (1λ,A), then the

ideal world IdealFcmp,S,Z(1
λ) and the real world RealΠcmp,A,Z(1

λ) are indistinguishable with advantage ϵ = n ·

23



AdvPRFZp (1λ,A).

Proof. In the ideal world, {y′i}i∈[n] are uniformly random, which replace n value of PRF output, where the advantage

is n · AdvPRFZp (1λ,A).

Case 2: P1 is corrupted. We construct the simulator S to simulates the interface of honest P0

• In the offline phase, S does,

– emulates Fole, outputs (βi, ri, ui, vi) for i ∈ [n] and sends (ri, vi) to P1.

– emulates Fvole, outputs ({βj , r, uj , vj}j∈[k−1]) and sends (r, vj) to P1.

– picks random permutation π and emulates Fpermute with input π.

– Record vi when P1 input it to Fpermute.

• Upon receiving {y′i}i∈[n] from P1, S does,

– calculate yi = y′i − ri for i ∈ [n].

– send (Input, sid, {yi}i∈[n]) to Fozc.

• Upon receiving z from Fozc, S does,

– pick random list {r0, . . . , rk−1} ∈ (Z∗
p)

k.

– pick random set I1 := {s0, . . . , sk−1} ∈ Zk
n+k−1.

– for i ∈ [k], set ti = [wsi ] + ri;

– if b = 0, pick η ← I1 and set ti = ti − ri.

– act as P0 to send {ti}i∈[k] and I1 to P1.

(a) LAN (b) MAN (c) WAN

Fig. 12: The running time of Πcmp compare with ABY [19], GC implemented in EMP [48], DCF [26] and

CrypFlow2 [43] in LAN/MAN/WAN setting; take the data length n = 64; CF2 refers to CrypFlow2.

Claim 7. If PRFZk
n are the secure pseudorandom functions with adversarial advantage Adv

PRFZkn
(1λ,A), then

the ideal world IdealFcmp,S,Z(1
λ) and the real world RealΠcmp,A,Z(1

λ) are indistinguishable with advantage ϵ =

Adv
PRFZkn

(1λ,A).

Proof. In the ideal world, {si}i∈[k] and {ti}i∈[k] are randomly generated instead of calculated by (X,Y ) and (π, I).

Obviously, the advantage betweent random set I1 and {si}i∈[k] which is calculated by ramdom permutation π in the

24



real world is AdvPRFZnn (1
λ,A). For {ti}i∈[k], due to the random mask βi and [wi] are generated from ole and vole,

{ti}i∈[k] in the real world and ideal world are indistinguishable. Therefore, the overall advantage is PRFZk
n .

This concludes the proof.

V. PERFORMANCE EVALUTAION

In this section, we respectively implement our equality test (Section III) and secure comparison (Section IV), and

compare their performance with the CrypTFlow2 [43], ABY [19], GC [3], FSS [26].

A. Experiment Setting

We implement our protocols in C++. For the FOT, we utilize the OT library – libOTe [4]. For FSS, we implement

the keys correlated generation scheme for benchmark [1]. For the garbled circuit, we utilize EMP-toolkits [3],

which is integrated half-gate [51]. The source code of our protocol can be obtained from the anonymous GitHub

repository [5]. For ABY and CrypTFlow, we utilize their open-source code [2]. Our experiments are performed

in a local area network, using traffic control in Linux to simulate three network settings: (1) local-area settings

(LAN): 20Gbps bandwidth with 0.01 ms round-trip latency (RTT). (2) metropolitan-area setting (MAN): 400 Mbps

bandwidth with 20 ms round-trip. (3) wide-area setting (WAN): 10Mbps bandwidth with 100 ms round-trip. Our

benchmark setting is deployed on the server running Ubuntu 18.04.2 LTS with Intel(R) Xeon(R) Silver 4214 CPU

@ 2.20GHz, 48 CPUs, 128 GB Memory. In our benchmark, we set the security parameter λ = 128.

Equality testing. The equality testing running time of the online phase (for n = 64) is depicted in Fig. 11.

Compared with other equality testing implementations, our protocol realizes multiple performance improvements

for the online phase. The communication cost of our protocol is close to FSS [26], while the computation cost

of our protocol is more subtle than FSS, leading to a significant performance superiority. In general, considering

appropriate data size, the efficiency of our equality-testing is (i) over 2× of the garbled circuit, over 7× of the

FSS, and over 40× of ABY in the LAN setting; (ii) over 9× of the FSS, over 15× of garble circuit and over 50×

of ABY in both MAN and WAN settings. Fig. 16(a) depicts the offline running time compared to FSS (with the

correlated keys generation) and ABY. (Considering O(2n) computation complexity of FSS, we take n = 16). The

offline running time of our protocol is over 1000× faster than FSS and over 5× faster than ABY.

Secure comparison. Fig. 17 depicts the online phase running time of secure comparison compared to ABY [19],

GC [48], DCF [26] and CrypFlow2 [43] (Due to CrypTflow2 only support 64 bits, our benchmarks perform on

n = 64). In most cases, our protocol outperforms other protocols in the online phase. In particular, the efficiency

of our protocol is (i) over 3× of the FSS/CrypTflow2/GC, and over 20× of the ABY in the LAN setting; (ii) over

3× of the FSS, over 6× of GC/CrypTflow2 and over 15× of ABY in WAN settings. When the network is worse

and the data volume is large enough, our protocol efficiency will be slightly lower than FSS (WAN setting and

> 105 number of comparisons). Fig. 16(b) depicts the offline running time. The offline phase performance of our

protocol is 1000× of FSS. As a trade-off, our offline phase is slightly slower than ABY.

For more benchmarks, we refer readers to Appendix. B.

25



VI. CONCLUSION

We propose constant-round equality testing and secure comparison protocols, where each of our protocols enjoys

a low communication round and volume in the online phase. Our benchmarks show that the performance of our

protocols is several times better than that of SOTA, both in the equality testing and secure comparison.

REFERENCES

[1] Correlated fss keys generation. https://anonymous.4open.science/r/fss-28E7.

[2] Cryptflow2-code. https://github.com/mpc-msri/EzPC.

[3] Emp-toolkit. https://github.com/emp-toolkit.

[4] libote. https://github.com/osu-crypto/libOTe.

[5] Our code. https://anonymous.4open.science/r/2PC eq cmp-4C54.

[6] Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl, and Juan Ramón Troncoso-Pastoriza. Efficient protocols for

oblivious linear function evaluation from ring-lwe. Journal of Computer Security, 30(1):39–78, 2022.

[7] Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, 1991.

[8] Donald Beaver. Precomputing oblivious transfer. In Annual International Cryptology Conference, pages 97–109. Springer, 1995.

[9] Ian F Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer and computing on intervals. In International Conference on

the Theory and Application of Cryptology and Information Security, pages 515–529. Springer, 2004.

[10] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant Kumar, and Mayank Rathee. Function secret sharing for

mixed-mode and fixed-point secure computation. In EUROCRYPT, 2021.

[11] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In CCS, 2016.

[12] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. Flash: Fast and robust framework for privacy-preserving machine learning.

In PoPETs, 2020.

[13] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings 42nd IEEE Symposium on

Foundations of Computer Science, pages 136–145. IEEE, 2001.

[14] Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-psi with linear complexity via relaxed batch opprf. Proceedings on Privacy

Enhancing Technologies, 2022.

[15] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-shared shuffle. In Advances in Cryptology–ASIACRYPT 2020: 26th

International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7–11,

2020, Proceedings, Part III 26, pages 342–372. Springer, 2020.

[16] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. Astra: High throughput 3pc over rings with application to secure

prediction. In CCSW, 2019.

[17] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homomorphic comparison methods with optimal complexity. In Advances

in Cryptology–ASIACRYPT 2020: 26th International Conference on the Theory and Application of Cryptology and Information Security,

Daejeon, South Korea, December 7–11, 2020, Proceedings, Part II 26, pages 221–256. Springer, 2020.

[18] Geoffroy Couteau. New protocols for secure equality test and comparison. In International Conference on Applied Cryptography and

Network Security, pages 303–320. Springer, 2018.

[19] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for efficient mixed-protocol secure two-party computation.

In NDSS, 2015.

[20] Jack Doerner and Abhi Shelat. Scaling oram for secure computation. In CCS, 2017.

[21] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel Wichs. Two-round oblivious transfer from cdh or lpn. In

Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 768–797. Springer, 2020.

[22] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts. Communications of the ACM,

28(6):637–647, 1985.

[23] Philippe Fournier-Viger, Yanjun Yang, Peng Yang, Jerry Chun-Wei Lin, and Unil Yun. Tke: Mining top-k frequent episodes. In Trends in

Artificial Intelligence Theory and Applications. Artificial Intelligence Practices: 33rd International Conference on Industrial, Engineering

and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, Kitakyushu, Japan, September 22-25, 2020, Proceedings 33, pages

832–845. Springer, 2020.

26

https://anonymous.4open.science/r/fss-28E7
https://github.com/mpc-msri/EzPC
https://github.com/emp-toolkit
https://github.com/osu-crypto/libOTe
https://anonymous.4open.science/r/2PC_eq_cmp-4C54


[24] Juan Garay, Berry Schoenmakers, and José Villegas. Practical and secure solutions for integer comparison. In Public Key Cryptography–PKC

2007: 10th International Conference on Practice and Theory in Public-Key Cryptography Beijing, China, April 16-20, 2007. Proceedings

10, pages 330–342. Springer, 2007.

[25] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, 1987.

[26] Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie, Jiang Zhang, and Zheli Liu. Half-tree: Halving the cost of tree expansion

in cot and dpf. In EUROCRYPT, 2023.

[27] Manoj Kumar Gupta and Pravin Chandra. A comprehensive survey of data mining. International Journal of Information Technology,

12(4):1243–1257, 2020.

[28] Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen jie Lu, Cheng Hong, and Kui Ren. Ciphergpt: Secure two-party gpt inference.

Cryptology ePrint Archive, Paper 2023/1147, 2023.

[29] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure two-party deep neural network inference.

In 31st USENIX Security Symposium (USENIX Security 22), pages 809–826, 2022.

[30] Markus Jakobsson and Moti Yung. Proving without knowing: On oblivious, agnostic and blindfolded provers. In Annual International

Cryptology Conference, pages 186–200. Springer, 1996.

[31] Neha Jawalkar, Kanav Gupta, Arkaprava Basu, Nishanth Chandran, Divya Gupta, and Rahul Sharma. Orca: Fss-based secure training and

inference with gpus, 2024.

[32] Bo Jiang, Jian Du, and Qiang Yan. Anonpsi: An anonymity assessment framework for psi. arXiv preprint arXiv:2311.18118, 2023.

[33] Florian Kerschbaum, Erik-Oliver Blass, and Rasoul Akhavan Mahdavi. Faster secure comparisons with offline phase for efficient private

set intersection. In NDSS, 2023.

[34] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. Improved garbled circuit building blocks and applications to auctions

and computing minima. In Cryptology and Network Security: 8th International Conference, CANS 2009, Kanazawa, Japan, December

12-14, 2009. Proceedings 8, pages 1–20. Springer, 2009.

[35] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates and applications. In Automata, Languages and

Programming: 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II 35, pages 486–498.

Springer, 2008.

[36] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network predictions via minionn transformations. In CCS, 2017.

[37] Tianpei Lu, Bingsheng Zhang, Lichun Li, and Kui Ren. Aegis: A lightning fast privacy-preserving machine learning platform against

malicious adversaries. Cryptology ePrint Archive, Paper 2023/1890, 2023.

[38] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, volume 1, pages 448–457, 2001.

[39] Dimitrios Papakyriakou and Ioannis S Barbounakis. Data mining methods: a review. International Journal of Computer Application,

183(48):5–19, 2022.

[40] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. Aby2. 0: Improved mixed-protocol secure two-party computation. In

30th USENIX Security Symposium (USENIX Security 21), pages 2165–2182, 2021.

[41] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient circuit-based psi with linear communication. In

Advances in Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part III 38, pages 122–153. Springer, 2019.

[42] Srinivasan Raghuraman and Peter Rindal. Blazing fast psi from improved okvs and subfield vole. In Proceedings of the 2022 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’22, page 2505–2517, New York, NY, USA, 2022. Association for

Computing Machinery.

[43] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow2:

Practical 2-party secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security,

pages 325–342, 2020.

[44] Peter Rindal and Phillipp Schoppmann. Vole-psi: Fast oprf and circuit-psi from vector-ole. In Advances in Cryptology – EUROCRYPT

2021, pages 901–930, Cham, 2021. Springer International Publishing.

[45] Mike Rosulek and Lawrence Roy. Three halves make a whole? beating the half-gates lower bound for garbled circuits. In Tal Malkin and

Chris Peikert, editors, CRYPTO, 2021.

[46] Abir Smiti. A critical overview of outlier detection methods. Computer Science Review, 38:100306, 2020.

[47] Wen-Guey Tzeng. Efficient 1-out-n oblivious transfer schemes. In Public Key Cryptography: 5th International Workshop on Practice and

Theory in Public Key Cryptosystems, PKC 2002 Paris, France, February 12–14, 2002 Proceedings 5, pages 159–171. Springer, 2002.

27



[48] Xiao Wang, Alex J Malozemoff, and Jonathan Katz. Emp-toolkit: Efficient multiparty computation toolkit, 2016.

[49] Andrew Chi-Chih Yao. How to generate and exchange secrets extended abstract. In 27th FOCS, pages 162–167, 1986.

[50] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole. In EUROCRYPT, 2015.

[51] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole: Reducing data transfer in garbled circuits using half gates.

In Advances in Cryptology-EUROCRYPT 2015: 34th Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II 34, pages 220–250. Springer, 2015.

[52] Lijing Zhou, Ziyu Wang, Hongrui Cui, Qingrui Song, and Yu Yu. Bicoptor: Two-round secure three-party non-linear computation without

preprocessing for privacy-preserving machine learning. In S&P, 2023.

APPENDIX A

OTHER BUILDING BLOCK

This section gives other building blocks such as the OLE and the oblivious short-list zero check.

A. OLE protocol

In the OLE, both parties have no input initially, and then P0 receives (a, c) and P1 receives (b, d) such that

ab = c+d. The OLE can be implemented by invoking p times F(12)-OT. Specifically, P1 picks a ∈ Zp and {rj}j∈Zp
,

while P1 picks b ∈ Z∗
p. Subsequently, For each invoking of F(12)-OT, P0 sets m0 = −rj and m1 = a ·2j−rj , and as

the sender inputs (m0,m1) to F(12)-OT; P1 as the receiver inputs the chooes bit bj and receives output zj . Finally, P0

computes c =
∑p

j=1 rj , and P1 computes d =
∑p

j=1 zj . Clearly, c+d =
∑p

j=1 rj +
∑p

j=1 zj =
∑p

j=1 a ·2bj = ab.

Input : P0 and P1 have no input.

Output : P0 receives a ∈ Zp and c ∈ Zp, while P1 receives b ∈ Zp and d ∈ Zp, where a · b = c+ d.

Execution:

• P0 samples a ∈ Zp and {rj}j∈Zp
.

• P1 samples b ∈ Z∗
p.

- For j ∈ Zp, P0 and P1 invoke F(
1
2

)
-OT

:

– P0 inputs m0 = −rj and m1 = a · 2j − rj .

– P1 inputs the chooes bit bj and receives output zj .

- P0 computes c =
∑p

j=1 rj , P1 computes d =
∑p

j=1 zj .

Protocol Πp
ole

Fig. 13: The Oblivious Linear Evaluation Triple Generation Protocol

B. The functionality of oblivious short list zero check

In this section, we define the functionality of oblivious short-list zero checks. In particular, an OZC scheme

allows P0 input k-dimension selective index set I := {ζ0, . . . , ζk−1}, P0 and P1 input shared list {[xi]}i∈[n]. For

xi = [xi]0 + [xi]1, it checks if {xζi}i∈[k] contains zero and sends the check result to P1.

28



Fozc interacts with the parties in P and the adversary S.

Input:

• Upon receiving (Input, sid, I, X) from P0 ∈ P , record (I, X) and send (Input, sid, P0) to S, where

– X := {x0, · · · , xn−1} ∈ Zn
p ;

– I ∈ Zk
n;

• Upon receiving (Input, sid, Y ) from P1 ∈ P , record Y and send (Input, sid, P1) to S, where Y = {y0, · · · , yn−1} ∈ Zn
p .

Execution:

• If I, X and Y are recorded, Fozc does:

– set b = 1 if ∃i ∈ I, xζi + yζi = 0.

– set b = 0 otherwise.

• Send (Output, sid, b) to P1.

Functionality Fozc[n, k, p]

Fig. 14: The Ideal Functionality Fozc.

Input : Index list I := {ζi}i∈[k] input by P0 which contains k − t non-repeating items, and last t indices equal to n; list X :=

{xi}i∈[n] input by P0; list Y := {yi}i∈[n] input by P1;

Output : P1 receives zi = (xζi + yζi ) · βζi for the random value βζi which is unknown to P1.

Offline:

• P0 and P1 invoke n times {βi, ri, [ti]
p
0, [ti]

p
1} ← Πole, where P0 holds {βi, [ti]

p
0}, P1 holds {ri, [ti]p1}.

Execution:

• For i ∈ [k]:

– P1 set y′j = yj + ri for j ∈ [n];

– P0 and P1 invoke F(1,n)-OT:

∗ P1 as a sender inputs a set Y ′ =
{
y′0, · · · , y′n−1

}
;

∗ P0 as a receiver inputs select index ζi and receives y′ζi ;

– P0 calculates [zi]0 = βi · (xζi + y′ζi )− [ti]
p
0 ;

– P1 sets [zi]1 = −[ti]p1 ;

– P0 and P1 reveal zζi to P1;

Protocol Πk,n,p
ozc (I, X, Y )

Fig. 15: The Oblivious Short-List Zero Check with OLE Protocol.

C. Oblivious short-list zero check with OLE

We describe the implementation of the oblivious short-list zero check with OLE in Figure 15.

29



APPENDIX B

OTHER BENCHMARKS

In this section, we give more benchmars.

A. Offline of Equality Testing and Secure Comparison

Figure 16 shows the running time in the offline phase for the equality testing and secure comparison protocol

compared with ABY [19] and DPF [26] in the LAN setting. The running time of our equality testing protocol

in the offline phase is entirely superior to the DPF [26], outperforming ABY [19] when the batch size exceeds

1000. Similarly, our secure comparison protocol is also based entirely on the DPF [26]. Although it is slower than

ABY [19], the offline performance loss is acceptable for the overall protocol as it achieves a 15× improvement

in running time over ABY during the online phase. In addition, to provide a more detailed comparison of the

efficiency between our protocols and ABY, we present the offline running time of our protocols compared to ABY

under LAN/MAN/WAN settings in the table III. The running time is given in milliseconds. The results indicate

that the higher the bandwidth, the more significant the performance advantage of our protocol.

(a) Equality testing. (b) Secure comparison.

Fig. 16: The running time of offline phase on equality testing protocol Πeq2 and secure comparison protocol Πcmp

compare with ABY [19] and DPF [26] in LAN setting.

B. 32-bit Secure comparison

Due to Cryptflow2 [43] only supporting the 64-bit secure comparison, we benchmark the running time of the

secure comparison protocol Πcmp compared with ABY [19], the GC scheme implemented in EMP-toolkits [48],

and DCF [26] in LAN/MAN/WAN settings, where takes the elements size n = 32 in Figure 17. All benchmarks

assume an input length of n = 32. The results show that our protocol achieves the best running time across all

network settings and batch sizes.

30



TABLE III: Offline running time of our protocols compared to ABY, under LAN/MAN/WAN settings. The running

time is given in ms.

Batch size 100 1000 10000 100000

10Mbps 100ms

Our equality testing 1457 2527 4221 15634

ABY equality testing 213 1477 4574 14434

Our secure comparison 3510 4344 10678 64996

ABY secure comparison 129 778 4056 14613

400Mbps 20ms

Our equality testing 326 626 818 2649

ABY equality testing 46 361 1126 3891

Our secure comparison 809 1065 3175 22873

ABY secure comparison 45 321 1093 3440

20Gbps 0.01ms

Our equality testing 41 51 137 818

ABY equality testing 4 38 237 2233

Our secure comparison 66 312 1991 18773

ABY secure comparison 5 41 258 1764

C. Running time in different input length

Table IV exhibits the online running time of our protocols for different input lengths and batch sizes, provided

in milliseconds. The results show that under a WAN setting of 10Mbps, the online running time of our equality

testing protocol remains nearly constant at less than 0.5s for batch sizes below 10000, and is approximately 1s for

a batch size of 100000. For the secure comparison protocol, the running time is only 5s when the batch size is

100000. The performance is even better in other network environments.

(a) LAN (b) MAN (c) WAN

Fig. 17: The running time of secure comparison protocol Πeq2 compare with ABY [19], GC scheme implemented

in EMP-toolkits [48], DCF [26] and CrypFlow2 [43] in LAN/MAN/WAN setting. All benchmarks take the input

length n = 32. CF2 refers to CrypFlow2. EMP refers to EMP-toolkits.

31



TABLE IV: The online running time of our protocols in different input lengths and batch sizes, which is given in

ms.

Protocol Secure comparison Equality testing

Batch

Size
16 32 64 128 16 32 64 128

WAN 10Mbps 100ms

100 401 401 402 404 401 401 401 402

1000 405 410 419 437 402 403 406 410

10000 449 492 741 1005 414 426 446 476

100000 1006 1935 3017 5097 500 741 897 1189

MAN 400Mbps 20ms

100 81 81 81 82 81 81 81 81

1000 83 84 87 92 82 82 84 87

10000 98 109 162 198 89 96 106 121

100000 215 404 646 1034 129 210 273 434

LAN 20Gbps 0.01ms

100 <1 <1 1 1 <1 <1 <1 <1

1000 2 3 4 11 1 2 3 5

10000 14 19 35 44 6 12 20 34

100000 72 146 275 449 47 61 108 222

D. Running time in different input length

Table IV exhibits the online running time of our protocols for different input lengths and batch sizes, provided

in milliseconds. The results show that under a WAN setting of 10Mbps, the online running time of our equality

testing protocol remains nearly constant at less than 0.5s for batch sizes below 10000, and is approximately 1s for

a batch size of 100000. For the secure comparison protocol, the running time is only 5s when the batch size is

100000. The performance is even better in other network environments.

32


	Introduction
	Related work

	Preliminaries
	Equality Testing
	One-round equality testing
	Two-round equality testing

	Secure Comparison
	Protocol Overview
	Realize Fozc

	Performance Evalutaion
	Experiment Setting

	Conclusion
	References
	Appendix A: Other building block 
	OLE protocol
	The functionality of oblivious short list zero check
	Oblivious short-list zero check with OLE

	Appendix B: Other benchmarks
	Offline of Equality Testing and Secure Comparison
	32-bit Secure comparison 
	Running time in different input length
	Running time in different input length


