
Fast SNARK-based Non-Interactive Distributed Verifiable
Random Function with Ethereum Compatibility

Jia Liu

Enya Labs

United Kingdom

Mark Manulis

Universität der Bundeswehr München

Germany

mark@manulis.eu

ABSTRACT
Distributed randomness beacons (DRBs) are fundamental for vari-

ous decentralised applications, such as consensus protocols, decen-

tralised gaming and lotteries, and collective governance protocols.

These applications are heavily used on modern blockchain plat-

forms. This paper presents the so far most efficient direct construc-

tion and implementation of a non-interactive distributed verifiable

random function (NI-DVRF) that is fully compatible with Ethereum.

Our NI-DVRF scheme adopts pairings and combines techniques

from secret sharing, SNARKs, and BLS signatures. The security

properties of the resulting NI-DVRF scheme are formally modelled

and proven in the random oracle model under standard pairing-

based assumptions. To justify the efficiency and cost claims and

more generally its adoption potential in practice, the proposed

NI-DVRF scheme was implemented in Rust and Solidity. Our NI-

DVRF implementation is highly optimised and is currently being

investigated for deployment on the multichain layer-2 scaling so-

lution provided by Boba Network to power its DRB service. Our

experimental analysis, therefore, also evaluates performance and

scalability properties of the proposed NI-DVRF and its implemen-

tation.

1 INTRODUCTION

DRBs and DVRFs. Distributed randomness beacons (DRBs) [1],

see also a recent survey in [17], enable a group of 𝑛 participants

to collectively compute a (verifiable) random output without any

participant or coalition of participants being able to predict or bias

the outcome. This makes DRBs essential for a variety of applications

in distributed consensus protocols and blockchain networks, e.g.:

• Random Sampling in Decentralized Networks: In decentral-

ized systems, it is often necessary to select a random sample

of nodes for certain tasks. Blockchains, for instance, require

a reliable source of public randomness for various activities,

such as forming a consensus group, shuffling validators,

electing proposers for the next block, or assigning tasks in

a decentralized network. DRBs can be used to generate ran-

dom numbers that no participant can predict or influence.

• Decentralized Lotteries and Gaming: Fairness in the draw is

of utmost importance in decentralized lotteries. An ideal

solution would be a distributed randomness beacon that

can be verified by anyone, and which no participant can

manipulate. This also applies to other forms of gaming

where randomness is required.

• Decentralized DecisionMaking: In any decentralized decision-
making process, whether it be voting systems or collective

governance protocols, it may be necessary to randomly se-

lect participants for specific roles, responsibilities, or rights.

A public, verifiable source of randomness would be crucial

in these systems for ensuring the fairness of the selection

process.

DRB protocols can be constructed from distributed verifiable

random functions (DVRFs) [23, 29, 31]. A DVRF is a 𝑡-out-of-𝑛

threshold scheme where 𝑛 participants first jointly run a distributed

key generation (DKG) protocol, e.g. [25], to establish global public

parameters and their secret keys (shares). They then use their se-

cret keys to create pseudorandom values repeatedly at pre-defined

intervals. A suitable DVRF should at least satisfy the following

informal security properties [23]:

• Uniqueness: given an input 𝑥 , the output pseudorandom

value 𝑣 is deterministic. Uniqueness is crucial for certain

decentralized applications, such as selecting the next block

proposer or the next set of validators in a consensus proto-

col. Uniqueness guarantees a deterministic choice for the

next block, and without it, the blockchain will fork and fail

to reach consensus.

• Public verifiability: anyone can verify a cryptographic proof

that the pseudorandom value 𝑣 is correctly computed. There

is no need to trust any party to honestly create the random

value.

• Pseudo-randomness: the distribution of 𝑣 is indistinguishable
from a random. No one can predict the value of 𝑣 before

it’s created, and no one is able to bias the value of 𝑣 to their

advantage.

When it comes to the adoption of DVRFs for blockchain applica-

tions, many practically driven requirements must be considered,

in addition to the security properties. It is crucial for DVRFs to

not only be efficient and scalable but also to ensure low laten-

cies since distributed blockchain nodes form an ad-hoc network.

Non-interactive DVRFs are particularly attractive to blockchain

networks because each party only needs to send one message and

does not have to wait for messages from other parties to compute

their own messages, which greatly reduces latencies and simplifies

dispute resolutions. Furthermore, for fast adoption in blockchain

industry DVRFs need to be designed and implemented in a way

that is compatible with existing blockchain infrastructures. In this

work we focus on DVRFs for Ethereum and Ethereum-compatible

blockchains, since Ethereum is currently one of the most widely

used blockchain platforms.

1

https://orcid.org/0000-0001-7094-9324
https://orcid.org/0000-0002-1512-9670

Jia Liu and Mark Manulis

Related work on DVRF for blockchains. Existing DVRF con-

structions and implementations fall short of simultaneously achiev-

ing the required security guarantees and the aforementioned prac-

tically driven requirements as we argue in the following. DVRF

constructions in [1, 15, 23, 30] rely on an interactive DKGprotocol to

initialise the global public parameters and participants’ secret keys.

The interactive setup involves several rounds of communications

among the participants and a complex dispute resolution process,

making it difficult to implement in practice. Intuitively, a more

promising approach would be to adopt a non-interactive DKG (NI-

DKG), yet existing NI-DKG protocols have a number drawbacks for

such adoption. For example, in the NI-DKG protocol by Groth [29]

each participant publishes a huge amount of data, referred to as

chunk encryptions for shares and proofs, and its verification time

is very slow: the chunk encryption size is O(𝑛 ·𝑚) where 𝑛 is the

total number of participants and𝑚 is the chunk size; the size of

a chunk proof is O(ℓ + 𝑛) and its verification involves O(𝑛 ·𝑚)
exponentiations in the pairing input group G1; the verification of

its secret sharing proof involves 𝑡 exponentiations in G2 and 𝑛 ex-

ponentiations in G1. The implementation in [29] is not compatible

with Ethereum since it uses the BLS12-381 curve instead of BN254

(which is also faster than BLS12-381) and requires exponentiations

in G2 for verification, which are not supported by Ethereum.

The recent SNARK-based NI-DKG implementation in [22] is the

only work, which is conceptually similar to our approach. In com-

parison to our DVRF protocol, [22] uses special algebraic properties

of BLS12-377/BW6 curves, also known as 2-chain pairing curves.

However, these curves are not natively supported on Ethereum, as

there are no precompiles for curve operations on BLS12-377/BW6.

Moreover, [22] provides only a source code for which there exists

no formal academic work and hence also no security evaluation.

Recent development in threshold BLS [9, 24] modifies the BLS

signature verification process to support non-interactive key setup.

However, this modification leads to a loss of uniqueness in the

obtained BLS signatures, making them unsuitable for building a

DVRF. In fact, exponentially many signatures can pass the modified

verification for each message, which would result in a DVRF lacking

the uniquess property.

Other approaches for building DRB. As mentioned in [17] there

are different approaches for building DRB protocols. For example,

in leader-based selection DRB protocols, such as Algorand [27],

Ouroboros-Praos [18] and Elrond [20], a single leader node is se-

lected each round to produce the next beacon value using a VRF

function [33]. The setup phase of such protocols is simple and non-

interactive as each participant chooses their own VRF key pairs.

However, this type of protocols is subject to withholding attacks as

the leader node might refuse to provide the random value. Another

approach, e.g., pursued by SCRAPE [13], RandShare/RandHound

[37] and Ouroboros [32], is to directly use the interactive Publicly

Verifiable Secret Sharing (PVSS) to generate each random beacon.

However, this method is expensive as PVSS has similar communi-

cation and computation complexity to an interactive DKG protocol,

and as observed in [17], typically results in poorer scalability when

compared to DVRF-based approaches.

Commit-reveal [10, 35] is another classic way to construct DRB

protocols. In the commit phase, each participant commits a random

seed. Once all the participants have shared their commitments, each

participant opens its commitment by revealing its random seed. All

the random seeds can then be aggregated to create the final output.

However, this approach is susceptible to bias as the last revealing

participant can compute the final output earlier and decide whether

to disclose its random seed or not. This is precisely the last-revealer

attack from [19], which can be mitigated using DKG protocols

that can be viewed as a threshold extension of the commit-reveal

approach. Another method to mitigate the last-revealer attack is

to base the construction of a DRB protocol on a verifiable delay

function (VDF) [16, 34, 38], which is a function that always takes a

predetermined time to compute. In practice, however, recovering

VDF outputs requires a substantial amount of computation such

that honest users must employ expensive hardware, such as high-

end ASICs, to establish a fast baseline. In fact, delay is not a provable

security guarantee and some designs such as Minroot [6] have been

broken using parallel computation for acceleration.

Our contributions. We focus on a non-interactive DVRF (NI-

DVRF) where the distributed key setup as well as the generation

of pseudorandom values are both performed in a non-interactive

manner; that is, each participant asynchronously sends only one

message and there is only one communication round. Our main

contributions are:

• We present an efficient direct NI-DVRF construction based

on standard pairing assumptions using techniques from se-

cret sharing, SNARKs [21, 28], and BLS signatures [11]. Our

NI-DVRF construction improves upon the DVRF protocol

from [23], which uses an interactive DKG. By deploying

suitable SNARKs, we achieve a completely non-interactive

construction that proceeds through two main phases:

– NI-DKG phase: Each of the 𝑛 participants distributes

their own secret key using a 𝑡-out-of-𝑛 threshold se-

cret sharing scheme in a non-interactive manner. To do

this, each participant evaluates a random polynomial

at 𝑛 points to create 𝑛 shares. These shares are then

encrypted and distributed to the intended recipients

along with a SNARK proof. This proof ensures that

the encrypted shares and public parameters are com-

puted correctly and can be publicly verified, achieving

non-interactivity, succinct proof size, and fast verifica-

tion time. This phase is the initial setup phase and is

executed only once.

– Pseudorandom generation: After setting up the keys

in the initial NI-DKG phase, participants can collabo-

rate continuously to compute pseudorandom values

for many epochs. Each epoch is uniquely identified by

a public input, such as a timestamp or counter. Each

participant provides a partial evaluation on the input,

and a threshold number of these partial evaluations

can be combined to produce the final pseudorandom

output. The combination of partial evaluations does

not involve any secret information, allowing any node

in the network to perform it. Therefore, this phase

is also non-interactive. Each pseudorandom output is

deterministic for each public input, but remains unpre-

dictable until it is generated.

2

https://orcid.org/0000-0001-7094-9324
https://orcid.org/0000-0002-1512-9670

Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility

• We provide formal definitions for NI-DVRF and security

proofs for both standard and strong pseudorandomness

properties [23] of our construction. For standard pseudo-

randomness, values output by NI-DVRF must remain in-

distinguishable from uniformly distributed random values,

whereas for strong pseudorandomness the adversary may

additionally query the partial evaluation oracle on the chal-

lenge public input up to a certain number of times. We

prove that our NI-DVRF instantiation achieves standard

pseudorandomness under the co-CDH and SDH assump-

tions, and strong pseudorandomness under co-CDH and

XDH assumptions, in the random oracle model.

• We describe the proof-of-concept implementation of our

NI-DVRF and provide experimental evaluation of its per-

formance and costs. As mentioned, our key objective is

to ensure compatibility with Ethereum, which is one of

the most widely used blockchain platforms, we implement

our NI-DKG protocol in Halo2 using non-native encoding

for BN256 [4, 5], considering Ethereum has precompiles

for BN256 curve operations [2]. We stress that proving

non-native encoding of operations in SNARKs is typically

expensive. Therefore, we introduce several non-trivial opti-

misations to significantly reduce the peak memory usage

and the proving time, making our implementation to be the

first that is highly practical and compatible with Ethereum.

The two main optimisations we have developed are:

– Our NI-DKG protocol only requires a fixed generator

𝑔1 ∈ G1 for creating public shares and a fixed gener-

ator 𝑔2 ∈ G2 for creating global public key on BN256

, we have developed windowed scalar multiplication

circuits for fixed point generator which reduced more

than 70% of gates.

– The encryption of shares are performed on Grump-

kin curve [3] (instead of BN256 [26]) for which we

have developed ecc-chip to generate circuits. Since

the base field of Grumpkin is the same as the scalar

field of BN256, the size of the scalar multiplication

circuit for Grumpkin is about 25 times smaller than

the non-native encoding of BN256.

To facilitate practical adoption we discuss integration as-

pects with Ethereum, provide performance and scalability

benchmarks assessing the running time and the economic

costs and savings associated with the deployment of our

NI-DVRF and its on-chain verification on Ethereum which

uses gas as a currency.

At a high glance, as summarised in Table 1, our NI-DVRF con-

struction improves upon the existing threshold- and DVRF-based

approaches, when considering key metrics regarding their perfor-

mance and security, based on the recent analysis in [17, Table I]. Our

NI-DVRF protocol achieves same levels of fault tolerance regarding

honest majority, security and maximal damage as existing DRB

solutions in [1, 15, 23, 29], while requiring a single communication

round in the setup and randomness generation phases and provid-

ing optimal overall communication and verification complexities.

Organisation. In Section 2 we provide preliminaries and discuss

the underlying building blocks and hardness assumptions. We

present NI-DVRF definitions and their security requirements in

Section 3. Our NI-DVRF construction and its correctness properties

are described in Section 4. Section 5 focuses on its implementation,

proposed optimisations for integration with Ethereum as well as

the experimental analysis of its performance and costs. In Section 6

we prove its security. We conclude in Section 7.

2 PRELIMINARIES

Asymmetric Pairing Groups. Let G1 = ⟨𝑔1⟩ , G2 = ⟨𝑔2⟩ and G𝑇
be (cyclic) groups of prime order 𝑞. A map e : G1 × G2 → G𝑇 to a

group G𝑇 is called a bilinear map, if it satisfies the following three

properties:

• Bilinearity: e(𝑔𝑥
1
, 𝑔

𝑦

2
) = e(𝑔1, 𝑔2)𝑥𝑦 for all 𝑥,𝑦 ∈ Z𝑝 .

• Non-Degenerate: e(𝑔1, 𝑔2) ≠ 1.

• Computable: e(𝑔1, 𝑔2) can be efficiently computed.

Definition 2.1. The Strong Diffie-Hellman (SDH) assumption

[7, 14] states that given (𝑔,𝑔𝛼 , 𝑔𝛽) and access to an oracle 𝑂𝛽 (·, ·)
where 𝑂𝛽 returns 1 on a query (𝑈 ,𝑋) such that 𝑈 𝛽 = 𝑋 and 0

otherwise, it is hard to compute 𝑔𝛼𝛽 .

Definition 2.2. The extended DDH assumption [8] holds if it is

difficult to distinguish

(G, 𝑞, 𝑔, 𝑔𝛼1 , · · · , 𝑔𝛼𝑤 , 𝑔𝛽 , 𝑦1, · · · , 𝑦𝑤)
where 𝑦𝑖 = 𝑔𝛼𝑖𝛽 for all 𝑖 ∈ {1, . . . ,𝑤} or randoms.

We observe that the extended DDH problem can be derived from

the standard DDH problem: Consider𝑤 = 2. Given a DDH instance

(G, 𝑞, 𝑔, 𝑔𝛼 , 𝑔𝛽 , 𝑦), we can construct an extended DDH instance as

follows:

𝑠, 𝑟
$← Z𝑞

𝑋 = 𝑔𝑠 · (𝑔𝛼)𝑟 , 𝑌 = (𝑔𝛽)𝑠 · 𝑦𝑟

output𝑈 = (𝑔𝛼 , 𝑋, 𝑔𝛽 , 𝑦, 𝑌).
Assume 𝑦 = 𝑔𝜏 for some unknown 𝜏 , we have 𝑋 = 𝑔𝑠+𝑟𝛼 and

𝑌 = 𝑔𝛽𝑠+𝜏𝑟 , where 𝑠, 𝑟 are uniformly distributed over Z𝑞 . When

𝜏 = 𝛼𝛽 , we have 𝑌 = 𝑋 𝛽
and 𝑈 is indeed an extended DDH in-

stance. When 𝜏 ≠ 𝛼𝛽 , it is easy to verify that 𝑔𝛼 , 𝑋, 𝑔𝛽 , 𝑦, 𝑌 are

uniformly distributed and mutually independent which means𝑈 is

an extended DDH instance. By repeating this process we can obtain

extended DDH instances for general𝑤 .

Definition 2.3 (co-CDH assumption). Let (𝑒,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑞)
be a bilinear groups. The co-CDH assumption states that given

(𝑔𝛼
1
, 𝑔

𝛽

1
, 𝑔𝛼

2
) with 𝛼, 𝛽

$← Z𝑞 , it is hard to compute 𝑔
𝛼𝛽

1
.

Definition 2.4 (XDH assumptions [12]). Let (𝑒,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑞)
be a bilinear groups. The XDH assumption states that DDH is hard

in G1. The extended XDH assumption states that extended DDH is

hard in G1.

Shamir secret sharing [36]. A 𝑡-out-of-𝑛 threshold secret sharing

splits a secret 𝑠 into 𝑛 shares 𝑠1, . . . , 𝑠𝑛 such that any 𝑡 shares are

sufficient to recover the original value of 𝑠 . The scheme involves

selecting a random polynomial 𝑓 (𝑥) of degree 𝑡−1 such that 𝑓 (0) =
𝑠 and computing the 𝑛 shares as 𝑠1 = 𝑓 (1), ..., 𝑠𝑛 = 𝑓 (𝑛). Any 𝑡

3

Jia Liu and Mark Manulis

Scheme Cryptographic DKG setup Randomness Generation Fault tolerance Security Uniqueness Withholding Max

Primitive No. rounds Comm. complexity Proof size No. rounds Comm. complexity Verifier complexity (less than) Immunity damage

Commit-reveal Commitments N/A 2 𝑂 (𝑛2) 𝑂 (𝑛) 1 Unpredictability × × Bias

Scrape [13] PVSS 1 𝑂 (𝑛2) N/A 2 𝑂 (𝑛3) 𝑂 (𝑛2) 𝑛/2 IND1-Secrecy × ✓ Bias

RandHound [37] PVSS 1 𝑂 (𝑛2) N/A 6 𝑂 (𝑐2𝑛) 𝑂 (𝑐𝑛) 𝑛/3 Unpredictability/Unbiasability × × Bias

Algorand [27] VRF 1 𝑂 (𝑛2) N/A 1 𝑂 (𝑛) O(1) 𝑛/3 Unpredictability ✓ × Bias

HERB[15] Threshold ElGamal 6 𝑂 (𝑛3) N/A 2 𝑂 (𝑛2) 𝑂 (𝑛) 𝑛/3 Unpredictability/Unbiasability × ✓ Bias

Drand [1] Threshold BLS 3 𝑂 (𝑛3) N/A 1 𝑂 (𝑛2) 𝑂 (1) 𝑛/2 Unpredictability/Unbiasability ✓ ✓ Predict

DDH-DRB [23] DDH-based DVRF 6 𝑂 (𝑛3) N/A 1 𝑂 (𝑛2) 𝑂 (𝑛) 𝑛/2 Strong Pseduorandomness ✓ ✓ Predict

GLOW-DRB [23] Pairing-based DVRF 6 𝑂 (𝑛3) N/A 1 𝑂 (𝑛2) 𝑂 (1) 𝑛/2 Standard/Strong Pseduorandomness ✓ ✓ Predict

Groth21 [29] Threshold BLS, NIZK 1 𝑂 (𝑛3𝑚) 𝑂 (𝑛) 1 𝑂 (𝑛2) 𝑂 (1) 𝑛/2 (relaxed) Unforgeability ✓ ✓ Predict

This work Threshold BLS, SNARK, DVRF 1 𝑂 (𝑛3) 𝑂 (1) 1 𝑂 (𝑛2) 𝑂 (1) 𝑛/2 Standard/Strong Pseduorandomness ✓ ✓ Predict

Table 1: Comparison with existing DRB constructions. 𝑛 is the number of nodes participating in the execution of a DVRF-
based DRB protocol. The number of rounds refers to the number of the coordinated rounds in a synchronous model. Each
round involves all parties sending messages, waiting to receive messages, and then performing computations based on the
received messages. Proof size is the size of the proof that each participant generates in a non-interactive DKG.𝑚 is the number
of chunks in chunked encryption in Groth21 [29]. 𝑐 is the size of a shard in RandHound. Fault toleance is the maximum
number of corrupted nodes. Verifier complexity is the computational cost for a passive observer to verify the random output.
Communication complexity is bitwise point-to-point communication amongst nodes. A withholding attack is an act where
participants can influence the outcome by refraining from publishing certain information. Max damage refers to the maximum
damage when 𝑛 − 1 rushing adversarial nodes cooperate.

points of 𝑓 (𝑥) can be combined to reconstruct 𝑓 (𝑥) using lagrange
interpolation.

Definition 2.5 (Lagrange coefficients). For a key reconstruction set
Δ, we define the Lagrange basis polynomials 𝜆 𝑗,Δ (𝑥) =

∏
𝑘∈Δ\{ 𝑗 }

𝑥−𝑘
𝑗−𝑘

∈ Z𝑞 [𝑋] and the Lagrange coefficients 𝜆𝑖, 𝑗,Δ = 𝜆 𝑗,Δ (𝑖) ∈ Z∗𝑞 . For
any polynomial 𝑓 ∈ Z𝑞 [𝑋] of degree at most |Δ| − 1 this entails∑
𝑖∈Δ 𝑓 (𝑖)𝜆0,𝑖,Δ = 𝑓 (0).

Non-interactive zero knowledge proofs (NIZKs). A NI proof

system for a relation 𝑅 produces a proof 𝜋 ← Prove(pk, 𝑥,𝑤) for a
statement 𝑥 and a witness 𝑤 . The proof convinces a verifier that

there exists a witness𝑤 such that (𝑥,𝑤) ∈ 𝑅 and Verify(vk, 𝑥, 𝜋) =
1. The proving key pk and the verification key vk are created during
the setup phase using (pk, vk) ← Setup(𝑅). The security properties
of the proof system are:

• Completeness: given any true statement, an honest prover

should be able to convince an honest verifier.

• Zero knowledge: the verifier does not learn any additional

information about the witness beside the truth of the state-

ment.

• Knowledge soundness: there is an extractor that can com-

pute a witness whenever the adversary produces a valid

argument.

The formal definitions are given in Appendix A.

3 NI-DVRF DEFINITIONS AND SECURITY
REQUIREMENTS

This section defines non-interactive distributed verifiable random

functions (NI-DVRFs), along with their standard and strong pseudo-

randomness properties, based on the formalization in [23]. Unlike

the original definitions, the formalization in this section explic-

itly includes each member’s public key and secret key. These keys

are used in NI-DKG for encrypting and distributing secret shares

among each other. In the security games for pseudorandomness, the

challenger selects member public keys and member secret keys for

honest members, while the adversary selects the keys for corrupted

members.

Definition 3.1 (NI-DVRF). A 𝑡-out-of-𝑛 NI-DVRFV = (KeyGen,
DKG, PartialEval,Combine,Verify) consists of the following algo-
rithms:

KeyGen(1𝜆) takes as input a security parameter 𝜆 and creates

a member secret key msk𝑖 and a member public key mpk𝑖
for a member 𝑖 .

NIDKG(1𝜆, 𝑡, 𝑛,M) is a non-interactive distributed key gen-
eration protocol that takes as input a security parameter 1

𝜆
,

the threshold 𝑡 , the total number of members 𝑛, the member

secret-public key pairsM = {(msk𝑖 ,mpk𝑖)}𝑛𝑖=1; it outputs
a set of qualified members QUAL, a global public key gpk,
a listVK = {vk1, . . . , vk𝑛} of verification keys, and a list

SK = {sk1, . . . , sk𝑛} of secret keys where each secret key

is only known to the corresponding member.

PartialEval(𝑥, sk𝑖 , vk𝑖) takes as input a plaintext 𝑥 , a secret

key sk𝑖 and a verification key vk𝑖 , and outputs𝜎𝑖𝑥 = (𝑖, 𝑣𝑖 , 𝜋𝑖),
where 𝑣𝑖 is the 𝑖-th evaluation share and 𝜋𝑖 is a proof of

correct partial evaluation.

PartialVerify(𝑥, vk𝑖 , 𝜎𝑖𝑥) takes as input a plaintext 𝑥 , a verifi-

cation key vk𝑖 and a paritial evaluation 𝜎𝑖𝑥 , and outputs

0/1.

Combine(VK, 𝑥, 𝐸) takes as input the verification keysVK ,

a plaintext 𝑥 , and a set 𝐸 = {𝜎𝑖1𝑥 , . . . , 𝜎
𝑖 |𝐸 |
𝑥 } of partial evalu-

ations from |𝐸 | ≥ 𝑡 distinct members, and outputs either a

pair (𝑣, 𝜋) of pseudorandom value 𝑣 and correctness proof

𝜋 , or ⊥.
Verify(gpk, 𝑥, 𝑣, 𝜋) takes as input the global public key gpk,

a plaintext 𝑥 , a pseudorandom value 𝑣 and a proof 𝜋 , and

outputs 0/1.

A NI-DVRF is correct if it satisfies the following requirements of

robustness and uniqueness:

• Robustness: in the presence of the adversary’s inputs to the

Combine algorithm, if Combine does not return ⊥ then

its output must pass the verification test. Robustness guar-

antees the availability of computing the random function

value on any plaintext in the presence of an active adver-

sary.

4

https://orcid.org/0000-0001-7094-9324
https://orcid.org/0000-0002-1512-9670

Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility

• Uniqueness: for any plaintext 𝑥 , a unique value 𝑣 passes the

verification test. In other words, it is impossible for any

adversary to compute two different values 𝑣, 𝑣 ′ for 𝑥 such

that both values pass the verification test, even when the

secret keys of the honest nodes are leaked.

Their formal definitions can be found in Appendix B.

Standard pseudorandomness requires that the pseudorandom

value is indistinguishable from a uniform random. Strong pseu-

dorandomness is similar to standard pseudorandomness, except

that the adversary is allowed to query the partial evaluation oracle

on the challenge plaintext up to 𝑡 − |𝐶 | − 1 times where 𝐶 is a

collection of corrupted members. In the following definitions, we

restrict the number of corrupted members to be |𝐶 | < 𝑡 ≤ 𝑛 − |𝐶 |,
which is equivalent to |𝐶 | < min{𝑡, 𝑛/2}. Therefore, the security
of our NI-DVRF protocol is based on the assumption of an honest

majority.

Definition 3.2 (Standard Pseudorandomness). ANI-DVRF protocol

V = (KeyGen,NIDKG, PartialEval, PartialVerify,Combine,Verify)
is pseudorandom if for all PPT adversaries A, there exists a negligi-

ble function negl(·) such that��
Pr[PRandV,A (1𝜆, 0) = 1] −Pr[PRandV,A (1𝜆, 1) = 1]

�� ≤ negl(𝜆)

where PRandV,A (1𝜆, 𝑏) is the experiment defined below:

Corruption On input a list of members 𝑃 = {𝑃1, . . . , 𝑃𝑛} and
threshold 1 ≤ 𝑡 ≤ 𝑛, an adversary A selects a collection

𝐶 (|𝐶 | < 𝑡 ≤ 𝑛 − |𝐶 |) of members to corrupt and gives 𝐶

to the challenger. Adversary A acts on behalf of corrupted

members, while the challenger acts on behalf of the remain-

ing members, which behave honestly (namely they follow

the protocol specification). The challenger chooses mem-

ber public keys for honest members and sends them to the

adversary. The adversary chooses member public keys for

corrupted members and sends them to the challenger.

Initialization Challenger and adversary runs the non-interactive

distributed key generation protocol NIDKG(1𝜆, 𝑡, 𝑛). After
this phase, the protocol establishes a qualified set of mem-

bersQUAL. Every (honest) member 𝑃 𝑗 ∈ QUAL\𝐶 obtains a

key pair (sk𝑗 , vk𝑗). In contrast, (corrupted) members 𝑃 𝑗 ∈ 𝐶
end up with key pairs (sk𝑗 , vk𝑗) in which one of keys may

be undefined (i.e. either sk𝑗 = ⊥ or vk𝑗 = ⊥). At the end of

this phase, the global public key gpk and the verification

keys {vk𝑖 }𝑖∈QUAL are known by both the challenger and

the adversary.

Pre-Challenge Evaluation In response toA’s evaluation query

(Eval, 𝑥, 𝑖) for some honest member 𝑃𝑖 ∈ QUAL \ 𝐶 and

plaintext𝑥 , the challenger returns𝜎𝑖𝑥 ← PartialEval(sk𝑖 , vk𝑖 , 𝑥).
In any other case, the challenger returns ⊥.

Challenge The challenger receives from the adversary A a

set 𝑈 ⊆ QUAL with |𝑈 | ≥ 𝑡 , a plaintext 𝑥★ such that

(Eval, 𝑥★, ∗) has never been queried, and a set of partial eval-
uation shares {𝜎𝑖

𝑥★
}𝑃𝑖 ∈𝑈∩𝐶 . Let𝜎

𝑗

𝑥★
← PartialEval(sk𝑗 , vk𝑗 ,

𝑥★) for 𝑃 𝑗 ∈ 𝑈 \ 𝐶 and (𝑣★, 𝜋★) ← Combine(pk, vk, 𝑥★,
{𝜎 𝑗

𝑥★
}𝑃 𝑗 ∈𝑈). If 𝑣★ = ⊥ the experiment output⊥. Otherwise,

if 𝑏 = 0 the adversary receives 𝑣★; if 𝑏 = 1 the adversary

receives a uniform random.

Post-Challenge Evaluation In response toA’s query (Eval, 𝑥, 𝑖)
with 𝑥 ≠ 𝑥★ for some member 𝑃𝑖 ∈ QUAL \𝐶 and plaintext

𝑥 ∈ D, the challenger returns 𝜎𝑖𝑥 ← PartialEval(sk𝑖 , vk𝑖 ,
𝑥). In any other case, the challenger returns ⊥.

Guess Finally, A returns its guess 𝑏′ ∈ {0, 1} which is then

output by the game.

Definition 3.3 (Strong Pseudorandomness). Strong pseudorandom-

ness is defined exactly the same as standard pseudorandomness

except that the adversary is allowed to query (Eval, 𝑥★, ∗) on the

challenge plaintext 𝑥★ for up to 𝑡 − |𝐶 | − 1 times in total before and

after the challenge query.

4 OUR NI-DVRF CONSTRUCTION
We present a construction for NI-DVRF using threshold secret

sharing, SNARKs, and BLS signatures. This protocol runs among

a group of 𝑛 members. Each member has a pair of member secret

key and member public key that will be used to encrypt (decrypt)

shares to (from) other members in a SNARK-based non-interactive

distributed key generation protocol. At the end of the protocol, a

global public key, a list of secret keys and a list of verification keys

are established. After this, members can use their keys to repeatedly

generate pseudo-random values for multiple epochs.

Let (G, 𝑔, 𝑝) be a cyclic group, and (𝑒,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑞) be a bi-
linear groups. Let 𝐻1 : G ↦→ Z𝑞 , 𝐻2 : {0, 1}∗ ↦→ G1, 𝐻3 : {0, 1}∗ ↦→
Z𝑞 and 𝐻4 : G1 ↦→ {0, 1}∗ be hash functions. Let Vzk-DVRF =

(KeyGen,NIDKG, PartialEval, PartialVerify,Combine,Verify) be a
NI-DVRF constructed as follows:

KeyGen(1𝜆): select msk𝑖
$← Z𝑝 uniformly at random and

compute mpk𝑖 = 𝑔msk𝑖
. Output (msk𝑖 ,mpk𝑖).

NIDKG(1𝜆, 𝑡, 𝑛,M): this protocol establishes a global public

key gpk, each member 𝑖 obtains a DKG secret key 𝑠𝑘𝑖 and

the corresponding (public) verification key 𝑣𝑘𝑖 .

(1) Each member 𝑖 chooses a random polynomial and eval-

uates it at 𝑛 points:

𝑓𝑖 (𝑥) = 𝑎𝑖,0 + 𝑎𝑖,1𝑥 + · · · + 𝑎𝑖,𝑡−1𝑥𝑡−1

𝑠𝑖,1 = 𝑓𝑖 (1), 𝑠𝑖,2 = 𝑓𝑖 (2), · · · , 𝑠𝑖,𝑛 = 𝑓𝑖 (𝑛)
𝑠𝑖,1, . . . , 𝑠𝑖,𝑛 are the secret shares that are capable of

recovering the polynomial 𝑓𝑖 (𝑥). Member 𝑖 computes

public parameters for 𝑓𝑖 (𝑥):
𝑝𝑝𝑖 = (𝑔𝑠𝑖,1

1
, 𝑔

𝑠𝑖,2
1

, · · · , 𝑔𝑠𝑖,𝑛
1

, 𝑔
𝑎𝑖,0
1

, 𝑔
𝑎𝑖,0
2
)

Member 𝑖 gives the secret shares to corresponding

members by encrypting 𝑠𝑖, 𝑗 using member 𝑗 ’s public

key:

𝑐𝑖𝑝ℎ𝑒𝑟𝑖 = (ℎ, 𝑐𝑖,1, 𝑐𝑖,2, · · · , 𝑐𝑖,𝑛)
where ℎ = 𝑔𝑟 , 𝑐𝑖, 𝑗 = 𝐻1 (𝑚𝑝𝑘𝑟

𝑗
) + 𝑠𝑖, 𝑗 . Member 𝑖 pub-

lishes (𝑝𝑝𝑖 , 𝑐𝑖𝑝ℎ𝑒𝑟𝑖) together with a SNARK proof to

show its data is formed correctly (more details in Sec-

tion 5). The encryption 𝑐𝑖𝑝ℎ𝑒𝑟𝑖 is generated on group

G which does not have to be the same as the pairing

group G1. In the implementation, we can choose G to

be a group that is natively compatible with SNARK

implementation which can significantly improve effi-

ciency.

5

Jia Liu and Mark Manulis

(2) Upon receiving {(𝑝𝑝 𝑗 , 𝑐𝑖𝑝ℎ𝑒𝑟 𝑗)} 𝑗 from other mem-

bers, member 𝑖 verifies the validity of the SNARK

proofs. Since some members may not participate or

provide invalid data, the final qualified set is a subset

QUAL ⊆ {1, 2, · · · , 𝑛}. Member 𝑖 decrypts the cipher

𝑐 𝑗,𝑖 in 𝑐𝑖𝑝ℎ𝑒𝑟 𝑗 for 𝑗 ∈ QUAL to recover the secret

shares {𝑠 𝑗,𝑖 } 𝑗∈QUAL: 𝑠 𝑗,𝑖 ← 𝑐 𝑗,𝑖 − 𝐻1 (ℎmsk𝑖). From
these shares, member 𝑖 derives its final DKG secret key

𝑠𝑘𝑖 =
∑

𝑗∈QUAL 𝑠 𝑗,𝑖 and verification key 𝑣𝑘𝑖 = 𝑔
𝑠𝑘𝑖
1

.

(3) The public does not have the decryption keys to ac-

cess any of the secret shares, but can still verify the

SNARK proofs to determine the qualified set QUAL

and valid {(𝑝𝑝 𝑗 , 𝑐𝑖𝑝ℎ𝑒𝑟 𝑗)} 𝑗∈QUAL. The public can de-

rive the public parameters as follows:

• Global public key is computed as gpk =
∏

𝑗∈QUAL 𝑔
𝑎 𝑗,0

2
.

• Each member 𝑖’s DKG verification key can be

computed as vk𝑖 =
∏

𝑗∈QUAL 𝑔
𝑠 𝑗,𝑖
1

.

PartialEval(𝑥, sk𝑖 , vk𝑖): compute 𝑣𝑖 = 𝐻2 (𝑥)sk𝑖 . As 𝑣𝑖 and vk𝑖
are both on G1, a Schnorr-style NIZK proof 𝜋𝑖 = (𝑐, 𝑧) is
generated to show 𝑣𝑖 is formed correctly, i.e., 𝑣𝑖 and vk𝑖

have the same discrete logarithm: 𝑒
$← Z𝑝 , 𝑅1 = 𝑔𝑒

1
, 𝑅2 =

𝐻2 (𝑥)𝑒 , 𝑐 = 𝐻3 (𝑔1, 𝐻2 (𝑥), 𝑣𝑘𝑖 , 𝑣𝑖 , 𝑅1, 𝑅2), 𝑧 = 𝑠𝑘𝑖 ∗𝑐 +𝑒 . Out-
put the partial evaluation 𝜎𝑖𝑥 = (𝑖, 𝑣𝑖 , 𝜋𝑖).

PartialVerify(𝑥, vk𝑖 , 𝜎𝑖𝑥): parse 𝜎𝑖𝑥 = (𝑖, 𝑣𝑖 , 𝜋𝑖), verify if 𝜋𝑖 =

(𝑐, 𝑧) is valid as follows: �̃�1 = 𝑔𝑧
1
/vk𝑐

𝑖
, �̃�2 = 𝐻2 (𝑥)𝑧/𝑣𝑐𝑖 , 𝑐 =

𝐻3 (𝑔1, 𝐻2 (𝑥), 𝑣𝑘𝑖 , 𝑣𝑖 , �̃�1, �̃�2) and output 𝑐
?

= 𝑐 .

Combine(VK, 𝑥, 𝐸): parse the list 𝐸 = {𝜎 𝑗1
𝑥 , · · · , 𝜎 𝑗 |𝐸 |

𝑥 } of
|𝐸 | ≥ 𝑡 partial evaluations from |𝐸 | different members, and

obtain verification keys vk𝑗1 , . . . , vk𝑗 |𝐸 | . Next,
(1) Identify an index subset 𝐼 = {𝑖1, · · · , 𝑖𝑡 } such that for

every 𝑖 ∈ 𝐼 it holds that PartialVerify(𝑥, vk𝑖 , 𝜎𝑖𝑥) = 1.

If no such subset exists, outputs ⊥.
(2) Set 𝜋 ←

∏
𝑗∈𝐼

𝑣
𝜆0, 𝑗,𝐼
𝑗

and 𝑣 = 𝐻4 (𝜋).

(3) Output (𝑣, 𝜋).
Verify(gpk, 𝑥, 𝑣, 𝜋): output 1 if the relation holds: 𝑒 (𝜋,𝑔2) =

𝑒 (𝐻2 (𝑥), gpk) and 𝑣 = 𝐻4 (𝜋). Otherwise output 0.

Correctness properties. It is easy to verify that the robustness

and uniqueness holds for our construction due to the fact that only

one 𝜋 = 𝐻2 (𝑥)gsk is valid and can pass the Verify algorithm for

each input 𝑥 , where gsk is the implicit secret key underlying the

global public key gpk.

Theorem 4.1. Vzk-DVRF is robust and unique.

Sketch. It is easy to see that

• The global public parameters (gpk,VK) and the secret

keys SK of the honest members are correctly formed at the

end of NIDKG due to the extractability of SNARK proofs.

• Combing partial evaluations from any subset Δ ⊆ QUAL

with |Δ| ≥ 𝑡 gives the same value 𝐻1 (𝑥)gsk due to the

following equality:∑︁
𝑗∈Δ

sk𝑗𝜆0, 𝑗,Δ =
∑︁
𝑗∈Δ

𝜆0, 𝑗,Δ
©«

∑︁
𝑖∈QUAL

𝑠𝑖, 𝑗
ª®¬

=
∑︁

𝑖∈QUAL

©«
∑︁
𝑗∈I

𝜆0, 𝑗,Δ · 𝑠𝑖, 𝑗
ª®¬

=
∑︁

𝑖∈QUAL

©«
∑︁
𝑗∈Δ

𝜆0, 𝑗,Δ · 𝑓𝑖 (𝑗)
ª®¬ =

∑︁
𝑖∈QUAL

𝑎𝑖,0 = gsk

Then

∏
𝑗∈Δ (𝐻1 (𝑥)sk𝑗)𝜆0, 𝑗,Δ = 𝐻1 (𝑥)

(∑
𝑗 ∈Δ 𝜆0, 𝑗,Δ ·sk𝑗

)
= 𝐻1 (𝑥)gsk

holds for every subset Δ ⊆ QUAL with |Δ| ≥ 𝑡 .

Robustness holds because Combine function verifies the NIZK

proofs to guarantee the validity of the partial evaluations. Thus ro-

bustness can be proven using the extractability of the NIZKs. When

the challenger outputs 1, it means 𝑣★ ≠ ⊥ andVerify(gpk, 𝑥★, 𝑣★, 𝜋★)
= 0. W.l.o.g., assume |𝑈 | = 𝑡 . Because of the above equations, we can

derive that there exists 𝑖 ∈ 𝑈 such that 𝑣𝑖 ≠ 𝐻1 (𝑥★)sk𝑖 , vk𝑖 = 𝑔
sk𝑖
1

and 𝜋𝑖 a verified NIZK proof. We consider two cases of 𝑖 . If 𝑖 ∈ 𝑈 \𝐶 ,
this is impossible since 𝑣𝑖 is computed correctly by the challenger.

If 𝑖 ∈ 𝑈 ∩𝐶 , we can use the PPT extractor of the NIZKs to derive

a 𝑘 such that 𝑣𝑖 = 𝐻1 (𝑥★)𝑘 and vk𝑖 = 𝑔𝑘
1
which contradicts the

hypothesis.

The uniqueness follows from the fact that 𝑣 = 𝐻2 (𝜋), 𝑣 ′ =

𝐻2 (𝜋 ′) and if 𝑒 (𝜋,𝑔2) = 𝑒 (𝐻1 (𝑥), gpk) = 𝑒 (𝜋 ′, 𝑔2) then 𝜋 = 𝜋 ′ =
𝐻1 (𝑥)gsk. □

5 ETHEREUM-COMPATIBLE
IMPLEMENTATION

Our NI-DVRF protocol is implemented and currently being inves-

tigated for the adoption on the Boba Network to power its DRB

service.
1
Our design and implementation are customised to be com-

patible with Ethereum and Ethereum-like chains to facilitate the

fast adoption in crypto industry. The main protocol is implemented

in Rust. Additionally, Solidity contracts were developed to enable

on-chain verification on Ethereum. The evaluation of performance

has been performed on an AWS instance r6i.8xlarge, which has 32

CPUs and 256GB of memory.

NI-DKG.We use Halo2 with KZG commitment [4] on the BN256

curve to generate the SNARK proof for our NI-DKG protocol. Halo2

supports Plonk-ish style circuits. Our NI-DKG circuit checks that

the following computations are performed correctly:

• Secret shares 𝑠𝑖,1, . . . , 𝑠𝑖,𝑛 are evaluated consistently from

the same coefficents 𝑎𝑖,0, . . . , 𝑎𝑖,𝑡−1.
• Public parameters 𝑝𝑝𝑖 = (𝑔𝑠𝑖,1

1
, 𝑔

𝑠𝑖,2
1

, · · · , 𝑔𝑠𝑖,𝑛
1

, 𝑔
𝑎𝑖,0
1

, 𝑔
𝑎𝑖,0
2
) are

generated correctly using 𝑠𝑖,1, . . . , 𝑠𝑖,𝑛, 𝑎𝑖,0.

• The secret shares are encrypted correctly with respect to

the given member public keys. This ensures that decryption

can be performed by the corresponding members.

In the circuit, the public parameters 𝑝𝑝𝑖 are computed using non-

native encoding of the BN256 curve from halo2wrong [5]. As our

protocol only requires a fixed generator 𝑔1 to create public shares,

1
Implementation can be found at https://github.com/bobanetwork/zkdvrf

6

https://orcid.org/0000-0001-7094-9324
https://orcid.org/0000-0002-1512-9670
https://github.com/bobanetwork/zkdvrf

Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility

we have developed a windowed scalar multiplication chip for fixed

point generator, which reduces 70% of gates.

We have developed the G2-chip for performing scalar multipli-

cations in G2. This chip allows us to verify that 𝑔
𝑎𝑖,0
2

is computed

correctly within the circuit. The computation of G2 operations is
around 3 times larger than G1 operations, which is why we choose

to compute most of the public parameters in G1. We only need to

compute one scalar multiplication in G2, which adds a constant

computation overhead. Consequently, the operations on G2 in-

crease the circuit size for small values of 𝑛, but this increase can be

disregarded when 𝑛 is large, as shown in Table 2 (more explanations

below). Alternatively, the correspondence between 𝑔
𝑎𝑖,0
1

and 𝑔
𝑎𝑖,0
2

can be checked using pairing equations outside the SNARK proof.

However, this will incur additional gas cost when verifying the

proof on-chain.

The encryption 𝑐𝑖𝑝ℎ𝑒𝑟𝑖 of shares are performed on Grumpkin

curve (instead of BN256) for which we have developed ecc-chip to

generate circuits. The scalar multiplication circuit for Grumpkin is

currently a double-and-add method with optimisations customised

for Halo2wrong maingate to reduce the number of gates. Since the

base field of Grumpkin is the same as the scalar field of BN256, the

size of the scalar multiplication circuit for Grumpkin is about 25

times smaller than the non-native encoding of BN256. The hash

function used in 𝑐𝑖𝑝ℎ𝑒𝑟𝑖 is Poseidon hash.

Our performance evaluation results are summarised in Table 2:

Table 2a evaluates NI-DKG circuits without ourG2 chip whereas Ta-
ble 2b utilises the G2 chip. In Halo2 proof systems, circuits need to

be padded to the nearest power of 2. Given a degree 𝑘 , the maximum

number of gates the circuit can have is 2
𝑘
. In Tables 2a and 2b, the

total number of members 𝑛 is chosen to be the maximum number

that can be supported under a specific circuit degree and the thresh-

old 𝑡 is chosen to be the majority of 𝑛. The values of (𝑡, 𝑛) in Table

2b are lower than the ones in Table 2a due to the computation for

G2 operations. However this impact becomes less significant as 𝑛

increases because only oneG2 scalar multiplication is required. The

proof size remains constant, while the verification time increases

with 𝑛 due to the size of public instances (i.e., the size of 𝑝𝑝𝑖 and

𝑐𝑖𝑝ℎ𝑒𝑟𝑖). In the SNARK verification, there is polynomial evaluation

for processing the public instances. The verification time can be

reduced to be constant by hashing the public inputs, but choos-

ing the appropriate hash function is challenging. Poseidon hash

is SNARK-friendly and imposes minimal computation overhead

on the prover. However, computing the Poseidon hash in Solidity

contract is expensive because there are no precompiles available

for it. Keccak and Sha256 are cheap to compute in Solidity but they

significantly increases the proving time and memory usage. We

leave further optimizations for verification time and cost as future

work. For example, we may explore the use of recursive SNARKs

to reduce on-chain verification costs. As shown in Table 2, generat-

ing a SNARK proof for approximately 40 members requires a peak

memory usage of 16GB, which is considered moderate and can be

easily handled by off-the-shelf computers. In practice, 40 nodes

should be sufficient for most applications. For example, Drand [1]

began with a threshold of 6-out-10 in 2019 and currently operates

23 nodes with a threshold of 12 to create verifiable randomness.

Randomness generation. Once the NI-DKG setup is complete,

members can use their DKG secret keys to generate pseudo-random

values for multiple epochs. The computation required for gener-

ating these values is lightweight and can be easily performed on

any commodity laptop. The evaluation results are given in Table 3.

The performance of a single partial evaluation, its verification, and

the verification of the final pseudorandom value are independent

of the values of (𝑡, 𝑛). The evaluation for combine do not include

the time for validating partial evaluations. It is worth pointing out

that each member’s verification key vk𝑖 is created on G1 as well as
the partial evaluation 𝑣𝑖 . Consequently, the validity of 𝑣𝑖 is proven

using a Schnorr-style NIZK proof instead of pairing equation. This

results in a 1.6 times faster verification, and saves 47% - 62% gas

costs for on-chain verification as shown in Table 4.

Ethereum integration considerations. Ethereum has precom-

piles for BN256 curve, thus we developed solidity contracts to verify

the SNARKproofs generated inNI-DKG, check the validity of partial

evaluations, and ensure the correctness of the final pseudo-random

value. The gas costs for these verification algorithms are shown

in Table 4. The gas cost for verifying the SNARK proofs currently

starts at 700k due to several design choices made in Halo2wrong,

such as 5-width advice columns. It may be possible to reduce the gas

costs by refactoring Halo2wrong to use fewer advice columns. In

addition, we shall discuss some general strategy for saving gas costs

later. At the time of experiments, 700k gas was approximately $26

on Ethereum mainnet. Transaction fees on Ethereum-equivalent or

EVM-compatible L2 networks are much cheaper, for example, ∼10
times cheaper on Optimism and zkSync, and ∼100 times cheaper on

Boba Network, which makes it cost effective to deploy our protocol.

On the other hand, NI-DKG is the initialisation process that only

needs to be executed once throughout the protocol and does not

have to occur frequently.

Ethereum precompiles on BN256 do not support some of the

necessary operations required by our DVRF. Below we suggest

some workarounds:

• Since there is no precompiles for addition on G2, the value
of gpk can be computed off-chain and then be verified

on-chain by computing 𝜔 =
∏

𝑗∈𝑄 𝑔
𝑎𝑖,0
1

and checking if

𝑒 (𝑤,𝑔2) = 𝑒 (𝑔1, 𝑔𝑝𝑘).
• Ethereum does not have precompiles for hash_to_curve,

i.e., 𝐻2 (𝑥), so we have implemented the function in So-

lidity contract and the gas cost is ranging between 55k-

70k. Hash_to_curve is computed during the verification of

partial evaluations and the final pseudorandom value. As

shown in Table 4, verifying a partial evaluation costs 101392

gas and verifying a final pseudorandom value costs 193693.

However, for each 𝑥 , the value of 𝐻2 (𝑥) only needs to be

computed once and can be stored in the contract. With this

precomputation, the gas cost be reduced to 55k for verify-

ing the partial evaluation and 147k for verifying the final

pseudorandom value.

The ability to verify data and proofs on-chain is crucial for re-

solving disputes in a decentralized application environment. For

instance, verifying partial evaluations on chain helps determine

which members should be rewarded and which members should be

7

Jia Liu and Mark Manulis

circuit (𝑡, 𝑛) snark-prove snark-verify snark proof size peak memory usage

degree (s) (ms) (Bytes) (GB)

18 (5,9) 19.908 5.1817

3488

4.6

19 (11,21) 37.616 5.5494 8.8

20 (22, 43) 74.689 6.2203 16.6

21 (45, 88) 147.650 7.5934 32.6

22 (89, 176) 295.792 10.270 64.4

(a) NI-DKG circuits without G2 chip

circuit (𝑡, 𝑛) snark-prove snark-verify snark proof size peak memory usage

degree (s) (ms) (Bytes) (GB)

18 (3,5) 20.758 5.0838

3488

4.8

19 (9,16) 38.055 5.4085 8.8

20 (20, 38) 74.738 6.0364 16.5

21 (42, 83) 148.438 7.3965 32.5

22 (86, 171) 294.286 10.139 64.4

(b) NI-DKG circuits with G2 chip

Table 2: NI-DKG performance evaluation. This table evaluates the time it takes to generate and verify SNARK proof for the
NI-DKG circuit. Circuit degree determines the maximum number of gates. 𝑛 is chosen to be the maximum number that can be
supported under a specific degree and 𝑡 is the majority of 𝑛. The memory usage represents the peak memory used for generating
the proof. The proving time and memory usage are linear in the size of the circuit. The proof size is constant. The verification
time increases due to the size of public instances (i.e., pp𝑖 and 𝑐𝑖𝑝ℎ𝑒𝑟𝑖).

(𝑡, 𝑛) create-partial-eval verify-partial-eval combine verify-pseudo-random

(ms) (ms) (ms) (ms)

(3,5)

0.856 1.0262

0.650

1.6194

(9,16) 1.9135

(20, 38) 4.2424

(42, 83) 8.9423

(86, 171) 18.517

Table 3: Randomness generation. Timing results for creating and verifying a single partial evaluation, combining 𝑡 partial
evaluations and verifying the final pseudorandom value. The combining algorithm is linear in 𝑡 and its evaluation does not
include the time for validating partial evaluations. Verification of the final pseudorandom value takes constant time.

punished, providing economic incentives for members to partici-

pate and behave accordingly. However, it is not necessary to verify

every piece of data as it is sent on-chain. To save on gas costs, we

can employ a lazy verification strategy: the data owner locks away

a deposit for a specific period, and anyone can run the verification

algorithm to challenge the correctness of the data within this period.

If the verification fails, the defender (i.e., the data owner) will have

their deposit slashed and the challenger receives rewards. On the

other hand, if the verification is successful, the challenger will pay

for the verification cost. This approach significantly reduces the

actual operational costs for the protocol.

Scalability. In blockchain applications, a moderate number of

nodes, usually between 10 to 30, is often sufficient. For example,

Drand currently operates 23 nodes to generate random numbers. If

there are a large number of nodes, such as 160, a more practical and

efficient strategy is to divide these nodes into smaller committees.

These could be, for instance, 10 committees each with 16 nodes.

Each committee would then run a NIDKG with peak memory usage

of less than 10GB which can be easily computed on a laptop. The

different committees could then rotate for generating random num-

bers based on the previous beacon outputs. This is a more feasible

approach than directly running a NIDKG with 160 nodes, and then

summoning 80 nodes to generate random numbers for each round.

Performance comparison. Themost relevant related work for our

contributions is [1, 23, 29], however comparing their experimental

results for DKG is not meaningful for the following reasons: [1, 23]

uses an interactive DKG with multiple rounds of communications

among all the participants. If disputes arise, it needs more rounds of

communications to resolve the disputes and determine the qualified

set of nodes. As for [29], this protocol is implemented using bls12-

381 curve instead of bn254. However, bls12-381 is slower than

bn254 and is not supported on Ethereum. Moreover, verification in

[29] requires exponentiations on G2 which are not supported on

Ethereum either.

On the other hand, we can easily add the following comparison

with other DVRF-based approaches mentioned in Table 1 of the

8

https://orcid.org/0000-0001-7094-9324
https://orcid.org/0000-0002-1512-9670

Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility

circuit (𝑡, 𝑛) verify verify verify (fast) verify verify (fast)

degree snark-proof partial-eval partial-eval pseudo-random pseudo-random

18 (3,5) 726115

101392 55098 193693 147468

19 (9,16) 808112

20 (20, 38) 972917

21 (42, 83) 1312117

22 (86, 171) 1985415

Table 4: Cost for on-chain verification on Ethereum in gas currency.

survey in [17]. In fact, we outperform all DVRF-based protocols

from Table 1 considering the same metrics as used in the survey.

More precisely our protocol has: verification complexity of𝑂 (1) for
the pseudorandomness of the beacon values, overall communication

complexity of 𝑂 (𝑛) in both optimistic and worst cases, constant

recovery cost𝑂 (1) since no interactive dispute resolution is needed.

6 SECURITY ANALYSIS
In this section, we formally prove that ourVzk-DVRF

construction

achieves both standard pseudorandomness and strong pseudoran-

domness in the random oracle model. Pseudorandomness requires

that the pseudorandom value is indistinguishable from a uniform

random from the attacker’s point of view. Standard pseudorandom-

ness prohibits the adversary to query the challenge plaintext, while

the strong pseudorandomness allows the queries of the challenge

plaintext for up to 𝑡 − 1 times.

Theorem 6.1. Vzk-DVRF achieves standard pseudorandomness
under the co-CDH assumption and SDH assumption in the random
oracle model.

Proof. Wefirst constructHyb𝑠𝑛𝑎𝑟𝑘A (𝑏) to simulate SNARKproof

in NI-DKG and the original standard pseudorandomness game is

indistinguishable with Hyb𝑠𝑛𝑎𝑟𝑘A (𝑏) because of the zero knowledge
property of SNARK.

We then constructHyb𝑒𝑛𝑐A (𝑏) in the exact sameway asHyb𝑠𝑛𝑎𝑟𝑘A (𝑏)
except all the shares 𝑠𝑖, 𝑗 with 𝑗 ∈ [𝑚 + 1, 𝑛] encrypted in 𝑐𝑖𝑝ℎ𝑒𝑟𝑖
with 𝑖 ∈ [𝑚 + 1, 𝑛] are replaced with uniform randoms. It is easy to

see that Hyb𝑒𝑛𝑐A (𝑏) and Hyb𝑠𝑛𝑎𝑟𝑘A (𝑏) are indistinguishable under
SDH assumption. We shall sketch the proof here. W.l.o.g., assume

adversary chooses to corrupt members 𝐶 = {1, · · · ,𝑚}. Given an

SDH problem (𝐺,𝑞, 𝑔, 𝑔𝛼 , 𝑔𝛽) with oracle 𝑂𝛽 ,

• Challenger chooses randoms 𝜌𝑚+1, · · · , 𝜌𝑛
$← Z𝑞 and sets

up the public keys for honest members 𝑗 ∈ [𝑚 + 1, 𝑛] as
mpk𝑗 = 𝑔𝛼𝜌 𝑗

• Challenger chooses randoms 𝑟𝑚+1, · · · , 𝑟𝑛, 𝑧𝑚+1,1, · · · , 𝑧𝑚+1,𝑛,
· · · , 𝑧𝑛,1, · · · , 𝑧𝑛,𝑛

$← Z𝑞 . The encryption 𝑐𝑖𝑝ℎ𝑒𝑟𝑖 of shares
from the honest members 𝑖 ∈ [𝑚 + 1, 𝑛] are computed as

𝑐𝑖𝑝ℎ𝑒𝑟𝑖 = (𝑔𝛽𝑟𝑖 , 𝑧𝑖,1 + 𝑠𝑖,1, · · · , 𝑧𝑖,𝑛 + 𝑠𝑖,𝑛)

Let 𝑈𝑖, 𝑗 = mpk𝑟𝑖
𝑗
with 𝑖 ∈ [𝑚 + 1, 𝑛] and 𝑗 ∈ [1, 𝑛]. On

query 𝑥 , the oracle 𝐻1 is simulated as follows: Define a list

L𝐻1
= ∅.

– If there exists (𝑥, 𝑐) ∈ L𝐻1
, then return 𝑐

– Otherwise 𝑥 has not been queried before,

∗ If 𝑂𝛽 (𝑈𝑖, 𝑗 , 𝑥) = 1 for some 𝑖 ∈ [𝑚 + 1, 𝑛] and
𝑗 ∈ [1, 𝑛], then update the list L𝐻1

= L𝐻1
∪

{(𝑥, 𝑧𝑖, 𝑗)} and return 𝑧𝑖, 𝑗 . If𝑚 + 1 ≤ 𝑗 ≤ 𝑛, then

output 𝑥
𝑟 −1𝑖 𝜌−1𝑗

as solution to SDH problem. We

call this event 𝐸.

∗ Else choose random 𝑧, update the list L𝐻1
=

L𝐻1
∪ {(𝑥, 𝑧)} and return 𝑧.

If 𝐸 does not happen, 𝑧𝑖, 𝑗 with 𝑖 ∈ [𝑚 + 1, 𝑛], 𝑗 ∈ [𝑚 + 1, 𝑛] are
uniform randoms from the adversary’s point of view. Therefore

adversary sees the same distribution whether the shares 𝑠𝑖, 𝑗 with

𝑖 ∈ [𝑚 + 1, 𝑛], 𝑗 ∈ [𝑚 + 1, 𝑛] are correct shares (for Hyb𝑠𝑛𝑎𝑟𝑘A (𝑏)) or
randoms (for Hyb𝑒𝑛𝑐A (𝑏)). If 𝐸 happens, it solves the SDH problem.

That is

��
Pr[Hyb𝑠𝑛𝑎𝑟𝑘A (𝑏) = 1] − Pr[Hyb𝑒𝑛𝑐A (𝑏) = 1]

�� ≤ Advsdh.
Next, we constructHyb𝑠𝑖𝑚A (𝑏) in the exact sameway asHyb𝑒𝑛𝑐A (𝑏)

except all the zero-knowledge proofs for partial evaluations gener-

ated from the honest members are replaced with simulated proofs.

Hyb𝑠𝑖𝑚A (𝑏) andHyb
𝑒𝑛𝑐
A (𝑏) are indistinguishable because of the zero

knowledge property.

Below we shall prove Hyb𝑠𝑖𝑚A (0) and Hyb𝑠𝑖𝑚A (1) are indistin-

guishable under co-CDH assumption. Suppose there exists an ad-

versary A that distinguishes Hyb𝑠𝑖𝑚A (0) and Hyb𝑠𝑖𝑚A (1), then we

can construct an adversary B breaks the co-CDH assumption using

A as a subroutine.

Given a co-CDH problem (𝑒,G1,G2,G𝑇 , 𝑞, 𝑔1, 𝑔2, 𝑔𝛼
1
, 𝑔

𝛽

1
, 𝑔𝛼

2
) with

𝑔1 ∈ G1, 𝑔2 ∈ G2, 𝛼, 𝛽
$← Z𝑞 . B’s goal is to output 𝑔

𝛼𝛽

1
:

(1) Give the public parameters (𝑒,G1,G2,G𝑇 , 𝑞, 𝑔1, 𝑔2) to A.

(2) A chooses a set 𝐶 of members with |𝐶 | < 𝑡 ≤ 𝑛 − |𝐶 |
to corrupt. W.l.o.g., assume 𝐶 = {1, 2, . . . ,𝑚}. A gives 𝐶

to B. B chooses public keys mpk𝑖 for honest members

𝑖 ∈ [𝑚 + 1, 𝑛] and gives {mpk𝑖 }𝑚+1≤𝑖≤𝑛 to A. A chooses

public keys mpk𝑖 for 𝑖 ∈ 𝐶 and sends {mpk𝑖 }𝑖∈𝐶 to B.
(3) The random oracle 𝐻2 is answered as follows. Initialise

L𝐻2
= ∅. Let 𝑞𝐻2

be the total number of distinct random

oracle queries asked in this game. Choose an index 𝜂★
$←

[𝑞𝐻2
] uniformly at random. On query 𝑥 ,

• If there exists a tuple (𝑥, 𝑟, ℎ) ∈ L𝐻2
, output ℎ.

• Otherwise,

– if this is the 𝜂★-th distinct call, set 𝑟 = ⊥ and

ℎ = 𝑔
𝛽

1
where 𝑔

𝛽

1
is from the co-CDH problem.

– else choose a random 𝑟
$← Z𝑞 and set ℎ = 𝑔𝑟

1
.

– Update L𝐻2
= L𝐻2

∪ {(𝑥, 𝑟, ℎ)} and output ℎ.

Give random oracle access to A.

9

Jia Liu and Mark Manulis

(4) The random oracle 𝐻4 is programmed as follows: Define a

list L𝐻4
= ∅. For a query on 𝑦,

• Before NI-DKG is completed, the oracle is anwsered

in the standard way,

– If there exists (𝑦, 𝑐) in L𝐻4
, then return 𝑐

– Otherwise, choose a random 𝑐
$← Z𝑞 , update

the list L𝐻4
= L𝐻4

∪ {(𝑦, 𝑐)}, then return 𝑐

• After NI-DKG is completed, the global public key gpk
has been established,

– If 𝑒 (𝑔𝛽
1
, gpk) = 𝑒 (𝑦,𝑔2) and there exists (⊥, 𝑐) ∈

L𝐻4
(from the challenge query), modify this item

to (𝑦, 𝑐) and return 𝑐 .

– Otherwise, choose 𝑐
$← Z𝑞 and update the list

L𝐻4
= L𝐻4

∪ {(𝑦, 𝑐)}, then return 𝑐

(5) The random oracles𝐻1, 𝐻3 are programmed in the standard

way.

(6) To run the NI-DKG protocol, B chooses random polynomi-

als for honestmembers except the lastmember: 𝑓𝑚+1, · · · , 𝑓𝑛−1.
For the 𝑛-th member, B chooses randoms 𝑠𝑛,1, · · · , 𝑠𝑛,𝑡−1
and sets polynomial 𝑓𝑛 to have the values 𝑓𝑛 (0) = 𝛼, 𝑓𝑛 (1) =
𝑠𝑛,1, · · · , 𝑓𝑛 (𝑡 − 1) = 𝑠𝑛,𝑡−1. Note that B does not know

the value of 𝛼 , therefore B is not able to compute the co-

efficients of 𝑓𝑛 (𝑥) or the shares 𝑠𝑛,𝑡 = 𝑓𝑛 (𝑡), · · · , 𝑠𝑛,𝑛 =

𝑓𝑛 (𝑛). However, B can compute the public parameters

pp𝑛 = (𝑔𝑠𝑛,1
1

, 𝑔
𝑠𝑛,2
1

, · · · , 𝑔𝑠𝑛,𝑡−1
1

, 𝑔
𝑠𝑛,𝑡
1

, · · · , 𝑔𝑠𝑛,𝑛
1

, 𝑔𝛼
1
, 𝑔𝛼

2
), where

𝑔
𝑠𝑛,𝑗
1

for 𝑡 ≤ 𝑗 ≤ 𝑛 are derived from

𝑔
𝑠𝑛,𝑗
1

= 𝑔

∑
𝑖∈𝑇 𝑓𝑛 (𝑖)𝜆 𝑗,𝑖,𝑇

1
= 𝑔

𝛼𝜆 𝑗,0,𝑇

1
𝑔

∑
𝑖∈𝑇 \{0} 𝑓𝑛 (𝑖)𝜆 𝑗,𝑖,𝑇

1

and 𝑇 = {0, 1, · · · , 𝑡 − 1}. In the encryption of shares,

𝑠𝑛,𝑡 , · · · , 𝑠𝑛,𝑛 are replaced with randoms.

Let QUAL be the non-disqualified nodes at the end of NI-

DKG protocol. Since B has all the shares generated by

the corrupted members, B can recover the polynomials

𝑓1 (𝑥), · · · , 𝑓𝑚 (𝑥) generated by A. The global public key

is gpk = 𝑔𝛼
2
𝑔

∑
𝑖∈QUAL\{𝑛} 𝑓𝑖 (0)

2
where B knows the values

{𝑓𝑖 (0)}𝑖∈QUAL\{𝑛} .
• The corrupted members that are included in QUAL

have the shares sk𝑖 =
∑

𝑗∈QUAL 𝑓𝑗 (𝑖) and vk𝑖 = 𝑔
sk𝑖
1

for 𝑖 ∈ QUAL ∩𝐶 .
• For honest members 𝑖 ∈ [𝑚 + 1, 𝑡 − 1], sk𝑖 and vk𝑖 can

be computed similarly.

• For honest members 𝑖 ∈ [𝑡, 𝑛], sk𝑖 cannot be computed

by B, but vk𝑖 can be derived as vk𝑖 =
∏

𝑗∈QUAL 𝑔
𝑠 𝑗,𝑖
1

.

(7) On an evaluation query (Eval, 𝑥, 𝑖) for an honest 𝑖 , invoke

random oracle 𝐻2 to get 𝐻2 (𝑥) = (𝑥, 𝑟, ℎ) and
(a) if 𝑟 ≠ ⊥, return vk𝑟

𝑖
with a simulated proof

(b) if 𝑟 = ⊥, return ⊥
(8) On the challenge query (Challenge, 𝑥★, {(𝑖, 𝑧★

𝑖
, 𝜋𝑖)}𝑖∈𝑈 ,𝑉),

where |𝑉 | ≥ 𝑡 and 𝑉 ⊆ QUAL and𝑈 ⊆ 𝑉 ∩𝐶 and 𝑧★
𝑖
a set

of evaluation shares from the corrupted nodes, is answered

as follows:

(a) If 𝑥★ was not the 𝜂★-the query to 𝐻2, then B aborts.

(b) Otherwise do as follows:

(i) Check if 𝜋𝑖 is valid for 𝑖 ∈ 𝑈 . If any check fails,

output ⊥ and stop.

(ii) If there exists (𝑦, 𝑐) in 𝐻4 such that 𝑒 (𝑔𝛽
1
, gpk) =

𝑒 (𝑦,𝑔2), then set 𝑣★ = 𝑐 . Otherwise choose 𝑣★
$←

Z𝑞 and update L𝐻4
= L𝐻4

∪ {(⊥, 𝑣★)}. Depend-
ing on 𝑏 do as follows:

(A) If 𝑏 = 0 then return 𝑣★;

(B) Else return a uniform random.

(9) Continue answering evaluation queries as before. If A
makes queries of the form (Eval, 𝑥★, ·) then return ⊥.

(10) Receive a guess 𝑏′ from A.

The probability that B does not abort is 1/𝑞𝐻2
since 𝜂★ is uni-

formly and randomly chosen. Let’s consider the case when abort
does not happen. In this case, the challenge plaintext 𝑥★ is also

the 𝜂★-th distinct query to 𝐻2 and 𝐻2 (𝑥★) = 𝑔
𝛽

1
. The adversary is

not allowed to query (Eval, 𝑥★, ·) due to the definition of standard

pseudorandomness. In other words, the Step 7b will never be ex-

ecuted. In this case B simulates the standard pseudorandomness

game perfectly from A’s point of view.

We define event 𝐸 as when the adversary queries 𝑦★ to 𝐻4

such that 𝑦★ ≠ ⊥ and 𝑒 (𝑔𝛽
1
, gpk) = 𝑒 (𝑦★, 𝑔2). When 𝐸 happens,

B outputs 𝑦/(𝑔𝛽
1
)
∑

𝑖∈QUAL\{𝑛} 𝑓𝑖 (0)
as a solution to the co-CDH prob-

lem. From A’s point of view, the cases 𝑏 = 0 and 𝑏 = 1 are ex-

actly the same unless 𝐸 happens. We have that A’s advantage

Adv =
��
Pr[𝑏′ = 1|𝑏 = 0,¬abort] − Pr[𝑏′ = 1|𝑏 = 1,¬abort]

��
of

distinguishing 𝑏 = 0 and 𝑏 = 1 is not bigger than Pr[𝐸 |¬abort],
i.e., Adv ≤ Pr[𝐸 |¬abort]. Therefore B outputs 𝑦★ as a solution

to the co-CDH problem with non-negligible probability Pr[𝐸] ≥
Pr[𝐸 |¬abort]/𝑞𝐻1

. □

Theorem 6.2. Vzk-DVRF achieves strong pseudorandomness under
the co-CDH assumption and extended XDH assumption in the random
oracle model.

Proof. Simiarly to the proof for standard pseudorandomness,

we construct hybrids Hyb𝑠𝑛𝑎𝑟𝑘A (𝑏), Hyb𝑒𝑛𝑐A (𝑏) and Hyb
𝑠𝑖𝑚
A (𝑏). The

arguments for the indistinguishability between these hybrids are

similar as before since the partial evaluation queries on the chal-

lenge plaintext can be easily answered.

For any adversary A that asks 𝐻2 queries on 𝑞𝐻2
distinct 𝑥 , we

construct hybrid Hyb𝑓 𝑖𝑥A (𝑏) in the exact same way as Hyb𝑠𝑖𝑚A (𝑏)
except

• The challenger chooses an index 𝜂
$← [𝑞𝐻2

] uniformly at

random at the beginning of the game.

• On the challenge query (Challenge, 𝑥★, . . .), if 𝑥★ is not

the 𝜂-th distinct query to 𝐻2, the challenger aborts.

Since 𝜂 is uniformly and independently chosen, the probability

that abort does not happen is 1/𝑞𝐻2
. Hyb𝑠𝑖𝑚A (𝑏) and Hyb

𝑓 𝑖𝑥

A (𝑏) are
exactly the same from the attacker’s point of view when abort does

not happen. Therefore, Pr[Hyb𝑠𝑖𝑚A (𝑏) = 1] = 𝑞𝐻2
Pr[Hyb𝑓 𝑖𝑥A (𝑏) =

1].
Nextwe constructHyb𝑟𝑎𝑛𝑑A (𝑏) in the exact sameway asHyb𝑓 𝑖𝑥A (𝑏)

except that

• Let 𝐶 = {1, · · · ,𝑚} and the final polynomial constructed

in NI-DKG be 𝑓 . If𝑚 = 𝑡 − 1, the rest of the experiment is

exactly the same as Hyb𝑓 𝑖𝑥A (𝑏). If𝑚 < 𝑡 − 1, then choose

10

https://orcid.org/0000-0001-7094-9324
https://orcid.org/0000-0002-1512-9670

Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility

a random polynomial 𝑓 ★ such that 𝑓 ′ (0) = 𝑓 (0), 𝑓 ′ (1) =
𝑓 (1) · · · , 𝑓 ′ (𝑚) = 𝑓 (𝑚).

• On an evaluation query (Eval, 𝑥★, 𝑖) where 𝑥★ is the 𝜂★-

th distinct query to 𝐻2 and 𝑖 ∈ [𝑚 + 1, 𝑛], compute 𝑧𝑖 =

𝐻2 (𝑥★) 𝑓
′ (𝑖)

and a simulated zk proof 𝜋 . Return (𝑧𝑖 , 𝜋).

We shall first prove that Hyb𝑓 𝑖𝑥A (𝑏) and Hyb𝑟𝑎𝑛A (𝑏) are indistin-
gushable under the XDHassumption. Thenwewill showHyb𝑟𝑎𝑛𝑑A (0)
and Hyb𝑟𝑎𝑛𝑑A (1) are indistingushable under co-CDH assumption.

Hyb𝑓 𝑖𝑥A (𝑏) andHyb𝑟𝑎𝑛𝑑A (𝑏) are indistinguishable. Suppose there
exists an adversaryA that distinguishesHyb𝑟𝑎𝑛𝑑A (𝑏) andHyb𝑓 𝑖𝑥A (𝑏),
then we can construct an adversary B breaks the extended XDH

assumption using A as a subroutine.

Given an extended XDH problem

(𝑒,G1,G2,G𝑇 , 𝑞, 𝑔1, 𝑔2, 𝑔𝛼1

1
, · · · , 𝑔𝛼𝑡−1

1
, 𝑔

𝛽

1
, 𝑦1, · · · , 𝑦𝑡−1)

with 𝑔1 ∈ G1, 𝑔2 ∈ G2, 𝛼1, · · ·𝛼𝑡−1, 𝛽
$← Z𝑞 , 𝑦𝑖 = 𝑔

𝛼𝑖𝛽

1
for all 𝑖 or

randoms.

(1) B chooses an index 𝜂
$← [𝑞𝐻2

] uniformly at random

(2) The corruption phase is run as defined. Let 𝐶 = {1, · · · ,𝑚}.
If 𝑚 = 𝑡 − 1, the two experiments are indistinguishable

because they are defined in the exact same way. In the

following discussion, we assume𝑚 < 𝑡 − 1.
(3) The NI-DKG phase is run as defined except: B chooses

𝑟0, 𝑟1, · · · , 𝑟𝑚
$← Z𝑞 uniformly at random and creates the

last random polynomial 𝑓𝑛 (𝑥) such that 𝑓𝑛 (0) = 𝑟0, 𝑓𝑛 (1) =
𝑟1, · · · , 𝑓𝑛 (𝑚) = 𝑟𝑚, 𝑓𝑛 (𝑚+1) = 𝛼𝑚+1, · · · , 𝑓𝑛 (𝑡−1) = 𝛼𝑡−1.
Clearly B cannot compute coeffients of 𝑓𝑛 (𝑥) as it doesn’t
know the values of 𝛼𝑚+1, · · · , 𝛼𝑡−1. But B can compute the

public parameters for 𝑓𝑛 (𝑥) as pp𝑛 = (𝑆1, 𝑆2, · · · , 𝑆𝑛, 𝑆0, 𝑔𝑓𝑛 (0)
2
)

where

• For 𝑖 ∈ [0,𝑚], 𝑆𝑖 = 𝑔
𝑓𝑛 (𝑖)
1

• For 𝑖 ∈ [𝑚 + 1, 𝑡 − 1], 𝑆𝑖 = 𝑔
𝛼𝑖
1

• For 𝑖 ∈ [𝑡, 𝑛], 𝑆𝑖 =
∏

𝑗∈𝑇 𝑆
𝜆𝑖,𝑗,𝑇
𝑗

, where𝑇 = {0, 1, · · · , 𝑡−
1}.

B can derive the coefficients of 𝑓𝑖 (𝑥) for 𝑖 ∈ 𝐶 which are

created by the adversary. Other polynomials 𝑓𝑖 (𝑥) for 𝑖 ∈
[𝑚 + 1, 𝑛 − 1] are chosen by B randomly. Let QUAL be

the final qualified set of members which contains all the

honest members and some of the corrupted members. Let

𝑓 =
∑
𝑖∈QUAL 𝑓𝑖 be the final combined polynomial.

The global public key is gpk = 𝑔

∑
𝑖∈QUAL 𝑓𝑖 (0)

1
. The secret

keys sk𝑖 and verification keys vk𝑖 are
• For 𝑖 ∈ QUAL ∩𝐶 , sk𝑖 =

∑
𝑗∈QUAL 𝑓𝑗 (𝑖), vk𝑖 = 𝑔

sk𝑖
1

• For 𝑖 ∈ [𝑚 + 1, 𝑛], B cannot compute sk𝑖 because
𝛼𝑖 is unknown, but can still compute vk𝑖 as vk𝑖 =

𝑆𝑖 · 𝑔
∑𝑛−1

𝑗=0 𝑓𝑗 (𝑖)
1

.

(4) The random oracle 𝐻2 is answered as follows. On query 𝑥 ,

• If there exists a tuple (𝑥, 𝑟, ℎ) ∈ L𝐻2
, output ℎ.

• Otherwise,

– if this is the 𝜂-th distinct call, set 𝑟 = ⊥ and

ℎ = 𝑔
𝛽

1
where 𝑔

𝛽

1
is from the co-CDH problem.

– else choose a random 𝑟
$← Z𝑞 and set ℎ = 𝑔𝑟

1
.

– Update L𝐻2
= L𝐻2

∪ {(𝑥, 𝑟, ℎ)} and output ℎ.

Give random oracle access to A.

(5) The random oracles𝐻1, 𝐻3, 𝐻4 are programmed in the stan-

dard way.

(6) On an evaluation query (Eval, 𝑥𝜂 , 𝑖) where 𝑥𝜂 is the 𝜂-th

distinct query to 𝐻2 and 𝑖 ∈ [𝑚 + 1, 𝑛],
• If 𝑖 ∈ [𝑚 + 1, 𝑡 − 1], compute 𝑧𝑖 = 𝑦𝑖 · 𝑔

𝛽
∑𝑛−1

𝑗=0 𝑓𝑗 (𝑖)
1

and

a simulated proof 𝜋 . Return (𝑧𝑖 , 𝜋).
• If 𝑖 ∈ [𝑡, 𝑛], compute 𝑧𝑖 =

∏
𝑗∈𝑇 𝑧

𝜆𝑖,𝑗,𝑇
𝑗

where 𝑇 =

{0, 1, · · · , 𝑡 − 1} and 𝑧 𝑗 = 𝑔
𝛽 𝑓 (𝑗)
1

for 𝑗 ∈ [0,𝑚]. Create
a simulated proof 𝜋 . Return (𝑧𝑖 , 𝜋).

Other evaluation queries (Eval, 𝑥, 𝑖) with 𝑥 ≠ 𝑥𝜂 can be eas-

ily answered using vk𝑟
𝑖
where (𝑥, 𝑟, ℎ) ∈ L𝐻2

and simulated

proofs.

(7) On the challenge query (Challenge, 𝑥★, {(𝑖, 𝑧★
𝑖
, 𝜋𝑖)}𝑖∈𝑈 ,𝑉),

where |𝑉 | ≥ 𝑡 and 𝑉 ⊆ QUAL and𝑈 ⊆ 𝑉 ∩𝐶 and 𝑧★
𝑖
a set

of evaluation shares from the corrupted nodes,

(a) If 𝑥★ was not the 𝜂-the query to 𝐻2, then B aborts.

(b) Otherwise do as follows:

(i) Check if 𝜋𝑖 is valid for 𝑖 ∈ 𝑈 . If any check fails,

output ⊥ and stop.

(ii) Since B knows the value of 𝑓 (0), B computes

𝜋★ = 𝐻2 (𝑥★) 𝑓 (0) and queries 𝐻4 to obtain 𝑣
★ =

𝐻4 (𝜋★). Depending on 𝑏 do as follows:

(A) If 𝑏 = 0 then return 𝑣★;

(B) Else return a uniform random.

(8) Continue answering evaluation queries as before. If A
makes queries of the form (Eval, 𝑥★, ·) then return ⊥.

(9) Receive a guess 𝑏′ from A. B outputs 𝑏′.

It is easy to see that when 𝑦 = 𝑔
𝛼𝛽

1
, B simulates Hyb𝑓 𝑖𝑥A (𝑏) per-

fectly for A. When 𝑦𝑖s are uniform randoms, let 𝑦𝑖 = 𝑔
𝜏𝑖
1

for

some unknown 𝜏𝑖 . The evaluation queries on (Eval, 𝑥★, ∗) are effec-
tively answered with a random polynomial 𝑓 ′ such that 𝑓 ′ (0) =
𝑓 (0), 𝑓 ′ (1) = 𝑓 (1), · · · , 𝑓 ′ (𝑚) = 𝑓 (𝑚), 𝑓 ′ (𝑚+1) = 𝜏𝑚+1

𝛽
+∑𝑛−1

𝑗=0 𝑓𝑗 (𝑚+
1), 𝑓 ′ (𝑡 − 1) = 𝜏𝑡−1

𝛽
+∑𝑛−1

𝑗=0 𝑓𝑗 (𝑡 − 1), which simulates Hyb𝑟𝑎𝑛𝑑A (𝑏)

perfectly forA. Therefore

��
Pr[Hyb𝑓 𝑖𝑥A (𝑏) = 1] − Pr[Hyb𝑟𝑎𝑛𝑑A (𝑏) =

1]
�� ≤ Adv𝑒-𝑑𝑑ℎ .
Now we are left to show Hyb𝑟𝑎𝑛𝑑A (0) and Hyb𝑟𝑎𝑛𝑑A (1) are indis-

tinguishable to conclude the proof of strong pseudorandomness.

Hyb𝑟𝑎𝑛𝑑A (0) andHyb𝑟𝑎𝑛𝑑A (1) are indistinguishable. Suppose there
exists an adversaryA that distinguishesHyb𝑟𝑎𝑛𝑑A (0) andHyb𝑟𝑎𝑛𝑑A (1),
then we can construct an adversary B that breaks the co-CDH as-

sumption using A as a subroutine.

Given a co-CDH problem (𝑒,G1,G2,G𝑇 , 𝑞, 𝑔1, 𝑔2, 𝑔𝛼
1
, 𝑔

𝛽

1
, 𝑔𝛼

2
) with

𝑔1 ∈ G1, 𝑔2 ∈ G2, 𝛼, 𝛽
$← Z𝑞 . B’s goal is to output 𝑔

𝛼𝛽

1
.

(1) B chooses an index 𝜂
$← [𝑞𝐻2

] uniformly at random

(2) The corruption phase is run as defined. Let 𝐶 = {1, · · · ,𝑚}.
If𝑚 = 𝑡−1, the proof is similar to the one for standard pseu-

dorandomness because the adversary has compromised 𝑡−1
11

Jia Liu and Mark Manulis

members and is not allowed to request evaluation query on

𝑥★. In the following discussion, we assume𝑚 < 𝑡 − 1.
(3) The NI-DKG phase is run as defined except: B chooses

𝑟1, · · · , 𝑟𝑡−1
$← Z𝑞 uniformly at random and creates the

last random polynomial 𝑓𝑛 (𝑥) such that 𝑓𝑛 (0) = 𝛼, 𝑓𝑛 (1) =
𝑟1, · · · , 𝑓𝑛 (𝑡 − 1) = 𝑟𝑡−1. Of course B cannot compute

coefficients of 𝑓𝑛 (𝑥) as it doesn’t know the value of 𝛼 ,

but B can compute the public parameters for 𝑓𝑛 (𝑥) as
pp𝑛 = (𝑆1, 𝑆2, · · · , 𝑆𝑛, 𝑆0, 𝑔𝛼

2
) where

• For 𝑖 ∈ [1, 𝑡 − 1], 𝑆𝑖 = 𝑔
𝑓𝑛 (𝑖)
1

• 𝑆0 = 𝑔𝛼
1

• For 𝑖 ∈ [𝑡, 𝑛], 𝑆𝑖 =
∏

𝑗∈𝑇 𝑆
𝜆𝑖,𝑗,𝑇
𝑗

, where𝑇 = {0, 1, · · · , 𝑡−
1}.

B can derive the coefficients of 𝑓𝑖 (𝑥) for 𝑖 ∈ 𝐶 which are

created by the adversary. Other polynomials 𝑓𝑖 (𝑥) for 𝑖 ∈
[𝑚 + 1, 𝑛 − 1] are chosen by B randomly. Let QUAL be

the final qualified set of members which contains all the

honest members and some of the corrupted members. Let

𝑓 =
∑
𝑖∈QUAL 𝑓𝑖 be the final polynomial.

The global public key is gpk = 𝑔𝛼
1
𝑔

∑𝑖≠𝑛
𝑖∈QUAL 𝑓𝑖 (0)

1
. The secret

keys sk𝑖 and verification keys vk𝑖 are
• For 𝑖 ∈ QUAL ∩𝐶 , sk𝑖 =

∑
𝑗∈QUAL 𝑓𝑗 (𝑖), vk𝑖 = 𝑔

sk𝑖
1

• For 𝑖 ∈ [𝑚 + 1, 𝑡 − 1], sk𝑖 =
∑

𝑗∈QUAL 𝑓𝑗 (𝑖), vk𝑖 = 𝑔
sk𝑖
1

• For 𝑖 ∈ [𝑡, 𝑛], B cannot compute sk𝑖 because 𝛼 is

unknown, but can still compute vk𝑖 as vk𝑖 = 𝑆𝑖 ·
𝑔

∑𝑛−1
𝑗=0 𝑓𝑗 (𝑖)

1
.

(4) The random oracle 𝐻2 is answered as follows. On query 𝑥 ,

• If there exists a tuple (𝑥, 𝑟, ℎ) ∈ L𝐻2
, output ℎ.

• Otherwise,

– if this is the 𝜂-th distinct call, set 𝑟 = ⊥ and

ℎ = 𝑔
𝛽

1
where 𝑔

𝛽

1
is from the co-CDH problem.

– else choose a random 𝑟
$← Z𝑞 and set ℎ = 𝑔𝑟

1
.

– Update L𝐻2
= L𝐻2

∪ {(𝑥, 𝑟, ℎ)} and output ℎ.

Give random oracle access to A.

(5) The random oracle 𝐻4 is programmed as follows: Define a

list L𝐻4
= ∅. For a query on 𝑦,

• Before NI-DKG is completed, the oracle is anwsered

in the standard way,

– If there exists (𝑦, 𝑐) in L𝐻4
, then return 𝑐

– Otherwise, choose a random 𝑐
$← Z𝑞 , update

the list L𝐻4
= L𝐻4

∪ {(𝑦, 𝑐)}, then return 𝑐

• After NI-DKG is completed, the global public key gpk
has been established,

– If 𝑒 (𝑔𝛽
1
, gpk) = 𝑒 (𝑦,𝑔2) and there exists (⊥, 𝑐) ∈

L𝐻4
(from the challenge query), modify this item

to (𝑦, 𝑐) and return 𝑐 .

– Otherwise, choose 𝑐
$← Z𝑞 and update the list

L𝐻4
= L𝐻4

∪ {(𝑦, 𝑐)}, then return 𝑐

(6) The random oracles𝐻1, 𝐻3 are programmed in the standard

way.

(7) On an evaluation query (Eval, 𝑥𝜂 , 𝑖) where 𝑥𝜂 is the 𝜂-th

distinct query to 𝐻2 and 𝑖 ∈ [𝑚 + 1, 𝑛], choose 𝑧𝑖
$← Z𝑞

uniformly at random, and create a simulated proof 𝜋 . Return

(𝑧𝑖 , 𝜋). Note that we choose 𝑧𝑖 randomly here but it won’t

be a problem as the adversary is only allowed to query

(Eval, 𝑥𝜂 , ∗) for at most 𝑡 − 1 − |𝐶 | times.

Other evaluation queries (Eval, 𝑥, 𝑖) with 𝑥 ≠ 𝑥𝜂 can be eas-

ily answered using vk𝑟
𝑖
where (𝑥, 𝑟, ℎ) ∈ L𝐻2

and simulated

proofs.

(8) On the challenge query (Challenge, 𝑥★, {(𝑖, 𝑧★
𝑖
, 𝜋𝑖)}𝑖∈𝑈 ,𝑉),

where |𝑉 | ≥ 𝑡 and 𝑉 ⊆ QUAL and𝑈 ⊆ 𝑉 ∩𝐶 and 𝑧★
𝑖
a set

of evaluation shares from the corrupted nodes,

(a) If 𝑥★ was not the 𝜂-the query to 𝐻2, then B aborts.

(b) Otherwise do as follows:

(i) Check if 𝜋𝑖 is valid for 𝑖 ∈ 𝑈 . If any check fails,

output ⊥ and stop.

(ii) If there exists (𝑦, 𝑐) in 𝐻4 such that 𝑒 (𝑔𝛽
1
, gpk) =

𝑒 (𝑦,𝑔2), then set 𝑣★ = 𝑐 . Otherwise choose 𝑣★
$←

Z𝑞 and update L𝐻4
= L𝐻4

∪ {(⊥, 𝑣★)}. Depend-
ing on 𝑏 do as follows:

(A) If 𝑏 = 0 then return 𝑣★;

(B) Else return a uniform random.

(9) Continue answering evaluation queries as before. If A
makes queries of the form (Eval, 𝑥★, ·) then return ⊥.

(10) Receive a guess 𝑏′ from A.

Let 𝑖1, 𝑖2, · · · , 𝑖𝑡−𝑚−1 be the indices that the adversary requested
for evaluation query on 𝑥★ and 𝑧𝑖1 = 𝑔

𝜏𝑖
1

1
, 𝑧𝑖2 = 𝑔

𝜏𝑖
2

1
, · · · , 𝑧𝑖𝑡−𝑚−1 =

𝑔
𝜏𝑖𝑡−𝑚−1
1

with some unknown randoms 𝜏𝑖1 , · · · , 𝜏𝑖𝑡−𝑚−1 . It is easy to

see that the polynomial used to answer evaluation query on 𝑥★ is

effectively a random polynomial 𝑓 ′ such that 𝑓 ′ (0) = 𝑓 (0), 𝑓 ′ (1) =
𝑓 (1), · · · , 𝑓 ′ (𝑚) = 𝑓 (𝑚), 𝑓 ′ (𝑖1) = 𝜏𝑖1/𝛽, · · · , 𝑓 ′ (𝑖𝑡−𝑚−1) = 𝜏𝑖𝑡−𝑚−1/𝛽
(these 𝑡 points that uniquely determines 𝑓 ′ with degree 𝑡 − 1). Note
that, if the adversary does not query at all or query less than 𝑡−𝑚−1
times, then we can simply choose randoms to construct 𝑓 ′ implic-

itly. Therefore the experiment simulates Hyb𝑟𝑎𝑛𝑑A (𝑏) perfectly for

A.

We define event 𝐸 as when the adversary queries 𝑦★ to 𝐻4 such

that 𝑦★ ≠ ⊥ and 𝑒 (𝑔𝛽
1
, gpk) = 𝑒 (𝑦★, 𝑔2). When 𝐸 happens, B

outputs 𝑦★/(𝑔𝛽
1
)
∑

𝑖∈QUAL\{𝑛} 𝑓𝑖 (0)
as a solution to the co-CDH prob-

lem. From A’s point of view, the cases 𝑏 = 0 and 𝑏 = 1 are ex-

actly the same unless 𝐸 happens. We have that A’s advantage

Adv =
��
Pr[Hyb𝑟𝑎𝑛𝑑A (0) = 1] − Pr[Hyb𝑟𝑎𝑛𝑑A (1) = 1]

�� ≤ Adv𝑐𝑜-𝐶𝐷𝐻 .

□

7 CONCLUSION
In this paper we introduced the so far most efficient direct construc-

tion and implementation of a non-interactive distributed verifiable

random function (NI-DVRF) that is fully compatible with Ethereum.

Our NI-DVRF protocol consists of a non-interactive distributed key

generation (NI-DKG) and a non-interactive randomness generation.

The NI-DKG is constructed using SNARKs and we provide an op-

timised implementation in Halo2 proof systems. The randomness

generation is based on BLS signatures. We formalise and prove

the standard and strong pseudorandomness of our NI-DVRF con-

struction in the random oracle model. An Ethereum-compatible

implementation of our NI-DVRF protocol on the BN256 curve is

12

https://orcid.org/0000-0001-7094-9324
https://orcid.org/0000-0002-1512-9670

Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility

currently under investigation for possible deployment on the Boba

Network to power the DRB service. As such our work details several

non-trivial optimisations aiming to improve efficiency of the imple-

mented scheme and minimise gas costs for on-chain verification on

Ethereum. The experimental evaluations show that our protocol

can be easily executed on off-the-self computers. It is practical and

cost-effective for real world deployment considering proving time,

memory usage and low on-chain verification costs.

REFERENCES
[1] Drand. https://drand.love/about/#about.

[2] EIP-1108. https://eips.ethereum.org/EIPS/eip-1108.

[3] Grumpkin curve. https://hackmd.io/@aztec-network/ByzgNxBfd#2-

Grumpkin---A-curve-on-top-of-BN-254-for-SNARK-efficient-group-

operations.

[4] Halo2. https://github.com/privacy-scaling-explorations/halo2.

[5] Halo2wrong. https://github.com/privacy-scaling-explorations/halo2wrong.

[6] Statement regarding the public report on the analysis of MinRoot,

2023. https://ethresear.ch/t/statement-regarding-the-public-report-on-the-

analysis-of-minroot/16670.

[7] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Oracle Diffie-Hellman

Assumptions and an Analysis of DHIES. CT-RSA, page 143–158, 2001.

[8] Shashank Agrawal, Payman Mohassel, Pratyay Mukherjee, and Peter Rindal.

DiSE: Distributed Symmetric-key Encryption. In CCS 2018, pages 1993–2010.
ACM, 2018.

[9] L. Baird, S. Garg, A. Jain, P. Mukherjee, R. Sinha, M. Wang, and Y. Zhang. Thresh-

old signatures in the multiverse. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 1454–1470, 2023.

[10] Manuel Blum. Coin flipping by telephone a protocol for solving impossible

problems. SIGACT News, 15(1):23–27, jan 1983.

[11] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil

pairing. In ASIACRYPT 2001, volume 2248, pages 514–532, 2001.

[12] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash.

In EUROCRYPT 2005, pages 302–321, 2005.
[13] Ignacio Cascudo and Bernardo David. SCRAPE: scalable randomness attested by

public entities. In ACNS, pages 537–556, 2017.
[14] David Cash, Eike Kiltz, and Victor Shoup. The Twin Diffie-Hellman Problem

and Applications. In Advances in Cryptology – EUROCRYPT 2008, pages 127–145,
2008.

[15] Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. Homomorphic encryp-

tion random beacon. IACR Cryptol. ePrint Arch., 2019:1320, 2019.
[16] Kevin Choi, Arasu Arun, Nirvan Tyagi, and Joseph Bonneau. Bicorn: An op-

timistically efficient distributed randomness beacon. In Foteini Baldimtsi and

Christian Cachin, editors, FC 2023, volume 13950, pages 235–251, 2023.

[17] Kevin Choi, Aathira Manoj, and Joseph Bonneau. SoK: Distributed Randomness

Beacons. In IEEE S&P 2023, pages 75–92. IEEE, 2023.
[18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros

Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain. In

EUROCRYPT 2018, volume 10821, pages 66–98, 2018.

[19] Paul Dworzanski. A note on committee random number generation,

commit-reveal, and last-revealer attacks. http://paul.oemm.org/commit_reveal_

subcommittees.pdf.

[20] Team Elrond. Elrond: A highly scalable public blockchain via adaptive state

shardingand secure proof of stake, 2019. https://elrond.com/assets/files/elrond-

whitepaper.pdf.

[21] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations

over lagrange-bases for oecumenical noninteractive arguments of knowledge.

Cryptology ePrint Archive, Paper 2019/953, 2019.

[22] Nicolas Gailly. https://github.com/nikkolasg/ark-dkg.

[23] David Galindo, Jia Liu, Mihai Ordean, and Jin-Mann Wong. Fully distributed ver-

ifiable random functions and their application to decentralised random beacons.

In IEEE European Symposium on Security and Privacy, EuroS&P, pages 88–102.
IEEE, 2021.

[24] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang,

and Yinuo Zhang. hints: Threshold signatures with silent setup. Cryptology

ePrint Archive, Paper 2023/567, 2023. https://eprint.iacr.org/2023/567.

[25] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. J. Cryptology,
20(1):51–83, 2007.

[26] C. C. F. Pereira Geovandro, Marcos A. Simplício Jr., Michael Naehrig, and Paulo

S. L. M. Barreto. A family of implementation-friendly BN elliptic curves. Journal
of Systems and Software, 84(8):1319–1326, 2011.

[27] Yossi Gilad, RotemHemo, SilvioMicali, Georgios Vlachos, andNickolai Zeldovich.

Algorand: Scaling Byzantine Agreements for Cryptocurrencies. SOSP ’17, pages

51–68, 2017.

[28] Jens Groth. On the size of pairing-based non-interactive arguments. In EURO-
CRYPT (2), pages 305–326. Springer, 2016.

[29] Jens Groth. Non-interactive distributed key generation and key resharing. Cryp-

tology ePrint Archive, Paper 2021/339, 2021. https://eprint.iacr.org/2021/339.

[30] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,

and Alin Tomescu. Aggregatable distributed key generation. page 147–176, 2021.

[31] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology

overview series, consensus system. CoRR, abs/1805.04548, 2018.
[32] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan

Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages
357–388, 2017.

[33] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.

In FOCS ’99, pages 120–130. IEEE Computer Society, 1999.

[34] Krzysztof Pietrzak. Simple Verifiable Delay Functions. In 10th Innovations in
Theoretical Computer Science Conference (ITCS 2019), pages 60:1–60:15, 2018.

[35] Y. Qian. RANDAO: Verifiable Random Number Generation, 2017.

[36] Adi Shamir. How to share a secret. Commun. ACM, 11 1979.

[37] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable bias-resistant

distributed randomness. In 2017 IEEE Symposium on Security and Privacy, SP
2017, pages 444–460. IEEE Computer Society, 2017.

[38] Benjamin Wesolowski. Efficient verifiable delay functions. J. Cryptol.,
33(4):2113–2147, oct 2020.

A NON-INTERACTIVE ZERO-KNOWLEDGE
ARGUMENTS OF KNOWLEDGE

Given a relation𝑅with statement andwitness (𝑥,𝑤), a non-interactive
argument for 𝑅 is a tuple of probabilistic polynomial algorithms

(Setup, Prove,Verify) such that:

• Setup(𝑅): The setup outputs a proving key pk, a verification
key vk and a simulation trapdoor 𝜏 .

• Prove(𝑅, pk, 𝑥,𝑤): The prover algorithm outputs an argu-

ment 𝜋 for (𝑥,𝑤) ∈ 𝑅.
• 𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑅, vk, 𝑥, 𝜋): The verification algorithm checks the

proof 𝜋 and outputs 1 if valid or 0 otherwise.

We say (Setup, Prove,Verify) is a perfect non-interactive zero knowl-
edge argument of knowledge for 𝑅 if it has perfect completeness,

perfect zero knowledge and computational knowledge soundness

as defined below:

• Perfect completeness: given any true statement, an honest

prover should be able to convince an honest verifier, that

is, for all (𝑥,𝑤) ∈ 𝑅,

Pr[(pk, vk, 𝜏) ← Setup(𝑅);𝜋 ← Prove(𝑅, pk, 𝑥,𝑤) :
𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑅, vk, 𝑥, 𝜋) = 1] = 1

• Perfect zero-knowledge: the verifier does not learn any addi-

tional information about𝑤 beside the truth of the statement.

Formally, there exists a simulator Sim(𝑅, 𝜏, 𝑥) such that for

all (𝑥,𝑤) ∈ 𝑅 and all adversaries A,

Pr[(pk, vk, 𝜏) ← Setup(𝑅);𝜋 ← Prove(𝑅, pk, 𝑥,𝑤) :
A(𝑅, pk, vk, 𝜏, 𝜋) = 1]

= Pr[(pk, vk, 𝜏) ← Setup(𝑅);𝜋 ← Sim(𝑅, 𝜏, 𝑥) :
A(𝑅, pk, vk, 𝜏, 𝜋) = 1]

• Computational knowledge soundness: there is an extractor

that can compute a witness whenever the adversary pro-

duces a valid argument. For all adversaries A, there exists

13

https://drand.love/about/#about
https://eips.ethereum.org/EIPS/eip-1108
https://hackmd.io/@aztec-network/ByzgNxBfd#2-Grumpkin---A-curve-on-top-of-BN-254-for-SNARK-efficient-group-operations
https://hackmd.io/@aztec-network/ByzgNxBfd#2-Grumpkin---A-curve-on-top-of-BN-254-for-SNARK-efficient-group-operations
https://hackmd.io/@aztec-network/ByzgNxBfd#2-Grumpkin---A-curve-on-top-of-BN-254-for-SNARK-efficient-group-operations
https://github.com/privacy-scaling-explorations/halo2
https://github.com/privacy-scaling-explorations/halo2wrong
https://ethresear.ch/t/statement-regarding-the-public-report-on-the-analysis-of-minroot/16670
https://ethresear.ch/t/statement-regarding-the-public-report-on-the-analysis-of-minroot/16670
http://paul.oemm.org/commit_reveal_subcommittees.pdf
http://paul.oemm.org/commit_reveal_subcommittees.pdf
https://elrond.com/assets/files/elrond-whitepaper.pdf
https://elrond.com/assets/files/elrond-whitepaper.pdf
https://github.com/nikkolasg/ark-dkg
https://eprint.iacr.org/2023/567
https://eprint.iacr.org/2021/339

Jia Liu and Mark Manulis

an extractor EA such that,

Pr[(pk, vk, 𝜏) ← Setup(𝑅); ((𝑥, 𝜋);𝑤) ← (A || EA) (𝑅, pk, vk) :
(𝑥,𝑤) ∉ 𝑅 and Verify(𝑅, vk, 𝑥, 𝜋) = 1] ≤ negl

B NI-DVRF DEFINITIONS OF CORRECTNESS
In the following we give formal definitions for robustness and

uniqueness.

Robustness ensures the availability of computing the random

function value on any plaintext in an adversarial environment.

Robustness has been also called guaranteed output delivery (G.O.D.)

in recent works [13, 32]:

Definition B.1 (Robustness). A NI-DVRF protocolV = (KeyGen,
NIDKG, PartialEval, PartialVerify,Combine,Verify) satisfies robust-
ness if for all PPT adversaries A, the following experiment outputs

1 with negligible probability.

Corruption A chooses a collection 𝐶 of members to corrupt.

Adversary A acts on behalf of corrupted nodes, while the

challenger acts on behalf of the remaining nodes, which

behave honestly (namely they follow the protocol speci-

fication). The challenger chooses member public keys for

honest members and sends them to the adversary. The ad-

versary choosesmember public keys for corruptedmembers

and sends them to the challenger.

Initialization Challenger and adversary runs the non-interactive

distributed key generation protocol NIDKG(1𝜆, 𝑡, 𝑛). After
this phase, the protocol establishes a qualified set of mem-

bersQUAL. Every (honest) member 𝑃 𝑗 ∈ QUAL\𝐶 obtains a

key pair (sk𝑗 , vk𝑗). In contrast, (corrupted) members 𝑃 𝑗 ∈ 𝐶
end up with key pairs (sk𝑗 , vk𝑗) in which one of keys may

be undefined (i.e. either sk𝑗 = ⊥ or vk𝑗 = ⊥). At the end of

this phase, the global public key gpk and the verification

keys {vk𝑖 }𝑖∈QUAL are known by both the challenger and

the adversary.

Query In response to A’s evaluation query (Eval, 𝑥, 𝑖) for
some honest member 𝑃𝑖 ∈ QUAL \𝐶 and plaintext 𝑥 , the

challenger returns 𝜎𝑖𝑥 ← PartialEval(𝑥, sk𝑖 , vk𝑖). In any

other case, the challenger returns ⊥.
Challenge The challenger receives from A a set 𝑈 ⊆ QUAL,

of size at least 𝑡 , a plaintext 𝑥★ and a set of evaluation shares

{(𝑖, 𝑣𝑖 , 𝜋𝑖)}𝑖∈𝑈∩𝐶 corresponding to members under adver-

sarial control. Challenger proceeds to compute the par-

tial evaluations corresponding to honest nodes as (𝑖, 𝑣𝑖 , 𝜋𝑖)
← PartialEval(𝑥★, sk𝑖 , vk𝑖) for 𝑖 ∈ 𝑈 \ 𝐶 . Let (𝑣★, 𝜋★) ←
Combine(VK, 𝑥★, {(𝑖, 𝑣𝑖 , 𝜋𝑖)}𝑖∈𝑈). Output 1 if 𝑣★ ≠ ⊥ and

Verify(gpk, 𝑥★, 𝑣★, 𝜋★) = 0; else, output 0.

Uniqueness guarantees that it is infeasible for any adversary to

compute two different output values 𝑣, 𝑣 ′ and a plaintext 𝑥 such

that both values pass the verification test wrt 𝑥 , even when the

secret keys of the honest nodes are leaked.

Definition B.2 (Uniqueness). A NI-DVRF protocolV = (KeyGen,
NIDKG, PartialEval, PartialVerify,Combine,Verify) satisfies unique-
ness if for all PPT adversaries A, the following experiment outputs

1 with negligible probability.

Corruption and Initialization these two phases are defined ex-

actly as in Definition B.1 (Robustness).

Query The adversary A can issue evaluation query and key

revealing query.

• In response to A’s evaluation query (Eval, 𝑥, 𝑖) for
some honest member 𝑃𝑖 ∈ QUAL \𝐶 and plaintext 𝑥 ,

the challenger returns 𝜎𝑖𝑥 ← PartialEval(𝑥, sk𝑖 , vk𝑖).
In any other case, the challenger returns ⊥.

• In response toA’s key revealing query (KeyRev, 𝑗) for
some honest member 𝑃 𝑗 ∈ QUAL \𝐶 , the challenger
returns sk𝑗 .

Challenge The challenger receives from the adversary A, a

plaintext 𝑥★, two values 𝑣, 𝑣 ′ and two proofs 𝜋, 𝜋 ′. Output
1 if 𝑣 ≠ 𝑣 ′ and Verify(pk, 𝑥, 𝑣, 𝜋) = Verify(pk, 𝑥, 𝑣 ′, 𝜋 ′) = 1;

else, output 0.

14

https://orcid.org/0000-0001-7094-9324
https://orcid.org/0000-0002-1512-9670

	Abstract
	1 Introduction
	2 Preliminaries
	3 NI-DVRF definitions and security requirements
	4 Our NI-DVRF construction
	5 Ethereum-compatible implementation
	6 Security analysis
	7 Conclusion
	References
	A Non-interactive zero-knowledge arguments of knowledge
	B NI-DVRF definitions of correctness

