
VRaaS: Verifiable Randomness as a Service on Blockchains

Jacob Gorman
Supra Research

jacobgorman613@gmail.com

Lucjan Hanzlik
CISPA Helmholtz Center for Information Security

hanzlik@cispa.de

Aniket Kate
Purdue University, Supra Research

aniket@purdue.edu

Easwar Vivek Mangipudi
Supra Research

e.mangipudi@supraoracles.com

Pratyay Mukherjee
Supra Research

pratyay85@gmail.com

Pratik Sarkar
Supra Research

iampratiksarkar@gmail.com

Sri AravindaKrishnan Thyagarajan
University of Sydney

t.srikrishnan@gmail.com

Abstract—Web3 applications, such as on-chain games, NFT
minting, and leader elections necessitate access to unbiased,
unpredictable, and publicly verifiable randomness. Despite
its broad use cases and huge demand, there is a notable
absence of comprehensive treatments of on-chain verifiable
randomness services. To bridge this, we offer an extensive
formal analysis of on-chain verifiable randomness services.

We present the first formalization of on-chain verifiable
randomness in the blockchain setting by introducing the
notion of Verifiable Randomness as a Service (VRaaS). We
formally define VRaaS using an ideal functionality FVRaaS

in the Universal Composability model. Our definition not
only captures the core features of randomness services, such
as unbiasability, unpredictability, and public verifiability,
but also accounts for many other crucial nuances pertaining
to different entities involved, such as smart contracts.

Within our framework we study a generic design
of Verifiable Random Function (VRF)-based randomness
service – where the randomness requester provides an input
on which the randomness is evaluated as VRF output. We
show that it does satisfy our formal VRaaS definition.
Furthermore, we show that the generic protocol captures
many real-world randomness services like Chainlink VRF
and Supra dVRF.

We investigate whether our definition is minimalistic
in terms of the desired security properties – towards that,
we show that a couple of insecure constructions fall short
of realizing our definition. Using our definition we also
discover practical vulnerabilities in other designs such as
Algorand beacon, Pyth VRF and Band VRF that offer
on-chain verifiable randomness.

1. Introduction

Access to verifiable, secure randomness is increas-
ingly critical in the blockchain domain, providing the

foundation for liveness and safety guarantees in dis-
tributed systems [1]. This necessity extends to various
Web3 applications [2, 3, 4], including online gaming,
NFTs, finance, supply chain management, and many
more. The rapidly expanding Web3 [5, 6] ecosystems
have exploded the need for randomness services. E.g.
Chainlink VRF [7] has served 10.5 million requests in
2022 alone.

The randomness offered by these services is not only
unpredictable but also bias-resistant, ensuring fairness
among participants. Moreover, within the blockchain
domain, achieving public verifiability of randomness is
paramount. This ensures that participants, third parties,
and auditors meticulously examine the legitimacy of the
randomness generation process with conviction without
requiring them to trust anyone, even in the future. Con-
sequently, blockchain solutions often turn to on-chain
verifiable random function services like Chainlink [7],
Supra dVRF [8], or random-beacon services such as
Drand [9]. These services are integrated into smart
contract-enabled blockchains, allowing the contracts to
access verifiable randomness for a fee.

However, we observe that current service architec-
tures follow specific flows [7, 10, 8, 11] and interactions,
which are not yet rigorously studied – this leaves signif-
icant scope for the inadvertent misuse of randomness,
particularly while trying to optimize for low latency or
gas cost (for example, in blockchain ecosystems like
Ethereum). Such misuse may occur at the protocol-
flow level without hurting the security of the underlying
cryptographic primitives. This paper aims to address
this significant gap between the theory and practice of
on-chain verifiable randomness by formalizing the flows
and analyzing the services.

To better understand the gap, let us look at existing
randomness offerings. A typical randomness service

(e.g. [12, 13]) constitutes a committee producing verifi-
able random function (VRF) outputs and uses a smart
contract for bookkeeping. Upon receiving a randomness
request from a requester, the smart contract computes a
query input from the request and forwards the input to
the VRF committee. The VRF committee generates a
publicly verifiable proof of correctness of the generated
randomness. The smart contract verifies the proof and
then returns the output to the requester via a callback[1]

function. The smart contract also records the payment
and ensures the atomicity of the service offering against
the payable fee. While appearing simplistic from a high-
level, the details are much more intricate – as discussed
next:
• Consider the vulnerabilities within systems where the

service does not verify the uniqueness of the query
input, especially when the output influences games like
lotteries. This results in the same output for different
randomness requests with the same query input value.
An attacker, aiming to exploit the situation, might
engage in front-running[2] the game by examining
multiple requests and strategically using a favorable
random value.

• Services such as [11, 15] preemptively provide the
output to the requester before publishing it on-chain.
The requester possesses a secret value that is required
for the output computation. The requester has the
option to either continue the protocol execution by
providing the secret value to the smart contract or abort
the protocol. This lets a malicious requester selectively
abort by observing the output and discontinue the
protocol if the output is unfavorable.

• Some services [16, 17] crucially rely on “properly
implemented requester smart contracts” to handle
edge-cases. For example, the protocol from [17] relies
on a periodic beacon to generate randomness, and the
requester smart contract “should” handle situations
when the beacon is unavailable or the beacon is
discontinued. This incurs much higher responsibilities
onto the smart contract designers – and each contract
must also be audited carefully.

• Additionally, efforts to optimize gas costs, as discussed
in [15], may lead a requester to obtain a private
random seed (that is verifiable) from an output-
private randomness service and then reuse the seed
in a pseudorandom generator to generate multiple
pseudorandom values across applications. However,
given the seed, all these values are predictable and
need to be verified together. Such nuances were not
formally articulated in [15].

Given the wide plethora of attack vectors and venues
and the intricacies of various design choices within

[1]. A callback function [14] allows a caller to delegate the execution
back to the caller. The requester receives the output randomness via
the callback function once the randomness request is fulfilled.

[2]. An adversary creates a special transaction based on pending
transactions. It manipulates the transactions’ ordering to execute their
transaction first.

randomness services, we delve into the formal analysis
of such randomness services.

1.1. Our Contributions

We present our contributions in detail as follows:
A formal framework for VRaaS. We introduce a for-
mal framework for “Verifiable Randomness as a Service”
(VRaaS) that rigorously captures the required properties
from verifiable randomness on a blockchain. In Section 4,
we define VRaaS via an ideal functionality FVRaaS that
formally captures the following properties – the output
is (indistinguishable from) random, unique (even for the
same requester inputs), unforgeable (i.e., unauthorized
users cannot generate the output), and the randomness
is generated and verified on-chain (i.e. the generated
randomness is verified by a blockchain network). Our
functionality is in the Universal Composability (UC)
model [18], allowing seamless composition in Web3
applications.
VRaaS protocols based on VRF. We analyze the
folklore VRF based generic protocol – the randomness
requester provides an input to the service on which
the randomness is evaluated as VRF output by a VRF
committee using a keyed VRF computation. We show
that it is indeed a VRaaS and it implements the FVRaaS
functionality. We present the VRF-based protocol in
Section 5. This protocol encompasses the most widely
used randomness-service protocols, like Chainlink [7]
and Supra dVRF [8], showcasing the wide applicability
of our proposed ideal functionality FVRaaS.
Necessity of two transactions. We show that it is
necessary to have two on-chain transactions to satisfy
our definition. To see this, note that, under the hood,
the service works as follows: a randomness requester
posts a request on the blockchain via an on-chain
transaction.[3] In our framework, this request is read; a
verifiable randomness output is generated in response,
and finally, the output is posted on the blockchain via
another on-chain transaction. The first transaction is
necessary for authenticating and recording a request
on-chain, and removing this transaction would allow a
malicious requester to execute a front-running attack
by presenting the already queried request as fresh. The
second transaction is necessary to ensure that the output
is available on-chain. Removing this transaction (and
replacing it with a direct message to the requester)
enables a malicious requester to deny the output if it is
unfavorable and keep sampling until a favorable one is
obtained. We capture the necessity of two transactions
in Section 7 by analyzing weaker functionalities (that
post a single transaction instead of two) and show that
they do not suffice for VRaaS.

[3]. These are transactions/activities that are verified by blockchain
miners or validators, and once confirmed, they are permanently
recorded on the blockchain.

2

Vulnerabilities in existing services. In our pursuit
of analyzing existing randomness services, we also
encounter shortcomings in certain protocols that lead to
natural vulnerabilities. These include crucial dependence
(Algorand [17] and Band [10]) on the requester smart
contract designs to guarantee output uniqueness for each
request, reliance (PythVRF [11]) on honest requester
behaviors to complete the protocol execution, and incor-
rect usage (DIA xRandom [16]) of the VRaaS output
in Web3 applications. We discuss these in Section 6.
A new ledger functionality. Additionally, as part
of our building blocks, we also propose a “simplified”
ideal functionality FLED in Section 3 to model ledgers
that support smart contracts. FLED extends the Gearbox
ledger functionality [19] to enable running smart con-
tracts since the original Gearbox functionality did not
support smart contracts. In our VRaaS protocols, we
formally capture blockchains and smart contracts using
FLED, demonstrating its application in blockchain-based
protocols. This functionality may be useful in future
analysis of other blockchain-based protocols.
Responsible Disclosure. We communicated the vul-
nerabilities in Algorand beacon, DIA xRandom, and
Band VRF to their respective teams in January 2024
and we had offered them at least four months to work on
solutions/mitigations before making the vulnerabilities
public. The DIA and Algorand team had responded to
resolve the issues. We will keep the Band team informed
about our progress with this paper.

1.2. Related Works

Next, we discuss the relevant literature in the ran-
domness services.

Harmony [20] offers an on-chain verifiable random-
ness service protocol using distributed BLS-based VRF.
It uses a verifiable delay function to prevent a malicious
party in the server committee from determining whether
to abort or continue after determining the output. Boba
Network [21] constructs a publicly verifiable distributed
randomness service from a distributed beacon imple-
mented from a distributed VRF. Recently, Kate et al. [15]
introduced output-private VRF called FlexiRand, which
produces secret yet verifiable pseudorandom values
based on a blinded variant of the BLS signature [22].
These protocols provide verifiable output and can be
used to instantiate our VRF-based protocol.

Aptos Roll [23] is a novel on-chain randomness
method introduced recently, providing instantaneous
randomness within the Aptos blockchain. In this ap-
proach, Aptos validators produce a beacon value for
each transaction block based on block content and a
secret-shared key. When a client requests randomness
in a transaction, validators/executors use the beacon
value from the same block to generate randomness
instantly by hashing it with client or smart contract data.
This method is specific to Aptos’ blockchain design,

relying on block ordering before transaction execution.
It does not apply to other prominent blockchains such as
Ethereum, where block ordering and execution are not
separated. In contrast, we focus on randomness services
that utilize blockchain as a black box without depending
on specific design features and only rely on the smart
contract capabilities of the blockchain.

Another line of work considers verifiable randomness
from verifiable delayed function (VDF). Chia [24] imple-
mented a beacon using repeated-squaring VDFs in class
groups. VeeDo [25] implemented a VDF-based beacon
using SNARK-based VDFs. Cornucopia [26] proposed
accumulator-based VDFs. CRAFT [27] proposed a UC
modeling of Time-Lock Puzzles and VDFs. [28, 29]
construct beacons from VDFs, proving them to be UC-
secure by CRAFT. Given a VDF, they construct publicly
verifiable beacons via time-lock puzzles. However, they
incur significant computation overhead and evaluation
delays due to the delay in the VDF computation.

2. Preliminaries

We introduce the formal notations, recall the security
models, and describe the necessary functionalities and
primitives necessary for building our protocols here.
Notation. We use N to denote the set of positive integers,
Z to denote the set of all integers, and [n] to denote the
set {1, 2, . . . , n} (for n ∈ N). We denote the security
parameter by λ. We assume that every algorithm takes
λ as an implicit input. We use y := D(x) to denote the
evaluation of a specifically deterministic algorithm D
on input x to produce output y. We use x := val to
denote the assignment of a value val to the variable x.
We use x = y to check equality between x and y. We
write R(x)→ y or y ← R(x) to denote the evaluation
of a probabilistic algorithm R on input x to produce
output y. We denote a randomized algorithm that runs
in polynomial time as a probabilistic polynomial time
(PPT) algorithm. We say a problem is computationally
hard when given a problem instance, generated using the
security parameter λ, for any probabilistic algorithm A
that runs in O(poly(λ)) time, the probability that A can
solve the given problem instance is upper bounded by
negl(λ), where negl() is a negligible function in security
parameter λ. For an algorithm A, we denote A(x; y) as
running the algorithm on input x and public parameter
y where y might be omitted for notational simplicity.
We denote an empty string as ε. A tuple of the form
(a,) denotes the case where the first element is a and
the second element could be any character/string/ε.
Rand(u,w). The Rand function is defined over output
distribution {0, 1}w and input u ∈ {0, 1}λ as follows,
where T is initially an empty list:

Rand(u,w) := If ∃(u, r) ∈ T, return r.

:= Else, sample r ← {0, 1}w,
T := T ∪ (u, r), and return r.

3

Universal-Composability (UC) Model. We follow the
Universal Composability Framework [18], in that a real-
world multi-party protocol realizes an ideal functionality
in the presence of an adversary. We assume the existence
of a default authenticated channel in the real world
between any two parties. This significantly simplifies
our definitions and can be removed using an ideal
authenticated channel functionality [30].

Random Oracle. A random oracle (RO) [31, 32]
H is parameterized by an arbitrary domain and a
specified range R. An RO query on message m is
denoted by H(m). The plain random oracle assump-
tion guarantees that H(m) is indistinguishable from
an element uniformly sampled from R if m was not
queried before. An observable RO additionally grants
the simulator/reduction to observe (but not influence) the
queries made, to H, by the adversary. A programmable
RO [32] allows the simulator/reduction to program
the RO to output a value y on H(m) := y on a
previously unqueried input message. The RO is used
in the simulatable VRF below and we also discuss in
Appendix. A how to extend it to the global random
oracle model [33].

Simulatable Verifiable Random Function. We recall
the notion of simulatable VRF from the work of [34].
It consists of a tuple of four algorithms:

• Setup(1λ) → (crs, td): It is an optional algorithm
that on input the security parameter λ outputs a setup
string crs and a trapdoor td. The crs is internally used
in the other algorithms.

• Gen(1λ; crs) → (vk, sk) : On input λ it outputs a
public verification key vk and secret key sk.

• Eval(sk, x; crs) → (y, π) : On input sk and input
x ∈ {0, 1}λ it outputs a random string y ∈ D and a
proof π.

• Verify(vk, x, (y, π); crs) → b ∈ {0, 1} : It outputs a
bit denoting whether proof verified or not.

A simulatable VRF ensures 1) uniqueness - for every x
there exists a single (y, π), and 2) simulatability - given
an output y ← Rand(x, crs) on a previously unqueried
input x the corresponding proof π can be simulated. The
proof is obtained as π ← SimProve(sk, td, y, x; crs),
where td is the setup trapdoor.

We need simulation-based security instead of game-
based pseudorandomness since we use VRF to achieve
simulation-secure randomness service where the random
output will be randomly sampled and the proof will be
simulated. We avoid mentioning crs explicitly in the
algorithms for notational simplicity. We also demon-
strate that the most widely known VRF protocols -
BLS/GLOW-VRF [35], RSA-based [36], and the Elliptic-
Curve based [36] VRFs are simulatable by modeling the
hash function used in the protocols as a programmable
random oracle. We refer to Appendix A for details.

3. Smart Contract Compatible Ledger Func-
tionality

Gearbox [19] provides a simple easy-to-use timed
ledger functionality for submitting messages on a global
ledger; however, this functionality does not support
smart contracts. On the other hand, the functionality
in [37] considers smart contracts; however, it is too
generalized as it captures both public and private ledgers.
As we aim for a simpler variant that only captures
the commonly employed public ledgers, we consider a
simplification of the ideal functionality of [37] and merge
that with the ledger functionality of [19]. This allows
us to strengthen the simple timed ledger functionality
of [19], allowing it to deploy and call smart contracts.
We refer to Appendix D for a comparison between [19],
[37] and our functionality.

We present our ledger functionality FLED in Fig. 1.
FLED is initialized for a session sid with smart contract
functions SC and an empty global ledger LOGsid. The
functionality allows parties to submit input transactions.
Each input transaction can be of the following form:
• It can be a request to deploy a smart contract function
f(). In this case, FLED parses the request as the
function description and list of its initialized variables,
denoted as stf . Then, FLED runs a Checker algorithm
on (f, stf) to check the formatting. If the check passes
and the smart contract function was not previously
defined then f() gets deployed.

• It can contain a valid call to a smart contract function
f() on input s. In this case, f() is run on the input
transaction, and the state stf of the smart contract
gets updated.

We allow the adversary to order the transactions and sub-
mit them to FLED to get appended on the public ledger.
When a party Pi wants to read the ledger by running
the Read command, the adversary returns a prefixed
view of the ledger, denoted as LOGsid

i to the party. The
functionality ensures that two properties - persistence
and bounded timestamps, are always guaranteed. This
is the same as Gearbox [19].
Security Properties. The adversary ALED can corrupt
an arbitrary number of participating parties Pi and run
on their behalf. Additionally, ALED has the power to
order the submitted transactions for appending on the
ledger. These transactions must satisfy the following
two properties:
1) Persistence. Suppose parties Pi and Pj are honest,

and LOGsid
i and LOGsid

j are outputs of Read(sid)
obtained by Pi and Pj respectively at different times.
Then either LOGsid

i is a prefix of LOGsid
j or vice

versa. Also, LOGsid
i and LOGsid

j should be prefixes
of the global ledger LOGsid maintained by FLED.
This is ensured since Append is an atomic operation
inside the ledger functionality and only a single
transaction gets appended to the ledger one at a

4

Parties. Registered parties Pi. Adversary ALED corrupts the
registered parties. FLED and parties have access to the current
time via Fcurr.
Parameters. FLED is parametrized by a hash function H, a
smart contract code Checker algorithm, and a delay ∆ that is
unknown to all the parties but known to ALED.

Interface for party Pi:

Session-Init(sid). If LOGsid exists then ignore this request.
Else, initialize ledger LOGsid := ∅ and HMap[sid, 0] := 0. Set
internal transaction queue tquesid := ∅. Initialize the internal
memory.
Submit(sid, tx). To submit a transaction tx: Invoke ALED on
(tx, Pi) and add it to tquesid = tquesid ∪ (tx, Pi, t), where
t← Fcurr.
Read(sid). Send (“Read”, Pi) to ALED to obtain LOGsid

i .
Return LOGsid

i to Pi.

Interface for the Adversary ALED:

Append(sid, tno, t′, tx). When ALED submits tx at time t′:
1) Verify that tno = tnolast + 1, where tnolast is the index of

the latest entry on LOGsid.
2) Verify that (tx, Pi, t) ∈ tquesid for some party Pi.

If any of the above checks fail then return INVALID to ALED.
Else, tx is valid, and FLED performs:
a) If tx is of the form (“Deploy” SCf): Parse

(f(), stf) := SCf where f() is the func-
tion description and stf is its initialized state. If
Checker(f(), stf) ̸= 1 or f() exists in internal mem-
ory then set txout := fail, otherwise set txout :=
Success and store (f(), stf , Pi) in internal memory.

b) If tx is of the form (“Call” f, s): If f is stored in
internal memory, then execute f() on input s to obtain
output txout and updated state stf :

(txout, stf) := f(tno, t′, s, stf ,HMap[sid, ·])

If function f() is not deployed then set txout := fail.
3) Set h := H(tno, t′, tx, txout, HMap[sid, tno− 1]). Assign

HMap[sid, tno] := h.
4) Append (tno; t′; tx; txout;h) to LOGsid.
5) Remove (tx, Pi, t) from tquesid.

At any time FLED enforces the following:

Persistence. If Pi and Pj are honest, then either LOGsid
i is a

prefix of LOGsid
j or LOGsid

j is a prefix of LOGsid
i . And both

LOGsid
i and LOGsid

j are prefixes of LOGsid.
Liveness and Bounded timestamps. For all transactions
(tx, Pi, t) ∈ tquesid, there is t′ ≤ t + ∆ such that by time
t′ + ∆, the tuple (tno; t′; tx; txout;h) ∈ LOGsid

j appears for
all honest Pj .

Figure 1: Ideal Functionality FLED for Ledger

time. The property also prevents the adversary from
appending garbage values to the party’s view of the
ledger which is not present in the global ledger.

2) Bounded timestamps When a transaction is sub-
mitted to FLED at time t (obtained via the global
time functionality Fcurr), the functionality guarantees
that it eventually gets appended to the ledger by
the adversary by time t′ ≤ t + ∆. Additionally, it
appears on every honest party Pj’s ledger LOGsid

j

by time t′ +∆ on issuing a Read command by Pj .
This property ensures that an adversary can delay a
transaction by at most ∆ time where ∆ is a bounded
delay only known to the adversary. It also guarantees
the liveness of the ledger as all submitted transactions
will eventually get appended.

The above two security properties are inherited from the
original ledger functionality of Gearbox [19]. Next, we
discuss some of the design choices of our functionality
and also how it captures existing smart contract services
like on-chain payments. We also discuss how we model
time for completeness.
Modeling Block Hash. FLED is parametrized by a
hash function H. This is used to compute the block
hash for every transaction/block being appended to the
ledger. It captures block hash in real-world blockchains
and we also use it in our VRaaS protocols later on.
The details of the hash function can be modified based
on the protocol implementing the ledger functionality.
The functionality also stores a map, denoted as HMap,
containing the block hash of each block and adds it to
the block being added to the ledger.
Modeling Payments. Our functionality captures on-
chain payments [38]. We assume that there is a smart-
contract function Pay() and its state stPay maintains
the account balances of each registered user. Whenever
a (sender) user wants to pay a (receiver) user, the sender
calls the Pay() function with the amount and the receiver
account details. The Pay() function updates the account
balance of the receiver and sender in its state and reflects
the transaction. This approach is similar to the existing
approaches [39, 38] for modeling payments.
Modeling Time and User Authentication. FLED and
the participating parties crucially rely on a global clock
Fcurr, which we realize with the TARDIS [40] model
of time. In TARDIS, the ideal functionality modeling
time is called a ticker. The ticker keeps track of time
via time steps, allowing parties to perform any actions
that they choose to perform between any two-time steps.
Parties register to the ticker functionality and only the
environment is allowed to progress time once it has
received confirmation to proceed from all registered
parties. We also need user authentication which is
modeled using the ideal signature functionality of [30],
similar to the Gearbox paper.

4. Verifiable Randomness Service

A VRaaS framework enables a requester to generate
random output by invoking VRaaS servers on requester
input x (∈ {0, 1}λ∪ε, where ε is the empty string). The
output is unique for every request (even on the same
inputs). The output is accompanied by a cryptographic
proof. The proof attests to the integrity of the output
corresponding to the registered server verification key
and the requester’s input.

5

Once a requester initiates a randomness request, the
request gets authenticated on the blockchain (via on-
chain transactions) and the VRaaS server should only
compute the VRaaS output and not be burdened with
authenticating requests. This is especially important for
the multi-blockchain setting, where requesters request
randomness via multiple blockchains. This is performed
via a request transaction through which a requester can
request randomness. Once a request is made, the VRaaS
reads it and fulfills it by generating the output and the
proof. This output and proof are appended to the ledger
so that they can be used for on-chain applications. This
is modeled via a fulfillment transaction. We formalize
VRaaS via our ideal functionality FVRaaS. The FVRaaS
functionality needs to read the global ledger and submit
transactions to it. We model this by providing FVRaaS
access to the ledger functionality FLED. This approach
is similar to the on-chain payment services in [39, 38]
where the ideal functionality for payment has access to
the ledger functionality.
FSERV functionality. We capture the VRaaS servers via
a separate ideal functionality FSERV to allow modularity
in the formalization of VRaaS. Abstracting out the
servers as a separate functionality allows us to implement
it using a centralized server protocol [7] or a distributed
server protocol [8] without changing the protocol im-
plementing FVRaaS. Our FSERV functionality is adapted
from the distributed server functionality of [15], except
we had to customize it such that it works with the
FVRaaS functionality. It can also be used to capture the
centralized server setting capturing randomness services
offered by a single server, e.g. Chainlink. Our FSERV

is provided in Fig. 4. It is parametrized by a threshold
t and FSERV is assumed to be corrupt if more than t
participating servers are corrupt.

We formally define the ideal functionality FVRaaS for
on-chain VRaaS in a smart contract-enabled blockchain
environment in Fig. 2, 3. The blockchain is modeled
as a ledger functionality FLED (described in Section
3). We divide our functionality in two parts- setup
phase and execution phase. The setup phase occurs once
where the server verification key is registered, the ledger
is initialized and the smart contracts for VRaaS are
deployed. The execution phase models the randomness
request process, fulfilling the request on-chain and finally
verification of that fulfilled request.
Parties. FVRaaS is run between the VRaaS server
modeled as FSERV, multiple randomness requesters
(Q1, . . . , Qn) and the ideal world adversary Sim. Other
parties can assist in the fulfillment process of the
protocol. We use the Sim algorithm to model the
protocol steps used to implement FVRaaS (discussed
later). FVRaaS and Sim participates in FLED as parties
so that they can access the ledger. FVRaaS initializes the
VRaaS public key as VK := ∅, an internal request
counter (for keeping track of randomness requests)
reqCtr := 0, and internal memory as memF := ∅.

Parties. Server functionality FSERV, registered requesters
(Q1, . . . Qn) and other parties. The adversary, denoted by Sim,
can corrupt FSERV, the requesters, and the other parties. We say
FSERV is corrupt when the adversary corrupts more than the
(respective) threshold number of parties participating in FSERV.
The above parties and FVRaaS participate in FLED.
Notation. We denote each tuple (tno; t′; tx; txout;h) by
(tx; txout) for notational simplicity. We denote a variable as
when its value is irrelevant.

Initialize VRaaS verification key VK = ∅, unique request
counter reqCtr := 0, and internal memory of FVRaaS as
memF := ∅.

Key-Registration.
1. Upon receiving (“Key-Register”) from Sim forward

message to FSERV. Upon receiving (vk,Verify(·)) from
FSERV: If VK ̸= ∅, then ignore request.

2. Otherwise, set VK = vk and store Verify(·) in memF.

Ledger-Initialization.
3. Upon receiving (“Init-Ledger”, sid) from Sim:

Initialize the ledger for session sid by running
FLED.Session-Init(sid). FVRaaS will use ledger LOGsid,
through it local view LOGsid.

Smart Contract Deployment.
4. Upon receiving (“Deploy”, SCReq-Rand, SCReq-Fulf, sid)

from Sim: Deploy the smart contracts Req-Rand and
Req-Fulf on FLED by running:

FLED.Submit(sid, “Deploy” SCReq-Rand),

FLED.Submit(sid, “Deploy” SCReq-Fulf).

Smart Contract Functions deployed on FLED:
• Req-Rand(x) :

Compute unique identifier qID from x and state of the smart
contract. Append to LOGsid:

(REQ-RAND, x; qID).

• Req-Fulf(qINFO, y, π) :
Generate qID and qINP from qINFO, and check
Verify(VK, qINP, y, π) = 1, where VK is hardcoded. If
verification succeeds then append to LOGsid:

(REQ-FULF, qINFO, y, π; qID, qINP,VK).

Figure 2: Ideal Functionality FVRaaS (Setup Phase).

VRaaS-Key-Registration. To register a server P ,
FVRaaS receives a command (“Key-Register”) from
Sim and forwards it to FSERV. Then FSERV generates
a verification key vk and the Verify(·) algorithm and
returns it to FVRaaS. The Verify(·) algorithm will be
used to verify the server output on-chain by smart-
contracts without interaction with FSERV. FVRaaS sets
VK = vk as the registered verification key. Allowing
FSERV to generate vk allows us to limit the problem
of key-registration inside FSERV. Looking ahead, this
would also help us in simulation when FVRaaS samples
a random output y for a request, and then Sim invokes
the adversary SimP to generate the simulated proof π
by using the knowledge of sk.

6

The following three functions can be run in parallel by multiple
participating parties. For notational simplicity, we assume that
LOGsid is used by the functions.

Request-Randomness.
5. If Qi is honest: Upon receiving (“Req-Rand”, x) from

Qi, where x ∈ {0, 1}∗ ∪ ε, run the request transaction on
x as:

FLED.Submit(sid, (“Call Req-Rand”, x)).

Read qID once the request gets confirmed.
If Qi is corrupt: When Sim sends (qID, Q) ignore it if
⟨REQ-RAND, qID, , ⟩ ∈ memF. Otherwise, proceed.

6. Store request in internal memory memF := memF ∪
⟨REQ-RAND, qID, reqCtr, Qi⟩.

7. Update counter reqCtr := reqCtr + 1.

Fulfillment.
Upon receiving (“Eval-Req”, qID, w) from any party (where
w denotes the number of random bits to be generated):
8. If the request identified by qID was marked fulfilled,

i.e. ⟨REQ-FULF, qID, , , , , Q⟩ ∈ memF, then ignore it.
9. Invoke Sim(“Req-FulInp”, qID, w) → (qINP, qINFO)

to obtain query input qINP and query information qINFO.
10. Fetch entry ⟨REQ-RAND, qID, rCtr, Qi⟩ ← memF from

memory corresponding to qID.
11. If FSERV is honest: Set y ← Rand(VK, rCtr, w) and obtain

proof as π := FSERV(“Sim-Proof”,VK, qINP, w, y).
If FSERV is corrupt: Obtain output and proof as (y, π) :=
FSERV(“Eval”,VK, qINP, w). If FSERV return ⊥ then skip
this fulfillment process.

12. Skip this fulfillment process if Verify(VK, qINP, y, π) ̸= 1.
13. If FSERV is honest or if FSERV is corrupt and Sim

instructs FVRaaS (upon being queried by FVRaaS as
Sim(“Run Fulfillment?”) → Yes/No) to run the
fulfillment transaction then perform:

FLED.Submit(sid, (“Call Req-Fulf”, qINFO, y, π)).

Once the transaction output is appended on FLED mark
qID fulfilled by storing it in memory as memF :=
memF ∪ ⟨REQ-FULF, qID, qINP, rCtr, y, π,Q⟩.

Local Verification.
Upon receiving (“Verify-Local”, qINP, y, π,Q), from any
party M :

14. If ⟨REQ-FULF, , qINP, , y, π,Q⟩ ∈ memF then send
VERIFIED to party M . Otherwise, send ⊥ to M .

Figure 3: Ideal Functionality FVRaaS (Execution Phase).

Ledger-Initialization. To initialize the ledger Sim
triggers FVRaaS and then FVRaaS initiates a new ledger
LOGsid corresponding to session sid by calling FLED. If
a ledger already exists for session sid then FLED ignores
this request.
Smart Contract Deployment. The functionality ini-
tializes two smart contracts - Req-Rand for requesting
randomness and Req-Fulf for verifying and storing
the fulfilled requests. The smart contract functions
are defined by the concrete protocol that implements
FVRaaS and the Verify(·) function. So our abstraction
supports such customizations by allowing Sim to send

Parties. Registered parties P := (P1, . . . Pm). The adversary,
denoted by SimP, can corrupt the parties.
Parameter. FSERV is parametrized by corruption threshold t
and a Verify(·) function. Initialize T[·, ·] and Tpar[·, ·].

Key-Registration.
1. Upon receiving (“Key-Register”) from FVRaaS forward

it to SimP.
2. On (P, vk, {vk1, . . . , vkm}) from SimP: Parse P :=
{P1, . . . , Pm} and when vk is unique:
a) Define PCORR ⊂ P is the set of corrupt servers and

PHON := P \ PCORR is the set of honest servers.
b) For each Pi ∈ P set Keys[Pi] := vki.
c) If |PCORR| ≥ t + 1, then mark server set P as

“Corrupt”.
d) Send (P, vk, vki) to each Pi ∈ PHON and register

(P, vk).
3. Send (vk,Verify(·)) to FVRaaS.

Evaluation.
When FVRaaS sends (“Sim-Proof”,VK, qINP, w, y) or
(“Eval”, vk, qINP, w):
4. Send (“Eval”, qINP) to all servers in P.
5. On (“Partial-Eval”, qINP, vkj) from server Pj : For-

ward request to SimP. If SimP sends (vkj , qINP, j, yj , πj)
then forward it to Pj and set Tpar[qINP, vk, Pj] :=
(yj , πj). If the same query is repeated then fetch (yj , πj)
from Tpar and return it to Pj .

6. On (“Aggregate”, qINP, vk, {(yi, πi)}i∈[ℓ]) from a reg-
istered party P: If ℓ < t + 1, then return ⊥. Otherwise
perform the following based on the corruption of P :
• If server set P is honest then FSERV was invoked on
(“Sim-Proof”,VK, qINP, w, y). Perform:
a) Send (qINP, w, y, vk, {(yi, πi)}i∈[ℓ]) to SimP.
b) If SimP sends ⊥ then send it to FVRaaS and exit.

Otherwise, receive π from SimP and register (y, π)
as T[qINP, vk] := (y, π).

c) Send π to FVRaaS.
• If server set P is corrupt then FSERV was invoked on
(“Eval”, vk, qINP, w). Perform:
a) Send (qINP, w, vk, {(yi, πi)}i∈[ℓ], y) to SimP.
b) If SimP sends ⊥ then send it to P and exit. Otherwise,

receive (y, π) from SimP and register (y, π) as
T[qINP, vk] := (y, π).

c) Send (y, π) to FVRaaS.

Figure 4: Helper Ideal Functionality FSERV for the Server
in FVRaaS.

the concrete smart contract function details to FVRaaS.
Details of the smart contract functions are:

• Req-Rand: Given a request input x it generates a
unique request identifier qID and appends them to the
ledger. Under the hood, the protocol implementing
FVRaaS should ensure that Req-Rand generates a
unique qID for every request (even for different
requests on the same requester input x) since qID
uniquely identifies each request on the ledger.
Looking ahead, in the fulfillment process a qINFO
will be generated corresponding to each (x,qID) for
a request. It basically contains the qID and some

7

auxiliary information. This qINFO will be used to
generate a qINP on which the FSERV will generate
the output y and proof π. qINFO contains additional
information like the requester’s callback function,
number of random bits requested, block hash etc,
which are not included in qID and qINP.

• Req-Fulf: Given qINFO, output y and proof π it
generates qID and qINP, and verifies the generation
of y on qINP by verifying the proof. Once verification
succeeds the output is appended to the ledger.

Request-Randomness. Upon receiving a randomness
request on input x from any requester Qi, FVRaaS runs
the VRaaS smart contract function Req-Rand on the
requester input x to obtain a smart contract generated
query ID qIDi. The request x and the qID gets appended
to the ledger. FVRaaS assigns the current value of reqCtr
to the request and stores ⟨REQ-RAND, qID, x, reqCtr,
Qi⟩ in its memory. The randomness request counter is
incremented, i.e. reqCtr := reqCtr+1 for each request.
The reqCtr is internal to FVRaaS and ensures that each
tuple is unique due to the uniqueness of reqCtr. This
ensures that each request is stored in a unique format
even though the requester input (x,Qi) can be the same.
Note that FVRaaS allows requesting randomness on the
same input multiple times as it is a VRaaS. Later, the
randomness will be generated corresponding to each
reqCtr value, and this assigning a unique reqCtr to
each request ensures that the output randomness will be
independently generated for each request.
Fulfillment. Upon receiving (“Eval-Req”,qID, w)
as a randomness request from any party M : FVRaaS
verifies that the request with ID qID has not been
fulfilled (looking ahead FVRaaS registers each successful
fulfillment request as fulfilled in its memory). This
avoids double-fulfilling the same request, identified by
qID. Once the checks pass, FVRaaS invokes Sim on
(qID, w) to obtain query information qINFO and query
input qINP. The output and the proof will be generated
on qINP and the fulfillment transaction will verify it.
qINP depends on the protocol and state of the LOGsid

and so Sim is responsible for generating it. For example,
qINP could include the block hash (i.e. hash of the block
containing the request transaction). qINFO contains
additional information that allows one to regenerate
qID and qINP from it. qINFO acts as a placeholder to
capture the details of the VRaaS protocol (implementing
FVRaaS) which do not appear in the input to the VRaaS
servers. Once qINFO and qINP is generated by Sim,
FVRaaS generates the output and proof (y, π) as follows
based on FSERV’s corruption.
• If VRaaS server P is honest, then FVRaaS samples a

random w-bits string by running Rand(VK, rCtr, w) to
generate the output y. The uniqueness of rCtr ensures
that each request (VK, rCtr) uniquely corresponds to
the session with verification VK. Once y is generated,
FVRaaS invokes FSERV with input (VK, qINP, w,
y, Q) to obtain the simulated proof π that attests

to the computation of y on qINP. In FSERV, the
simulator algorithm SimP is run which returns the
simulated proof to FSERV, and that is forwarded to
FVRaaS. FVRaaS sets the output as (y, π) and runs the
smart contract function Req-Fulf on (qINFO, y, π)
to register the output as fulfilled on LOGsid. Once
the fulfillment transaction gets appended to the ledger
FVRaaS registers the request as fulfilled by storing
the entry ⟨REQ-FULF,qID,qINP, rCtr, y, π,Q⟩[4] in
its memory.

• Meanwhile, if VRaaS server P is corrupt then FVRaaS
invokes FSERV with input (VK,qINP, w) to obtain
the output (y, π). In this case, Sim is responsible for
running the fulfillment transaction on behalf of the
corrupt FSERV.

Local-Verification. This step is run by any party M
that wants to verify an output (y, π) corresponding to
a query input qINP. The verification process succeeds
if the request is marked as fulfilled in the memory of
FVRaaS.

Given the above functionality we discuss how
FVRaaS captures the following properties that are re-
quired for a VRaaS:

1) Tackling Impersonation: Each randomness request
initiated by a requester Qi is stored in the memory
memF along with the requester ID Qi in Step 6.
It prevents a different requester Q′ ̸= Qi from
requesting randomness on behalf of Qi. Similarly,
upon fulfillment of a request the functionality stores
the query input qINP, verifiable out (y, π), and the
requester ID Qi in memF in Step 13. It binds the
output to Qi. If Q′ wants to use this output then
verification fails in Step.14. as the output is not
registered with Q′.

2) Input Uniqueness: For each randomness request
with requester input x, the smart contract adds a
tuple containing qID. Then FVRaaS adds a unique
nonce rCtr (maintained by the internal counter
reqCtr) for each request in Step 6. The random-
ness request is stored in the memory as a tuple
⟨REQ-RAND,qID, reqCtr, Qi⟩. This tuple is unique
due to the uniqueness of rCtr. Looking ahead, if a
protocol implements FVRaaS then it should ensure
that qIDi is unique for each request.

3) Unbiasable Random Output: When FSERV is hon-
est and any party requests fulfillment of a query qID,
FVRaaS generates a random w-bit output y on unique
input (VK, rCtr, w) by invoking Rand function in
Step 11. It is ensured the output is random and unique
due to the uniqueness of rCtr (as discussed above in
“Input Uniqueness” paragraph). Looking ahead, if a
protocol implements FVRaaS then it should ensure
that qINP is unique for each request.

[4]. Storing qID and rCtr allows FVRaaS to check that the qID was
fulfilled by running the consistency check in Step 8. Storing qINP is
essential for the output verification in the next step.

8

1.Input x

2a.Generate(x,reqID,qINFO)

Requester/Client
Smart Contract

Smart
Contract

VRF
Service

7.Forward VRF
output

 8a.Verify and post
VRF output

3.Post(x,reqID,qINFO)

 8b.Invoke the requester callback
function with the output 5. Evaluate

VRF(x, reqId)

0.reqId:= 0

2b.Set reqId=reqId+1

Ledger

Relay
Service

4a.Read(x, reqId)
4b.Forward
(x, reqId)

6.Aggregated
VRF Output

Figure 5: Message flow in VRF based protocol πR-VRF. Input x includes the callback function parameters.

4) Unforgeability: Assuming FSERV is honest, an
adversarial requester cannot forge a VRaaS output
(y, π) on qINP without querying FVRaaS since the
entry ⟨REQ-FULF, qID, qINP, rCtr, y, π, Q⟩ will
not be registered in memF unless the entry was
added (end of Step 13.) to memF by FVRaaS after
successful execution of the Fulfillment step. This
would lead to the verification process outputting ⊥.

5) On-Chain Verifiability: The request transaction and
the fulfillment transaction can be verified on-chain
as the output is appended on-chain. It can be further
utilized for other on-chain applications.
We note that many existing randomness services [41]

include the block hash h (of the block containing the
request) inside qINP. This helps in ensuring unbiasabil-
ity of the output even when FSERV is corrupt. Since
block hash (of the current block) is not available during
Req-Rand, it cannot be included in qID. Instead, Sim
includes the block hash inside qINP and the block
number (containing the Req-Rand transaction) inside
qINFO. Later, in the fulfillment phase, Req-Fulf
verifies the block hash of Req-Rand in qINP by
matching it with HMap in FLED corresponding to
the block number in qINFO. We further discuss in
Appendix. C on how to validate that qINFO corresponds
to the correct request x and its qID.

5. VRF-based Protocol

In this section, we present a simple VRF-based
randomness service πR-VRF and prove that it implements
FVRaaS functionality. Here, multiple requesters request
randomness and there is a single VRaaS server that
responds to those requests. We assume that the VRaaS
server implements FSERV by running a VRF protocol.
We assume that there is FRLY (Fig.7) that acts as a
relay between the randomness requester and the VRaaS
server. FRLY reads messages from the blockchain and
invokes the VRaaS server with it. Later, we show how
to distribute the server by implementing FSERV using a
server committee and FRLY using a relay committee.
Overview of πR-VRF. We present the generic VRF-
based randomness service protocol πR-VRF in Fig. 6 and
the message flow can be visualized in Fig. 5. We assume

there is a single VRaaS server that registers its public
key vk on FLED. At a high level, a requester requests
randomness on its input x := param, where param are
the parameters for its callback function (the requester
receives the output randomness via the callback function
once the randomness request is fulfilled).

The request gets uploaded on LOGsid as qID :=
(x, reqId) by running the Req-Rand smart contract,
where reqId is a unique nonce for each request. FRLY

reads the randomness requests from LOGsid. FRLY

verifies that the request was not processed by verify-
ing that a corresponding output tuple is not present
on LOGsid. Next, to fulfill the request of the form
qID = (x, reqId) it invokes the VRaaS server on input
qINP := qID to receive the verifiable output (y, π). The
FRLY then posts this output on LOGsid by running the
Req-Fulf smart contract on the output. For on-chain
verification, one needs to check that the output tuple
(REQ-FULF, qINFO, y, π;qID,qINP, vk) is present on
LOGsid (where qINFO = qINP = qID). The fact that
the output tuple exists on-chain proves that the VRF
output (y, π) verifies w.r.t. (qINP, vk). To show that
this protocol implements FVRaaS we need a secure sim-
ulatable VRF (Section 2) since the FVRaaS functionality
samples the random output in the ideal world and the
simulator has to simulate the corresponding proof for
it. Assuming such a VRF protocol, we prove that the
protocol πR-VRF implements the randomness service by
proving Thm. 1 in Appendix B.

Theorem 1. Assume VRF = (Setup,Gen,Eval,Verify)
is a simulatable verifiable random function. Then the
protocol πR-VRF (Fig. 6) UC-securely implements FVRaaS
in the (FLED,FRLY)-model against malicious corruption
of the requesters and FSERV by a PPT adversary A.

We show how to relax these two assumptions and
discuss how to extend the protocol against adaptive
corruption. We also revisit the need for blockchain
awareness (i.e. participating in FLED) from FRLY and
the server. We also argue that variants of πR-VRF capture
the Chainlink VRF [41] and Supra dVRF VRF [13].
Distributing the VRaaS Server. The VRaaS server
runs the VRF protocol, that consisting of three subpro-

9

Parties. VRaaS server P , Multiple requesters (Q1, . . . , Qn),
ideal relay functionality FRLY . crsVRF is generated in a trusted
way by securely running crsVRF ← VRF.Setup(1λ).
Key-Registration. VRaaS server P computes (vk, sk) ←
VRF.Gen(1λ) and sends it to the requesters.

Ledger-Initialization. Parties initialize LOGsid for session sid
by running FLED.Session-Init(sid).
Smart Contract Deployment. The server deploys the following
two smart contract functions by running:

FLED.Submit(sid, “Deploy” SCReq-Rand),

FLED.Submit(sid, “Deploy” SCReq-Fulf).

Set reqId := 0 and reqFulf[i] := false for ∀i and the smart
contract functions are:
• Req-Rand(x) :

Set qID := (x, reqId) and update reqId := reqId + 1.
Append to LOGsid:

(REQ-RAND, x; qID).

• Req-Fulf(qINFO, y, π) :
- Set qINP := qID := qINFO
- Require(reqFulf[reqId]=false)
- Require(Verify(vk, qINP, (y, π)).
- Append (REQ-FULF, qINFO, y, π; qID, qINP, vk) to

LOGsid.
- Obtain callback parameter param := x.
- Set reqFulf[reqId] = true
- Perform callback as callback((qINP, y, π), param).

Following protocols are run in parallel by multiple requesters.
Request-Randomness. Requester Q sets x := param,
where param is the parameter for requester
callback function. Requester smart contract runs
FLED.Submit(sid, (“Call Req-Rand”, x)). Read qID
once the request gets appended on LOGsid.
Fulfillment. During fulfillment FRLY (Fig.7) is invoked by
anyone with command (“Fulfill”, (sid, x, qID)). FRLY calls
the server. The server P computes the verifiable output along
with proof as (y, π)← VRF.Eval(sk, qINP) and returns (y, π)
to the FRLY .
Local Verification. Check that VRF.Verify (vk, qINP, (y,
π)) = 1 and verify that there exists a tuple (REQ-FULF,
qINFO, y, π; qID, qINP, vk) on LOGsid.
Note: qINFO = qINP = qID always holds for an honest
fulfillment of the request with query ID qID.

Figure 6: VRF-Based Randomness Service πR-VRF in
(FLED,FRLY)-model.

tocols - (Gen, Eval, Verify). These protocols can be
distributed by running a distributed VRF [42, 13, 35]
protocol based on BLS [22] or DDH-based VRFs. The
server is replaced by a committee of n servers out of
which at most t servers can be corrupt. The secret key
is generated using a distributed key generation (DKG)
algorithm [43]. Upon obtaining the secret key shares,
each server outputs a partial evaluation of the input and
proof that the partial evaluation is correct. An aggregator
party/requester aggregates the partial evaluations from
the servers, verifies them, finds (t+ 1) correct partial
evaluations, and computes the final output. Later, the Gen

Setting. The functionality interacts with VRaaS server P , and
the ledger functionality FLED, with LOGsid.

• Upon (“Fulfill”, (sid, x, qID)) executes the following
steps:
1) Verifies whether (REQ-RAND, x; qID) exists on LOGsid

using FLED.Read(sid) command, where qID = (x, rID).
If succeeds, go to the next step.

2) Set qINP := qID = (x, rID).
3) Verify that the tuple (REQ-FULF, qINFO,

, ; qID, qINP, vk) is not present on LOGsid.
4) If it succeeds invoke server P on qINP.
5) Once P returns (y, π), run FLED.Submit (sid,

(“Call Req-Fulf”, qINFO, y, π)).

Figure 7: Ideal Relay Functionality FRLY.

phase was securely implemented using distributed key
generation (DKG) algorithms [43]. The most relevant
work is by Galindo et al. [35] who formalized the
security properties and analyzed three constructions.
The first construction is a distributed pseudorandom
function [44, 45], which is essentially a distributed
counterpart of the Goldberg et al. [42] protocol with
an appropriate zero-knowledge proofs and a specific
DKG protocol (a variant of Gennaro et al. [43]) – this is
termed as DDH-DVRF. While the computation is very
efficient, the size of the final proof is proportional to the
number of participants. The second construction they
considered is the one that was proposed and also used
by Dfinity [46] – this is similar to DDH-DVRF, but uses
bilinear pairing to enable a compact proof. However, the
use of bilinear groups comes with a cost over discrete
log groups (as mentioned later). The construction is
very similar to BLS signatures [22] and is used in many
places [47, 48, 49, 50]. Their final construction is called
GLOW-DVRF – this was proposed in that paper. GLOW-
DVRF uses bilinear pairing for final verification, but
Schnorr’s proof of exponent for partial verification.
Adaptive Security of πR-VRF. We briefly discuss the
adaptive security of πR-VRF where the adversary can
adaptively corrupt servers in the VRaaS committee,
nodes implementing FRLY, and the requesters. We note
that adaptive corruption of requesters and the relay
nodes does not provide the adversary with any additional
benefit since the requester and the relay nodes do not
possess any private inputs or private randomness. Hence,
adaptive corruption of the relay nodes and the requesters
can be trivially simulated, where the simulator simulates
the relay nodes and requesters by running the static
simulator, and upon adaptive corruption of the parties,
the simulator provides the input and random tape as the
simulated internal state. To obtain adaptive security for
the server, the VRF.Gen has to be distributed using a
DKG algorithm that is secure against adaptive corruption
of parties. Similarly, the VRF.Eval algorithm also needs
to be distributed using an adaptively secure protocol.
The recent work of [51] provides an adaptively secure

10

threshold BLS signature [52] scheme that relies on the
hardness of DDH and co-CDH in asymmetric pairing
group assuming random oracles. Previous protocols [53]
proved adaptive security for the same, assuming One
More Discrete Logarithm in the Algebraic Group Model
[51] would suffice for our adaptively secure instantiation
of the VRaaS server in πR-VRF.
Realizing FRLY. FRLY can be realized by a committee
of m nodes satisfying an honest majority. The nodes will
have access to the FLED functionality and the adversary
A can corrupt at most t′ < m

2 nodes. The VRaaS
server/committee waits for t′+1 evaluation requests that
match and then run the VRaaS evaluation protocol. A
strict-honest majority is required among the relay nodes
to ensure that the evaluation request is valid and exists
on LOGsid since the VRaaS server/committee does not
have access to FLED. Upon evaluating the VRF, the
VRaaS server (or the committee implementing FSERV)
sends the output to the relay nodes. We require that
any of the relay nodes behave honestly and perform
fulfillment to ensure liveness. This is the Anytrust [54]
assumption.
Access to ledger functionality FLED. πR-VRF assumes
that the FRLY node, but not the VRaaS server, has access
to FLED (i.e. blockchain-aware). In practical terms, this
means that in a multi-blockchain environment, requesters
can seek randomness from the VRaaS server through any
blockchain. Each blockchain has an assigned FRLY that
processes requester requests by forwarding them to the
VRaaS server. The VRaaS server computes the output
and sends it back to FRLY, which then posts it on the
originating blockchain. Supra dVRF [13] implements
this. This approach simplifies scalability and allows
efficient deployment of the VRaaS service on different
blockchains by assigning a FRLY node to the blockchain,
without modifying the server committee. However, it
requires the FRLY to be implemented using a committee
of nodes satisfying honest majority assumption. Another
approach is to remove FRLY and allow the server to
be blockchain-aware. The server reads the randomness
requests from the blockchain, evaluates the output, and
then posts it on the blockchain. Chainlink VRF [41]
implements this. However, this is not preferable since
the VRaaS server/committee has to keep track of
different blockchains and it is not scalable as the number
of blockchains increases. Onboarding a new VRaaS
server/committee is also taxing as they have to be
blockchain-aware for all the new blockchains.

Next, we argue that there cannot be a secure VRaaS
protocol where 1) the VRaaS server does not participate
in FLED, 2) there does not exist any party other than the
requester and VRaaS server who participates in FLED,
and 3) there are no other setup assumptions (like access
to a broadcast channel) between the VRaaS server and
requesters. We prove this by contradiction. Assume that
such a protocol exists for on-chain verifiable randomness
service between a VRaaS server and a requester where

the requester is in charge of uploading the randomness
requests and fulfillment/output transactions on FLED.
Since the VRaaS server does not have access to FLED,
it cannot read the randomness requests posted by the
requester on FLED. The only way the VRaaS server can
read the requests is when the requester directly sends
the request to the VRaaS server. The server evaluates
the output and has to send it directly to the requester
since the VRaaS server does not have access to FLED.
The requester is in charge of uploading this output as a
transaction on FLED. Such a protocol allows a malicious
requester to query the VRaaS server on multiple inputs,
and obtain multiple outputs. Then the requester chooses
the input-output pair that favors it the most and registers
that pair as a transaction on FLED. The honest VRaaS
server cannot detect this due to lack of access to FLED.
This breaks unbiasability of the randomness service.

5.1. Real-world Randomness Services

Finally, we conclude this section by showing that
Chainlink VRF service and Supra dVRF service are
captured via πR-VRF protocol.
Analysis of Chainlink VRF Service. In Chainlink
VRF [41], to request randomness the requester Q
sets x := (khash, account, config, gas, len) where
khash = H(vki) specifies which trusted VRF server
should fulfill the request, account is the client’s ac-
count information, config is the number of confir-
mation blocks the VRF server should wait, gas is
the maximum gas (on-chain instructions run by smart
contract) cost to be executed in the callback func-
tion. The client smart contract generates a random-
ness request. The Chainlink smart contract verifies
the authenticity of the request by checking the ac-
count information. It maintains a counter reqId. It
computes preseed = H(khash, cinfo,account, reqId)
and qID = H(khash,preseed), and increments the
counter reqId. It posts (x;qID) on the ledger and returns
qID. It also maintains an on-chain commitment to store
the hash of the above information for validation.

Once the transaction gets uploaded, the Chainlink
VRF server reads (x;qID), and once config blocks have
been confirmed on the ledger after the block containing
the request, the Chainlink server computes preseed
from (x;qID), verifies the hash of the request informa-
tion against the on-chain commitment and computes the
Goldberg-VRF [36] on qINP := H(preseed, bhash)
to obtain a verifiable output (y, π), where bhash is the
block-hash (of the block containing (x;qID)) preventing
precomputation of the VRF output. The VRF server
then calls the smart contract to register the fulfillment
transaction on-chain. The smart contract validates the
randomness y using proof π and performs the callback
with (y, π).

In the Chainlink VRF service, there are no relay
nodes and individual VRF servers are blockchain-aware.
It also relies on on-chain commitments to validate the

11

information in qINP during fulfillment transactions.
Next, we discuss that the output is unique for every
randomness request. Each qINP is guaranteed to be
unique, even for the same client inputs, due to the
unique reqId added by the Chainlink smart contract
in preseed (assuming H is collision-resistant). This
translates to unique pseudorandom output y due to the
pseudorandomness of the underlying VRF protocol, thus
proving that the Chainlink VRF service implements the
FVRaaS functionality.
Analysis of Supra dVRF Service. In the Supra dVRF
service [13], the VRaaS server is run by a clan of VRF
server nodes that run the distributed version of BLS
signatures. FRLY in πR-VRF is realized by a committee
of relay nodes. To request randomness, the requester
Q sets its input x := (param,config,cseed, account)
where param is the callback function, config is the
number of confirmation blocks the VRF Committee
should wait, cseed (can be empty) is client provided
entropy, and account is the account information (w.r.t.
billing etc.). The client smart contract invokes the Supra
smart contract with input x. The Supra Smart-contract
checks that the client account has sufficient balance
and it returns qID := reqId, where reqId is unique for
every client request. The final request transaction that is
posted is of the form (x;qID,aux) where aux contains
some auxiliary information (the number of confirmation
blocks, amount of randomness to be generated, etc).
qINFO contains the same information as (x,aux) and
so Supra doesn’t append it on-chain.

Then, the committee of relay nodes reads the request
(x;qID,aux), and once config blocks have been con-
firmed on the ledger after qID, the relay nodes invoke the
Supra dVRF clan on qINP. The VRF clan computes the
VRF on qINP = (x,qID,bhash) to obtain a verifiable
output (y, π), where bhash is the block-hash (of the
N + config block where the request was confirmed
on N th block) preventing precomputation of the VRF
output. The relay nodes collect partial evaluations from
the Supra dVRF clan, verify the partial evaluations, and
then combine them to obtain each fulfillment output.
Then they invoke the fulfillment transaction to post the
output on-chain and send the output to the respective
requester Q via the callback function in param.

The Supra dVRF clan has an honest-majority as-
sumption and models the distributed VRaaS server. The
Supra architecture can be considered as our πR-VRF
protocol from Section. 5 where the relay committee
is blockchain-aware (Approach 1 in Section 5). It also
reuses the trust assumption of the dVRF committee to
validate that the qINP is valid and compute the VRF
output on it after it is deemed to be valid. This is more
efficient in practice as opposed to maintaining an on-
chain commitment (what Chainlink does). To ensure
that the Supra protocol securely implements FVRaaS we
only need to argue that each qINP = (x,qID,bhash)
is unique. This is ensured since the qID is guaranteed to

be unique due to the on-chain counter reqId maintained
by the Supra dVRF smart contract. Hence, the Supra
dVRF service implements the FVRaaS functionality.

6. Vulnerabilities in Existing Protocols

We present analyses of Algorand [17], Band-
VRF [10] and Pyth-VRF [11] and show how they fail
to implement FVRaaS. In Appendix E, we demonstrate
vulnerabilities in the DIA xRandom smart contract code.
Algorand. The Algorand randomness service operates
on a beacon model, where users rely on the Algorand
randomness beacon for generating random values. Best
practices for requester protocols are outlined in the
Algorand developer documentation, including the use of
requester smart contracts to implement these practices.
One key practice involves the beacon smart contract
storing values for a limited number of rounds before
updates occur, and requester protocols should read
beacon values before updates. Requester protocols need
to handle scenarios such as beacon downtime, updates,
or discontinuation of the beacon public key, which
can be complex due to the need for proper auditing.
An example scenario involves a client smart contract
function, fallbackrand(), which uses the next beacon if
the current one is unavailable. However, a malicious
user could exploit this by delaying transactions, causing
the current beacon to be unavailable (since its value is
unfavorable) until a later beacon is available. This way
fallbackrand() uses the later beacon, allowing the party
to effectively reroll its randomness, thereby breaking
the protocol’s unbiasability. In our FVRaaS functionality,
Step 11. cannot be simulated using this protocol as the
requester can reroll y even when FSERV is honest.
Band VRF Protocol. The Band VRF [10] protocol
is a VRF-based protocol where the requester (denoted
as the client in their protocol) smart contract calls the
VRF server smart contract to request randomness. The
Band VRF protocol operates across two blockchains
via a bridge service and we refer to their protocol [10]
for more details on this. We observe a vulnerability in
the Band VRF provider code [55]. One of the input
parameters to Band VRF provider (line 111 in [55]) is
a client seed clientseed. However, the same clientseed
cannot be repeated for a given client smart contract. If
the same client smart contract makes two randomness
requests with the same clientseed, only the first one
will be fulfilled (lines 117-119 in [55]). An attacker
monitors the requests containing the different clientseed
values. These requests are public since they are on-
chain. The attacker launches a denial-of-service attack
by running the same client smart contract with the
same clientseed value. If the attacker’s transaction gets
confirmed first then the client’s request will be denied.
In our FVRaaS functionality, Step 5. cannot be simulated
using this protocol as the Band VRF protocol rejects an
honest client’s request on clientseed if the adversary

12

has already made the same request previously. In the
ideal world the honest client’s request will always be
fulfilled allowing the adversary to distinguish.
Pyth-VRF. The Pyth-VRF protocol works in the
commit-and-response paradigm where the server pre-
computes N random values (x1, . . . , xN) and commits
to it on-chain. To request randomness, the requester
samples a random number xU and sends the hash
hU = H(xU) to the smart contract. The smart assigns a
unique sequence number i to the request and stores the
hash value hU = H(xU) and sequence number on-chain.
The smart contract increments the counter i so that every
request gets assigned a unique sequence number. Upon
receiving the sequence number i, the requester invokes
the Pyth-VRF server with i to obtain xi. Given xi the
requester computes the random value as r := H(xi, xU)
and invokes the smart contract with xi to complete the
fulfillment process. We describe an attack in Pyth-VRF
as follows. The requester preemptively computes the
output value r once it receives xi from the server. If
the malicious requester doesn’t like r then it does not
complete the fulfillment phase. As a result, the output
r is not generated on-chain. The smart contract or the
server cannot generate the output since the requester’s
input xU is secret. In our FVRaaS functionality, Steps
11., 13. cannot be simulated using this protocol as the
malicious requester can reroll r (denoted as y in FVRaaS)
even when FSERV is honest and prevent the fulfillment
process if the output is unfavorable.

7. Impossibility of Obtaining VRaaS using
One Transaction

A VRaaS protocol/functionality using one
online transaction would reduce latency and
gas costs for the requester. Online transaction
refers to the request randomness transaction,
denoted Submit(sid, (“Call Req-Rand”, x))
and request fulfillment transaction, denoted
Submit(sid, (“Call Req-Fulf”,qINFO, y, π)),
and not the smart-contract deployment transactions.
However, we show that it is not possible to construct
such a protocol satisfying our formalization. Below we
provide some intuitions on how such protocols would
be vulnerable to attacks in practice.

First, when the fulfillment transaction is not submit-
ted, a malicious requester denies receiving an unfavor-
able output. In that case, it would not be possible to
distinguish between the case whether the server aborted,
or the requester is lying.

Second, when the request transaction is not submit-
ted, a malicious requester may just run multiple request
sessions with the VRF service in parallel, and then
submit the fulfillment request for whichever is more fa-
vorable. This way, again a biased output can be obtained.
For example, if the requester makes two simultaneous
requests, with probability 3/4 the first bit of the output

is 0. Note that the VRF service may be able to link
and subsequently stop the conflicting requests from the
malicious requester assuming a public-key infrastructure
(PKI) setup and signature-based authentication. However,
a PKI setup between clients and VRF service is not
practical if we expect the service to scale for a large
number of requester clients.

Formally we prove the following theorem.

Theorem 2. Unless there is a PKI setup, there does
not exist a protocol that realizes the ideal functionality
FVRaaS using only one online transaction in the FLED

model.

Proof. We consider two cases. First, consider an ar-
bitrary protocol that does not deploy the fulfillment
transaction. For such protocol, we design an adversarial
requester which works as follows
• Assume the protocol returns a bit output y. The

requester makes a request and when it obtains the
response (y, π) directly from the relay nodes it checks
whether y = 0, if not then it denies receiving the
output. Otherwise it publishes the value.

Clearly, for such an adversary, in the ideal world, the
fulfillment transaction would be executed in Step 13.
by the ideal functionality FVRaaS – this implies that
for any output (y, π), a verification query made in the
ideal world by any honest party would always return 1.
However, in the real world, when y = 1, the verification
would fail as the protocol was never completed. So, the
adversary would be able to distinguish between the real
and ideal world with probability 1/2 (i.e. whenever the
random output y is 1).

In the second case, assume that there is no PKI
setup and no request transaction. A malicious requester’s
requests can not be linked. Thus, the malicious requester
may provide two requests with signatures with different
public keys and the attack works as follows:
• Send two unlinkable requests to the servers. The server

returns two values (y1, π1) and (y2, π2). The servers
have run the fulfillment transaction on both values.

• Now, the requester chooses the output whose value is
0 and links it. Essentially, the requester specifically
chooses the output corresponding to its identity Q if
the output is 0.

In the ideal world, both output pairs (y1, π1) and (y2, π2)
would be linked to Q since a requester can only make
queries from the identity that is registered with the
functionality. So for any output, the probability of it
being 0 would be 1/2. Whereas, in the real world, the
probability of the linked output to be 0 would be 3/4,
because, among four possible combinations, only one
pair (1, 1) would not result into a non-zero output. This
will be distinguishable with probability 1/4.

8. Conclusion

Our work performs a comprehensive analysis of on-
chain verifiable randomness services. We first formalize

13

the on-chain verifiable randomness in the blockchain
setting by introducing the notion of Verifiable Random-
ness as a Service (VRaaS) – and define it via an ideal
functionality. It features a smart contract on a ledger
functionality and the VRF provider. We demonstrate that
two blockchain transactions are necessary for a secure
realization of VRaaS. Towards sufficiency, we show that
the VRF based protocol is a VRaaS by proving that it
implements our ideal functionality.

We rigorously analyzed existing randomness services
in the Web3 ecosystem and demonstrated that our frame-
work captures randomness services such as Chainlink
VRF and Supra dVRF services. Our investigation also
revealed susceptibility to attacks for three other designs
namely, Band VRF, DIA xRandom, and Algorand ran-
domness beacon, and we have responsibly disclosed the
vulnerabilities to the teams.

Beyond analyzing existing systems, our VRaaS
framework also offers several challenges to consider
in the future. These include securely employing random
beacons, VDFs, secure randomness usage patterns in
multi-player Web3 applications, and generating private
randomness.

References

[1] “Filecoin: A decentralized storage network.” [Online]. Available:
https://filecoin.io/filecoin.pdf

[2] “Partnerships of algorand.” [Online]. Available: https://
algorandtechnologies.com/about/our-partners/

[3] “Partnerships of supra.” [Online]. Available: https://supraoracles.
com/partnerships/

[4] “Use cases of chainlink.” [Online]. Available: https://chain.link/
use-cases

[5] a16zcrypto, “2023 state of crypto report: Introducing the state
of crypto index.” [Online]. Available: https://a16zcrypto.com/
posts/article/state-of-crypto-report-2023/

[6] ——, “Introducing the 2022 state of crypto re-
port.” [Online]. Available: https://a16zcrypto.com/posts/article/
state-of-crypto-report-a16z-2022/

[7] Chainlink, “Chainlink VRF: On-Chain Verifiable
Randomness.” https://developer.wax.io/en/tutorials/
create-wax-rng-smart-contract/rng basics.html.

[8] “Supra randomness service.” [Online]. Available: https:
//supraoracles.com/

[9] “Drand: Distributed randomness beacon.” [Online]. Available:
https://drand.love/

[10] “Band vrf guaranteed integrity on the blockchain.” [Online].
Available: https://www.bandprotocol.com/vrf

[11] “Pythvrf: Random number generation on pyth network.”
[Online]. Available: https://docs.pyth.network/documentation/
entropy/protocol-design

[12] “Chainlink random number generation.” [Online]. Available:
https://chain.link/vrf

[13] “Supra whitepaper.” [Online]. Available: https://supraoracles.
com/docs/SupraOracles-VRF-Service-Whitepaper.pdf

[14] E. Albert, S. Grossman, N. Rinetzky, C. Rodrı́guez-Núñez,
A. Rubio, and M. Sagiv, “Taming callbacks for smart contract
modularity,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA,
pp. 209:1–209:30, 2020.

[15] A. Kate, E. V. Mangipudi, S. Maradana, and P. Mukherjee,
“Flexirand: Output private (distributed) vrfs and application to
blockchains,” in ACM CCS 2023, 2023.

[16] “Dia developer documents.” [Online]. Available: https://docs.
diadata.org/products/randomness-oracle/access-the-oracle

[17] O. Shem-Tov, “Usage and best practices for randomness beacon,”
Sep 2022. [Online]. Available: https://developer.algorand.org/
articles/usage-and-best-practices-for-randomness-beacon/

[18] R. Canetti, “Universally composable security: A new paradigm
for cryptographic protocols,” in 42nd FOCS. IEEE Computer
Society Press, Oct. 2001, pp. 136–145.

[19] B. David, B. Magri, C. Matt, J. B. Nielsen, and D. Tschudi, “Gear-
Box: Optimal-size shard committees by leveraging the safety-
liveness dichotomy,” in ACM CCS 2022, H. Yin, A. Stavrou,
C. Cremers, and E. Shi, Eds. ACM Press, Nov. 2022, pp.
683–696.

[20] “Harmony randomness service.” [Online]. Available: https:
//docs.harmony.one/home/

[21] “Boba network: Distributed randomness beacon.” [Online].
Available: https://boba.network

[22] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the Weil pairing,” in ASIACRYPT 2001, ser. LNCS, C. Boyd,
Ed., vol. 2248. Springer, Heidelberg, Dec. 2001, pp. 514–532.

[23] Aptos, “Aip-41 - move apis for randomness generation.”
[Online]. Available: https://github.com/aptos-foundation/AIPs/
blob/main/aips/aip-41.md

[24] “Chia.” [Online]. Available: https://www.chia.net/

[25] “Veedo — stark-based verifiable delay function.” [Online].
Available: https://github.com/starkware-libs/veedo

[26] M. Christ, K. Choi, and J. Bonneau, “Cornucopia: Distributed
randomness beacons at scale,” IACR Cryptol. ePrint Arch., p.
1554, 2023. [Online]. Available: https://eprint.iacr.org/2023/1554

[27] C. Baum, B. David, R. Dowsley, R. Kishore, J. B. Nielsen, and
S. Oechsner, “CRAFT: composable randomness beacons and
output-independent abort MPC from time,” in PKC’23, 2023.

[28] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay
functions,” in CRYPTO 2018, Part I, ser. LNCS, H. Shacham
and A. Boldyreva, Eds., vol. 10991. Springer, Heidelberg, Aug.
2018, pp. 757–788.

[29] A. K. Lenstra and B. Wesolowski, “A random zoo: sloth,
unicorn, and trx,” IACR Cryptol. ePrint Arch., p. 366, 2015.
[Online]. Available: http://eprint.iacr.org/2015/366

[30] R. Canetti, “Universally composable signature, certification, and
authentication,” in 17th IEEE Computer Security Foundations
Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove,
CA, USA. IEEE Computer Society, 2004, p. 219.

[31] R. Canetti, A. Jain, and A. Scafuro, “Practical UC security with
a global random oracle,” in ACM CCS 2014, G.-J. Ahn, M. Yung,
and N. Li, Eds. ACM Press, Nov. 2014, pp. 597–608.

[32] R. Canetti, P. Sarkar, and X. Wang, “Efficient and round-optimal
oblivious transfer and commitment with adaptive security,” in
ASIACRYPT 2020, Part III, ser. LNCS, S. Moriai and H. Wang,
Eds., vol. 12493. Springer, Heidelberg, Dec. 2020, pp. 277–308.

[33] J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and
G. Neven, “The wonderful world of global random oracles,”
in EUROCRYPT 2018, Part I, ser. LNCS, J. B. Nielsen and
V. Rijmen, Eds., vol. 10820. Springer, Heidelberg, Apr. / May
2018, pp. 280–312.

[34] M. Chase and A. Lysyanskaya, “Simulatable VRFs with appli-
cations to multi-theorem NIZK,” in CRYPTO 2007, ser. LNCS,
A. Menezes, Ed., vol. 4622. Springer, Heidelberg, Aug. 2007,
pp. 303–322.

14

https://filecoin.io/filecoin.pdf
https://algorandtechnologies.com/about/our-partners/
https://algorandtechnologies.com/about/our-partners/
https://supraoracles.com/partnerships/
https://supraoracles.com/partnerships/
https://chain.link/use-cases
https://chain.link/use-cases
https://a16zcrypto.com/posts/article/state-of-crypto-report-2023/
https://a16zcrypto.com/posts/article/state-of-crypto-report-2023/
https://a16zcrypto.com/posts/article/state-of-crypto-report-a16z-2022/
https://a16zcrypto.com/posts/article/state-of-crypto-report-a16z-2022/
 https://developer.wax.io/en/tutorials/create-wax-rng-smart-contract/rng_basics.html
 https://developer.wax.io/en/tutorials/create-wax-rng-smart-contract/rng_basics.html
https://supraoracles.com/
https://supraoracles.com/
https://drand.love/
https://www.bandprotocol.com/vrf
https://docs.pyth.network/documentation/entropy/protocol-design
https://docs.pyth.network/documentation/entropy/protocol-design
https://chain.link/vrf
https://supraoracles.com/docs/SupraOracles-VRF-Service-Whitepaper.pdf
https://supraoracles.com/docs/SupraOracles-VRF-Service-Whitepaper.pdf
https://docs.diadata.org/products/randomness-oracle/access-the-oracle
https://docs.diadata.org/products/randomness-oracle/access-the-oracle
https://developer.algorand.org/articles/usage-and-best-practices-for-randomness-beacon/
https://developer.algorand.org/articles/usage-and-best-practices-for-randomness-beacon/
https://docs.harmony.one/home/
https://docs.harmony.one/home/
https://boba.network
https://github.com/aptos-foundation/AIPs/blob/main/aips/aip-41.md
https://github.com/aptos-foundation/AIPs/blob/main/aips/aip-41.md
https://www.chia.net/
https://github.com/starkware-libs/veedo
https://eprint.iacr.org/2023/1554
http://eprint.iacr.org/2015/366

[35] D. Galindo, J. Liu, M. Ordean, and J. Wong, “Fully distributed
verifiable random functions and their application to decentralised
random beacons,” in IEEE EuroS&P 2021, 2021.

[36] D. Papadopoulos, D. Wessels, S. Huque, M. Naor, J. Včelák,
L. Reyzin, and S. Goldberg, “Making nsec5 practical for dnssec,”
Cryptology ePrint Archive, Paper 2017/099, 2017. [Online].
Available: https://eprint.iacr.org/2017/099

[37] M. Graf, D. Rausch, V. Ronge, C. Egger, R. Küsters, and
D. Schröder, “A security framework for distributed ledgers,”
in ACM CCS 2021, G. Vigna and E. Shi, Eds. ACM Press,
Nov. 2021, pp. 1043–1064.

[38] R. Kumaresan, D. V. Le, M. Minaei, S. Raghuraman, Y. Yang,
and M. Zamani, “Programmable payment channels,” in ACNS
2024, 2024.

[39] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková,
“Multi-party virtual state channels,” in EUROCRYPT 2019, Part I,
ser. LNCS, Y. Ishai and V. Rijmen, Eds., vol. 11476. Springer,
Heidelberg, May 2019, pp. 625–656.

[40] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oech-
sner, “TARDIS: A foundation of time-lock puzzles in UC,” in
EUROCRYPT 2021, Part III, ser. LNCS, A. Canteaut and F.-X.
Standaert, Eds., vol. 12698. Springer, Heidelberg, Oct. 2021,
pp. 429–459.

[41] “Chainlink vrf: On-chain verifiable random-
ness.” [Online]. Available: https://blog.chain.link/
chainlink-vrf-on-chain-verifiable-randomness/

[42] S. Goldberg, J. Vcelak, D. Papadopoulos, and
L. Reyzin, “Verifiable random functions (vrfs),”
https://datatracker.ietf.org/doc/html/draft-goldbe-vrf-01, 2018.

[43] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure
distributed key generation for discrete-log based cryptosystems,”
Journal of Cryptology, vol. 20, no. 1, pp. 51–83, Jan. 2007.

[44] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal, “DiSE:
Distributed symmetric-key encryption,” in ACM CCS 2018,
D. Lie, M. Mannan, M. Backes, and X. Wang, Eds. ACM
Press, Oct. 2018, pp. 1993–2010.

[45] M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-
random functions and KDCs,” in EUROCRYPT’99, ser. LNCS,
J. Stern, Ed., vol. 1592. Springer, Heidelberg, May 1999, pp.
327–346.

[46] T. Hanke, M. Movahedi, and D. Williams, “DFINITY technology
overview series, consensus system,” CoRR, vol. abs/1805.04548,
2018. [Online]. Available: http://arxiv.org/abs/1805.04548

[47] Cloudflare, “Decentralized Verifiable Randomness Beacon,” https:
//developers.cloudflare.com/randomness-beacon/.

[48] Corestar, “Corestar Arcade: Tendermint-based Byzantine Fault
Tolerant (BFT) middleware with an embedded BLS-based ran-
dom beacon,” https://github.com/corestario/tendermint.

[49] DAOBet (ex — DAO.Casino), “ To Deliver On-Chain Ran- dom
Beacon Based on BLS Cryptography.” https://daobet.org/blog/
on-chain-random-generator/.

[50] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “ETHDKG:
Distributed key generation with Ethereum smart contracts,”
Cryptology ePrint Archive, Report 2019/985, 2019, https://eprint.
iacr.org/2019/985.

[51] S. Das and L. Ren, “Adaptively secure BLS threshold signatures
from DDH and co-cdh,” IACR Cryptol. ePrint Arch., p. 1553,
2023. [Online]. Available: https://eprint.iacr.org/2023/1553

[52] A. Boldyreva, “Threshold signatures, multisignatures and blind
signatures based on the gap-Diffie-Hellman-group signature
scheme,” in PKC 2003, ser. LNCS, Y. Desmedt, Ed., vol. 2567.
Springer, Heidelberg, Jan. 2003, pp. 31–46.

[53] R. Bacho and J. Loss, “On the adaptive security of the threshold
BLS signature scheme,” in ACM CCS 2022, H. Yin, A. Stavrou,
C. Cremers, and E. Shi, Eds. ACM Press, Nov. 2022, pp.
193–207.

[54] D. I. Wolinsky, H. Corrigan-Gibbs, and B. Ford, “Scalable anony-
mous group communication in the anytrust model.” [Online].
Available: https://dedis.cs.yale.edu/dissent/papers/eurosec12-abs/

[55] “Band vrf provider code.” [Online]. Available:
https://github.com/bandprotocol/vrf-and-bridge-contracts/
blob/34df2ebb75355beffb9ad24efb12c4c3e2c328e5/contracts/
vrf/provider v2/VRFProviderBaseV2.sol#L111

[56] J. Camenisch, S. Krenn, R. Küsters, and D. Rausch, “iUC: Flex-
ible universal composability made simple,” in ASIACRYPT 2019,
Part III, ser. LNCS, S. D. Galbraith and S. Moriai, Eds., vol.
11923. Springer, Heidelberg, Dec. 2019, pp. 191–221.

[57] C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas,
“Ouroboros genesis: Composable proof-of-stake blockchains with
dynamic availability,” in ACM CCS 2018, D. Lie, M. Mannan,
M. Backes, and X. Wang, Eds. ACM Press, Oct. 2018, pp.
913–930.

[58] T. Kerber, A. Kiayias, M. Kohlweiss, and V. Zikas, “Ouroboros
crypsinous: Privacy-preserving proof-of-stake,” in 2019 IEEE
Symposium on Security and Privacy. IEEE Computer Society
Press, May 2019, pp. 157–174.

[59] R. G. Brown, “The corda platform: An introduction,” 2020. [On-
line]. Available: https://www.r3.com/wp-content/uploads/2019/
06/corda-platform-whitepaper.pdf.(Accessedon28/05/2020)

[60] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta,
and B. Ford, “OmniLedger: A secure, scale-out, decentralized
ledger via sharding,” in 2018 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, May 2018, pp.
583–598.

[61] A. R. Choudhuri, V. Goyal, and A. Jain, “Founding secure
computation on blockchains,” in EUROCRYPT 2019, Part II,
ser. LNCS, Y. Ishai and V. Rijmen, Eds., vol. 11477. Springer,
Heidelberg, May 2019, pp. 351–380.

[62] I. Komargodski and Y. Tamir, “On distributed randomness
generation in blockchains,” in Cyber Security, Cryptology, and
Machine Learning: 7th International Symposium, CSCML 2023,
Be’er Sheva, Israel, June 29–30, 2023, Proceedings. Springer-
Verlag, 2023, p. 49–64.

[63] R. Canetti, P. Sarkar, and X. Wang, “Triply adaptive UC NIZK,”
in ASIACRYPT 2022, 2022.

[64] T. Kerber, A. Kiayias, and M. Kohlweiss, “KACHINA - foun-
dations of private smart contracts,” in CSF 2021 Computer
Security Foundations Symposium, R. Küsters and D. Naumann,
Eds. IEEE Computer Society Press, 2021, pp. 1–16.

[65] D. developer documentation, “Dia dice game.” [Online].
Available: https://docs.diadata.org/products/randomness-oracle/
access-the-oracle#example-dice-game

Appendix A.
Simulatable Verifiable Random Function

We demonstrate that the most widely known VRF
protocols - BLS/GLOW-VRF [35], RSA-based [36], and
the Elliptic-Curve based [36] VRFs are simulatable by
modeling the hash function used in the VRF protocols
as a programmable random oracle.
• BLS/GLOW-VRF [35]. The verification key is vk =
gsk2 and secret key is sk. The input is x. The proof
is π = H1(x)

sk and the output value is y = H2(π)

15

https://eprint.iacr.org/2017/099
https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/
https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/
http://arxiv.org/abs/1805.04548
https://developers.cloudflare.com/randomness-beacon/
https://developers.cloudflare.com/randomness-beacon/
https://github.com/corestario/tendermint
 https://daobet.org/blog/ on-chain- random-generator/
 https://daobet.org/blog/ on-chain- random-generator/
https://eprint.iacr.org/2019/985
https://eprint.iacr.org/2019/985
https://eprint.iacr.org/2023/1553
https://dedis.cs.yale.edu/dissent/papers/eurosec12-abs/
https://github.com/bandprotocol/vrf-and-bridge-contracts/blob/34df2ebb75355beffb9ad24efb12c4c3e2c328e5/contracts/vrf/provider_v2/VRFProviderBaseV2.sol#L111
https://github.com/bandprotocol/vrf-and-bridge-contracts/blob/34df2ebb75355beffb9ad24efb12c4c3e2c328e5/contracts/vrf/provider_v2/VRFProviderBaseV2.sol#L111
https://github.com/bandprotocol/vrf-and-bridge-contracts/blob/34df2ebb75355beffb9ad24efb12c4c3e2c328e5/contracts/vrf/provider_v2/VRFProviderBaseV2.sol#L111
https://www.r3.com/wp-content/uploads/2019/06/corda-platform-whitepaper.pdf. (Accessed on 28/05/2020)
https://www.r3.com/wp-content/uploads/2019/06/corda-platform-whitepaper.pdf. (Accessed on 28/05/2020)
https://docs.diadata.org/products/randomness-oracle/access-the-oracle#example-dice-game
https://docs.diadata.org/products/randomness-oracle/access-the-oracle#example-dice-game

where H1,H2 are random oracles. The verifier checks
e(π, g2)

?
= e(H1(x), vk) and y

?
= H2(π).

Simulatability. To simulate the VRF on unqueried
input x to output y′, the SimProve programs H2 s.t.
H2(π) = y′. The proof π′ = π remains unchanged.
Simulatability follows from the unpredictability of
π = H1(x)

sk without querying the VRF on x.

• RSA-based [36]. The verification key is (n, e) and
the secret key is d. The input is x. The proof is π =
H1(x)

d mod n and the output value is y = H2(π)
where H1 is an IETF specified hash function and
H2 is a cryptographic hash function. The verification
equation is πe mod n

?
= H1(x) and y

?
= H2(π).

Simulatability. To simulate the VRF on unqueried
input x to output y′, SimProve programs H2 s.t.
H2(π) = y′. The proof π′ = π remains unchanged.
Simulatability of the VRF follows from the unpre-
dictability of π = H1(x)

d mod n without querying
the VRF on x.

• Elliptic-Curve-based [36]. This is used by Chainlink
[41]. The secret key is sk ∈ Zq and the public
verification key is vk = gsk. The input is x. Compute
h = H1(x) and γ = hsk. The output is y = H2(γ

f)
for a public parameter f . To compute the VRF proof,
compute a discrete log proof as: sample k ← Zq , set
c = H3(g, h, vk, γ, g

k, hk) and s = k − cx mod q.
Set y as the output and π = (γ, c, s) as the proof. To
verify the output check that 1) y

?
= H2(γ

f), and 2)
compute u = (vk)c · gs, h = H1(x), v = γc · hs and
check c

?
= H3(g, h, vk, γ, u, v).

Simulatability. To simulate the VRF on unqueried
input x to output y′, SimProve programs H2 s.t.
H2(γ

f) = y′. The proof π′ = π remains unchanged.
Simulatability follows from the unpredictability of γ
without querying VRF on x.

• Unforgeable VRF. One can also build a sim-
ulatable VRF from a VRF protocol that satisfies
unforgeability in the programmable random oracle
model. Let VRF′ = (Setup′, Gen′, Eval′, Verify′)
be a verifiable random function satisfying unforge-
ability. Then we construct a simulatable VRF =
(Setup,Gen,Eval,Verify) assuming a programmable
random oracle H as follows. Set Setup := Setup′

and Gen := Gen′. We set VRF.Eval(sk, x; crs) :
Return output (y, π) := (H(y′), (y′, π′)) where
(y′, π′) := VRF′.Eval′(sk, x; crs). To verify (x, y, π),
parse (y′, π′), check that 1) y = H(y′), and 2)
Verify′(vk, x, (y′, π′); crs).
Simulatability. To argue simulatability, the simulator
programs H on y′ to return the specific random y. The
adversary cannot distinguish since y′ is unforgeable.

These protocols are widely used by Dfinity [46],
Chainlink VRF [41], and Supra dVRF [13]. Simulati-
bility is a stronger notion than pseudorandomness [35]

and simulatibility is hard [34] to achieve in the non-
programmable random oracle model.

Our simulatable VRF can be extended to the global
random oracle (GRO) model of [33, 31] where a single
instance of the random oracle is shared by multiple
protocol sessions. We can use the random oracle GrpoRO
from Fig. 10 in [33] for this purpose. It provides
restricted programmability and restricted observability,
i.e. the simulator is allowed to program and observe GRO
queries corresponding to the session it is participating
in. In our simulatable VRF protocols described above,
hash function H2 will be modeled as the GRO with
restricted programmability and restricted observability.
The simulator can program H2 without getting detected
since the input to H2 is unpredictable to an adversary and
hence the adversary cannot prevent the programming.

Appendix B.
Proof of Theorem 1

We prove that πR-VRF implements FVRaaS by proving
Thm. 1. We assume that there exists a PPT environment
Z that selects the inputs for the honest parties and it
instructs a PPT adversarial algorithm A to corrupt a
participating party in the protocol execution. In the
real-world execution of the protocol, A corrupts a
party and interacts with the rest of the honest parties.
At the end of the protocol execution, it forwards its
view REALπR-VRF,A,Z(1

λ) to the environment Z . In the
ideal world execution of the protocol, we provide a
PPT simulator Sim that given access to the adversarial
algorithm A and the functionality FVRaaS produces the
ideal world adversary view IDEALFVRaaS,Sim,Z(1

λ) and
forwards it to the environment Z . According to the UC
definition, these two views should be indistinguishable.

Proof. Sim has access to the FLED functionality. The
ideal world adversary ALED for FLED is invoked by Sim
to setup FLED. We denote the ideal world adversary
for FSERV as SimP. We exhaustively consider all the
corruption cases where A corrupts a combination of
the VRaaS server and the client Q. We prove the
security of our protocol in the FRLY-model where Sim
simulates FRLY. We describe the simulation steps and
argue indistinguishability between the real and ideal
world execution for the two corruption cases as follows.
Server P is corrupt. The different steps are simulated
by Sim and SimP are as follows:
• We assume the parties securely generate the VRF

setup string crsVRF ← VRF.Setup(1λ).

• Setup Phase. Initiate key-registration by invoking
FVRaaS with (“Key-Register”). FVRaaS forwards
this request to FSERV (controlled by Sim via SimP).
Upon obtaining (vk,Verify(·)) from corrupt server P ,
verify Verify(·) and then send it to FVRaaS. Invoke
FVRaaS with command (“Init-Ledger”, sid) to
initiate the ledger. Upon receiving Req-Rand and

16

Req-Fulf from server P check it against Verify(·)
algorithm and forward it to FVRaaS.

• Request-Randomness. If the requester Q is
honest then Sim performs nothing, the hon-
est requester directly interacts with FVRaaS with-
out the involvement of Sim. If the requester
Q is corrupt and the requester smart contract
invokes FLED.Submit(sid, “Call Req-Rand”, x),
then Sim reads qID once the request transaction gets
appended. Sim returns (qID, Q) to FVRaaS.

• Fulfillment. Sim simulates FRLY by verifying
(REQ-RAND, x;qID) exists on LOGsid and
sets qINFO := qINP := qID. Sim sends
(“Eval-Req”,qID, x) to FVRaaS and sends qINP to
server P . When FVRaaS invokes Sim to obtain query
input just return (qINP,qINFO). When FVRaaS
invokes SimP with input (“Eval”, vk,qINP, w)
forward it to server P . When P returns (y, π) then
SimP forwards it to FVRaaS. When FVRaaS queries
Sim(“Run Fulfillment?”) respond with Yes.

• Local Verification. To verify an output, Sim invokes
FVRaaS with it and returns whatever FVRaaS outputs.

Indistinguishability Argument. We provide our hybrid
argument as follows:
• Hyb0: Real-world execution of the protocol.

• Hyb1: Ideal world execution of the protocol. This
is the same as the real-world execution of the pro-
tocol except if the corrupt server responds with
an invalid (y, π) s.t. Verify(vk, qINP, (y, π)) = 0,
then simulated FRLY forwards it to FVRaaS without
running Req-Fulf by itself. In contrast, in Hyb0,
functionality FRLY invokes Req-Fulf with it and
the verification is performed by the smart contract
function Req-Fulf.
The adversary successfully distinguishes between the
two hybrids if the smart contract in Req-Fulf
fails to detect that Verify(vk, qINP, (y, π)) = 0 and
uploads an output transaction containing this invalid
output where qINP = (x, reqId). Whereas, in the
ideal world, FVRaaS detects this and rejects the fulfill-
ment Step 12. A distinguisher distinguishing between
the two hybrids breaks the security of FLED since the
smart contract behaves incorrectly.

Client Q is corrupt and server P is honest. The
different steps are simulated by Sim as follows:
• We assume the parties securely generate the VRF

setup string crsVRF ← VRF.Setup(1λ) where Sim
and SimP knows td.

• Setup Phase. Initiate key-registration by invoking
FVRaaS with (“Key-Register”). FVRaaS forwards
this request to FSERV, which is forwarded to SimP.
SimP generates (vk, sk) ← VRF.SimGen(1λ, td)
by invoking the simulator of VRF and returns
(vk,Verify(·) to FVRaaS. Invoke FVRaaS with com-
mand (“Init-Ledger”, sid) to initiate the ledger.

Generate Req-Rand and Req-Fulf and forward it
to FVRaaS.

• Request-Randomness. Requester Q is corrupt.
If the requester smart contract invokes
FLED.Submit(sid, “Call Req-Rand”, x), then
Sim reads qID once the request transaction gets
appended. Sim returns (qID, Q) to FVRaaS.

• Fulfillment. The simulator algorithm Sim simu-
lates FRLY. Sim reads the request (REQ-RAND,
x; qID) on LOGsid and invokes FVRaaS with
the command (“Eval-Req”, qID, w). Sim sets
qINFO := qINP := qID. When FVRaaS invokes
Sim to obtain query input just return (qINP,qINFO).
FVRaaS samples y′ ← Rand(vk, rCtr, w) where
rCtr is the internal request counter of FVRaaS
corresponding to qID. When FVRaaS invokes
FSERV(“Req-Proof”, vk,qINP, w, y), the request
is forwarded to SimP. SimP computes simulated proof
π′ ← SimProve(sk, td, y′,qINP; crsVRF). Sim returns
π′ to FVRaaS. In the simulated protocol, SimP runs
the honest VRaaS server algorithm on qINP with
sk to obtain the output (y′, π′) and sends it to the
simulated FRLY.

• Local Verification. To verify an output, Sim invokes
FVRaaS with it and returns whatever FVRaaS outputs.

Indistinguishability Argument. We provide our hybrid
argument as follows:

• Hyb0: Real-world execution of the protocol.

• Hyb1: Same as Hyb0, except FVRaaS fulfills the
request for party Q by setting y′ ← Rand(vk, rCtr, w)
and SimP simulates the proof π′ ← SimProve(sk,
td, y′, qINP; crsVRF).
Indistinguishability follows due to the simulatability
property of the VRF. It also guarantees that the output
of πR-VRF is pseudorandom.

• Hyb2: Ideal world execution of the protocol. This
is the same as Hyb1, except local verification is
performed by running the local verification steps of
FVRaaS on it.
If the output (y, π) on qINP is not registered in
the memory of FVRaaS then FVRaaS sends ⊥ during
the verification process in the ideal world execution.
An adversary distinguishing between the two worlds
forges an output (y, π) on qINP and gets it registered
on FLED, corresponding to vk, by submitting a tuple
of the form (REQ-FULF,qINFO, y, π;qID,qINP, vk)
on LOGsid, where qINFO := qID := qINP. This
means that the VRaaS server was never queried in
the ideal world. Such an adversary forges the VRF
output on qINP, given vk, and thus it breaks the
unforgeability of the VRF primitive, leading to an
attack on the simulatability of VRF.

Client is honest and server P is honest. The simulator
performs nothing since there are no corruptions.

17

Client Q and server P are corrupt. Sim acts as a
forwarder for messages between the corrupt server and
the corrupt client by stimulating FRLY.
Indistinguishability Argument. The adversary suc-
cessfully distinguishes between the two hybrids if
the smart contract in Req-Fulf fails to detect that
Verify(vk, qINP, (y, π)) = 0 and uploads an output
transaction containing this invalid output where qINP =
(x, reqId). Whereas in the ideal world, FVRaaS detects
this and rejects the output in step 12. A distinguisher dis-
tinguishing between the two hybrids breaks the security
of FLED since the smart contract behaves incorrectly.

Appendix C.
Validation of qINFO by Req-Fulf

The fulfillment transaction Req-Fulf in πR-VRF is
initiated by FRLY or the VRaaS server/committee in
Chainlink [41]. When invoked with the input qINFO,
it generates qID and qINP and verifies qINP against
the output (y, π) using the verification key VK. The
smart contract implementing FVRaaS must ensure the
validity of qINFO supplied to Req-Fulf w.r.t x and
qID. Failure to do so could lead to undesirable conse-
quences, such as sending the verifiable output to the
wrong requester, resulting in the incorrect account being
charged for the output’s generation cost as these are
provided inside qINFO. To address this, we suggest
the following approaches to validate that qINFO in
Req-Fulf is correct w.r.t. the specific qID.
1) On-Chain Storage of qINFO: On-chain storage

reqs[] can be used to store the mapping between
qID and x during the randomness request phase
as reqs[qID] := x. During the fulfillment phase,
Req-Fulf generates qID from qINFO, obtains
x← reqs[qID] and matches it with qINFO.

2) On-Chain Commitment to qINFO : On-chain storage
is expensive so it is undesirable to store all of x
on-chain. Instead, a hash of x could be stored as
reqs[qID] := H(x) where H is a public hash function.
During fulfillment, Req-Fulf generates qID and x
from qINFO and checks that reqs[qID] = H(x).

3) Implicit Validation by VRaaS server+Relay Nodes:
The above solutions either require the smart contract
to have access to the blockchain or maintain on-
chain storage which can be expensive. We note that
in real-world FSERV will be honest and we can
reuse the trust assumption to validate qINFO. Recall
in πR-VRF (Fig. 6) the server generates qINP and
it is either trusted or it is implemented using an
honest majority server committee. The protocol can
be modified to perform the validation. The relay
node modifies qINP to qINP′ = (qINP,H(qINFO))
where qINP is generated from qINFO. The relay
node committee also has an honest majority assump-
tion and so qINP′ is correctly generated. The server
computes (y, π) on qINP′. When Req-Fulf is

invoked with qINFO, it generates qINP′ and checks
(y, π) w.r.t. to the key VK. If (y, π) verifies then it
is guaranteed that qINP′ was indeed generated by
the server and hence qINFO was validated correctly.
We call this technique implicit validation and it is
more efficient in practice since the validation process
reuses the implicit trust assumption of the server and
the relay committee.

Appendix D.
Additional Related Works

Formal Modeling of Ledgers and Blockchains.
The work of [37] introduced a general framework for
distributed ledgers that captures both private and public
ledgers in the iUC model [56], along with support for
smart contracts. They prove that the Bitcoin blockchain,
the Ouroboros family [57, 58] of blockchains, non-
blockchain protocols of Corda [59] and Omniledger [60]
implement their functionality. The work of [61] intro-
duced the notion of blockchain-active adversaries, where
the adversary can understand that it is being rewound
in the proof by posting its state on the blockchain.
In this model, they prove various impossibilities and
show that achieving UC security is impossible for
general circuits without setup assumption. Meanwhile,
we consider the randomness service function and prove
UC security in the programmable random oracle model.
The recent work of [62] constructed a privacy-preserving
smart contract based protocol in the model of [61] by
relying on universally composable non-interactive zero
knowledge [63]. The work of [64] considers modeling
of privacy-preserving smart contracts in the Universal-
Composability model of [18] and introduces the Kachina
protocol for deploying private smart contracts. However,
a simpler ledger functionality suffices for us since pri-
vacy is not required from smart contracts, in the context
of on-chain randomness service. Gearbox [19] provides
a simple timed ledger functionality. It is compatible with
sharding but doesn’t support smart contracts.

Appendix E.
Vulnerability in DIA xRandom Smart Con-
tract

The DIA xRandom randomness service operates on
a beacon model, where requesters utilize the DRand [9]
randomness beacon to generate random values. We found
a bug in the code provided in their official documenta-
tion [16]. Given the DIA xRandom randomness service,
two players (say P1 and P2) want to roll a dice and the
player with the higher integer value on the roll wins the
game. To do so each Pb (b ∈ {1, 2}) samples a seedb

and “commits” to it on-chain by sending it to the smart
contract. Note that the commitment does not hide the
value of seedb. Once the two seeds are stored on-chain
the DIA xRandom oracle is used to obtain randomness

18

r. The final roll value of each player Pb is considered to
be rollb := (r + seedb)%6 (% denoting the remainder).
If (roll1 = roll2) then it is a draw. Otherwise, player P1

is considered the winner if roll1 > roll2 and player P2 is
considered the winner if roll2 > roll1. In the above game,
a malicious player P2 chooses seed2 := (seed1+1)%6
after seeing seed1 in the commitment phase. P2 always
wins the game with probability 5

6 . This occurs since the
roll1 and roll2 values are linearly correlated. We propose
rollb := H(r, seedb, b)%6 to solve this issue as it breaks
the correlation. We also find another vulnerability in their
smart contract [65]. There is no commitment to the start
of the Dice game or the end of player entry. Consider if
two parties P1 and P2, both honest, wish to play the Dice
Game. Some third-party Eve can perform a denial-of-
service attack by continuously calling either the function
commitPlayer1 or commitPlayer2, which will
continuously update the value of latestRoundId. If
done frequently enough, no call to RollDice can ever
be successfully executed as the game never reaches a
state where the beacon for _round=latestRoundId
+ 10 has been published, and this stalls the game.

19

	Introduction
	Our Contributions
	Related Works

	Preliminaries
	Smart Contract Compatible Ledger Functionality
	Verifiable Randomness Service
	VRF-based Protocol
	Real-world Randomness Services

	Vulnerabilities in Existing Protocols
	Impossibility of Obtaining VRaaS using One Transaction
	Conclusion
	References
	Appendix A: Simulatable Verifiable Random Function
	Appendix B: Proof of Theorem 1
	Appendix C: Validation of qINFO by Req-Fulf
	Appendix D: Additional Related Works
	Appendix E: Vulnerability in DIA xRandom Smart Contract

