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Abstract. Verifiable secret sharing (VSS) is an important primitive in
distributed cryptography that allows a dealer to share a secret among
n parties in the presence of an adversary controlling at most t of them.
In the computational setting, the feasibility of VSS schemes based on
commitments was established over two decades ago. Interestingly, all
known computational VSS schemes rely on the homomorphic nature of
these commitments or achieve weaker guarantees. As homomorphism is
not inherent to commitments or to the computational setting in gen-
eral, a closer look at its utility to VSS is called for. In this work, we
demonstrate that homomorphism of commitments is not a necessity for
computational VSS in the synchronous or in the asynchronous communi-
cation model. We present new VSS schemes based only on the definitional
properties of commitments that are almost as good as the existing VSS
schemes based on homomorphic commitments. Importantly, they have
significantly lower communication complexities than their (statistical or
perfect) unconditional counterparts.
Further, in the synchronous communication model, we observe that a cru-
cial interactive complexity measure of round complexity has never been
formally studied for computational VSS. Interestingly, for the optimal
resiliency conditions, the least possible round complexity in the known
computational VSS schemes is identical to that in the (statistical or
perfect) unconditional setting: three rounds. Considering the strength of
the computational setting, this equivalence is certainly surprising. In this
work, we show that three rounds are actually not mandatory for compu-
tational VSS. We present the first two-round VSS scheme for n ≥ 2t + 1
and lower-bound the result tightly by proving the impossibility of one-
round computational VSS for t ≥ 2 or n ≤ 3t. We also include a new
two-round VSS scheme using homomorphic commitments that has the
same communication complexity as the well-known three-round Feldman
and Pedersen VSS schemes.
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1 Introduction

The notion of secret sharing was introduced independently by Shamir [30] and
Blakley [2] in 1979. Since then, it has remained an important topic in cryp-
tographic research. For integers n and t such that n > t ≥ 0, an (n, t)-secret
sharing scheme is a method used by a dealer D to share a secret s among a
set of n parties (the sharing phase) in such a way that in the reconstruction
phase any subset of t + 1 or more honest parties can compute the secret s, but
subsets of size t or fewer cannot. Since in some secret sharing applications the
dealer may benefit from behaving maliciously, parties also require a mechanism
to confirm the correctness of the dealt values. To meet this requirement, Chor
et al. [6] introduced the concept of verifiable secret sharing (VSS).

VSS has remained an important area of cryptographic research for the last
two decades [3, 9–11, 13, 20, 21, 23, 26, 27]. In the literature, VSS schemes are
categorized based on the adversarial computational power: computational VSS
schemes and unconditional VSS schemes. In the former, the adversary is com-
putationally bounded by a security parameter, while in the latter the adversary
may possess unbounded computational power. Naturally, the computational VSS
schemes are significantly more practical and efficient in terms of message and
communication complexities as compared to the unconditional schemes. Thus,

the majority of the recent research has been focussed on devising practical
constructions for unconditional VSS. In this work, we revisit the concept of com-
putational VSS [3,9,13,26] to settle the round complexity of computational VSS
based on minimal cryptographic assumptions (which is cryptographic commit-
ment in our case) and to investigate the role of homomorphism of commitment
schemes in the context of VSS.

Motivation and Contributions. The major savings in the computational
VSS schemes come from the use of cryptographic commitments. Interestingly,
we find that all computational VSS schemes in the literature except [13, App.
A] (which satisfies weaker conditions; see related work) require these commit-
ments to be homomorphic. However, homomorphism is not inherent to crypto-
graphic commitments; it is an additional property provided by discrete logarithm
(DLog), Pedersen [27] and few other commitment schemes. As we elaborate later
in the paper, commitments can be designed from general primitives such as one-
way functions or collision-free hash functions; but, homomorphism may not be
guaranteed in these constructions. Furthermore, relying on as little assumptions
as possible without much loss in efficiency is always a general goal in cryptog-
raphy. Therefore, computational VSS schemes based only on the definitional
properties of commitments can be interesting to study.

In this paper, we show that homomorphism is not a necessity for VSS in
both synchronous (known and bounded message delays) and asynchronous (un-
bounded message delays) communication model. While our VSS schemes (in
both network settings) based on any commitment scheme are almost as good
as the existing computational VSS protocols using homomorphic commitment



schemes in terms of communication, they are considerably better than the un-
conditional VSS schemes.

In the synchronous communication model with a broadcast channel, Gennaro
et al. [11] initiated the study of round complexity (number of rounds required
to complete an execution) and proved a lower bound of three rounds during the
sharing phase and one round during the reconstruction phase for unconditional
VSS. The work was extended in [10,20] with tight polynomial time constructions,
and in [21, 23] by improving the bounds in a statistical scenario where the VSS
properties are held statistically and can be violated with a negligible probability.

The round complexity of computational VSS has never being formally ana-
lyzed in the synchronous VSS literature. We observe that the round complexity
of all known practical computational VSS protocols [9, 27] for the optimal re-
silience of n ≥ 2t + 1 is the same as that of unconditional VSS schemes: three
rounds in the sharing phase.4 This similarity is surprising considering the us-
age of commitments in computational VSS. We analyze the round complexity of
computational VSS with homomorphic and non-homomorphic commitments.

1. We show the impossibility of 1-round computational VSS protocol in the
standard communication model under consideration; specifically, we prove
that a computational VSS scheme with one round in the sharing phase is
impossible for t ≥ 2 or n ≤ 3t. However, we find that there exists a special
1-round VSS construction for t = 1 and n ≥ 4, when the dealer is one of the
participants; we include the construction in the full version of the paper [1].

2. We then tighten our lower-bound result by providing a 2-round computa-
tional VSS scheme for n ≥ 2t + 1 using any commitment scheme. Existing
VSS schemes [9, 13, 27] based on homomorphic commitments require three
rounds for n ≥ 2t+1. Comparing with unconditional VSS schemes, we notice
that the message (the number of messages transferred) and communication
(the number of bits transferred) complexities of our scheme are at least a
linear factor less. Also, our scheme is better in terms of round complexity or
resilience bound as compared to all known unconditional VSS schemes.
We then provide a VSS scheme for n ≥ 2t + 1 using homomorphic com-
mitments that has the same message and communication complexities but
requires one less round of communication as compared to [9, 13, 27].

Organization. In the rest of this section, we review the related work. In Sec-
tion 2, we describe our adversary model, and definitions of VSS and commit-
ments. We present all our results for the synchronous model in Section 3 and
those for the asynchronous model in Section 4. In Section 5, we discuss a few
interesting open problems. Some of our proofs are shifted to the full version [1].

Related Work. For our work in the synchronous setting, we closely follow
the network and adversary model of the best known VSS schemes: Feldman

4 Note that it is possible to reduce a round in sharing in [9, 27] but that asks for
a sub-optimal resilience of n ≥ 3t + 1. Further, with a much stronger assumption
of non-interactive zero-knowledge (NIZK), it is possible to reduce the number of
sharing rounds to one for n ≥ 2t + 1 in the public key infrastructure [15].



VSS [9] and Pedersen VSS [27]. These schemes are called non-interactive as
they require unidirectional private links from the dealer to the parties; non-
dealer parties speak only via the broadcast channel. Our protocol assumes nearly
the same network model; however, in addition, we also allow parties to send
messages to the dealer over the private channels. In practice, it is reasonable to
assume that private links are bidirectional. Note that we do not need any private
communication links between non-dealer parties.

It is also important to compare our results with unconditional VSS as we
work towards reducing the cryptographic assumptions required for computa-
tional VSS. In unconditional or information theoretic settings, there are two
different possibilities for the VSS properties; they can be held perfectly (i.e.,
error-free) or statistically with negligible error probability. Perfect VSS is possi-
ble if and only if n ≥ 3t+1 [8], while statistical VSS is possible for n ≥ 2t+1 [28],
assuming a broadcast channel. Gennaro et al. [11] initiated the study of the round
complexity of unconditional VSS, which was extended by Fitzi et al. [10] and
Katz et al. [20]. They concentrate on unconditional VSS with perfect security
and show that three rounds in the sharing phase are necessary and sufficient for
n ≥ 3t+1. In the statistical scenario, Patra et al. [23] show that n ≥ 3t+1 is nec-
essary and sufficient for 2-round statistical VSS. Recently, Kumaresan et al. [21]
extended the result to prove that 3 rounds are enough for designing statistical
VSS with n ≥ 2t + 1.

The round complexity is never studied formally for computational VSS. In the
standard model that we follow, the best known computational VSS protocols [9,
13, 27] require two rounds; however, they work only for a suboptimal resilience
of n ≥ 3t + 1. Although these schemes can also be adopted for n ≥ 2t + 1,
they then ask for three rounds. In addition, the only known VSS scheme among
these that does not mandate homomorphic commitments, [13, App. A], does
not satisfies the generally required stronger commitment property described in
Section 2.2. In this paper, we improve all the above results by showing that
two rounds are necessary and sufficient for (stronger) VSS with n ≥ 2t + 1
using (homomorphic or non-homomorphic) cryptographic commitments. Note
that it is also possible to achieve 1-round VSS in the presence of a public-
key infrastructure (PKI) employing NIZK proofs [15]. However, NIZK proofs
requires a common reference string or a random oracle. Furthermore, the scheme
of [15] can only achieve computational secrecy, whereas our schemes can obtain
unconditional or computational secrecy as required.

For our work in the asynchronous setting, we follow the standard model of
Cachin et al. [3]. In the asynchronous setting, Cachin et al. [3], Zhou et al. [31],
and more recently Schultz et al. [29] suggested computational VSS schemes.
Of these, protocol by Cachin et al. is the most practical computational VSS
protocol with O(n2) message complexity. However, all of these schemes rely on
homomorphism of the commitment scheme. We avoid the use of homomorphism,
while maintaining the message complexity of the VSS protocol by Cachin et
al. [3]. Note that our protocol is significantly efficient in all aspects as compared
to unconditional VSS schemes [4, 5, 24, 25] in the asynchronous setting.



2 Preliminaries

We work in the computational security setting, where κ denotes the security
parameter of the system, in bits. We assume that the dealer’s secret s lies over
a finite field Fp, where p is an κ bits long prime. Our polynomials for secret
sharing belong to Fp[x] or Fp[x, y], and the indices for the parities are chosen
from Zp. Without loss of generality, we assume these indices to be {1, . . . , n}. A
function ǫ(·) : N → R

+ is called negligible if for all c > 0 there exists a κ0 such
that ǫ(κ) < 1/κc for all κ > κ0. In the paper, ǫ(·) denotes a negligible function.

2.1 Adversary Model

We consider a network of n parties P = {P1, P2, . . . , Pn}, where a distinguished
party D ∈ P works as a dealer. Our adversary A is t-bounded and it can com-
promise and coordinate actions of up to t out of n parties. We also assume that
the adversary is adaptive; it may corrupt any party at any instance during a
protocol execution as long as the number of corruptions is bounded by t.

We work in the synchronous as well as the asynchronous settings , and post-
pone the discussions on communication setting to the respective sections (syn-
chronous model in Section 3 and asynchronous model in Section 4).

2.2 VSS and Variants

We now present a definition of VSS [11]. A VSS protocol among n parties P =
{P1, P2, . . . , Pn} with a distinguished party D ∈ P consists of two phases: a
sharing phase and a reconstruction phase.

Sharing. Initially, D holds an input s, referred to as the secret, and each party
Pi may hold an independent random input ri. At the end of the sharing
phase, each honest party Pi holds a view vi that may be required to recon-
struct the dealer’s secret later.

Reconstruction. In this phase, each party Pi publishes its entire view vi from
the sharing phase, and a reconstruction function Rec(v1; . . . ; vn) is applied
and is taken as the protocol’s output.

We call an n-party VSS protocol, with t-bounded adversary A, an (n, t)-VSS
protocol if it satisfies the following conditions:

Secrecy. If D is honest then the adversary’s view during the sharing phase
reveals no information about s. More formally, the adversary’s view is iden-
tically distributed for all different values of s.

Correctness. If D is honest then the honest parties output the secret s at the
end of the reconstruction phase.

Commitment. If D is dishonest, then at the end of the sharing phase there
exists a value s∗ ∈ Fp∪{⊥}, such that at the end of the reconstruction phase
all honest parties output s∗.



The sharing phase as well as the reconstruction phase may consist of several
communication rounds. A VSS protocol is considered efficient if the total com-
putation and communication performed by all the honest parties is polynomial
in n and the security parameter κ. The optimal resiliency bound for VSS is
n ≥ 2t + 1 (in the presence of a broadcast channel) in the synchronous setting
and n ≥ 3t + 1 in the asynchronous setting.

Variants of VSS. A few variants of VSS have been introduced as required in
secret sharing applications. We briefly describe those below.

1. In our VSS definition, we assume that secrecy is unconditional, while cor-
rectness and commitment are computational. We can have a variation where
secrecy is computational, and correctness and commitment are unconditional
in nature. This is easily possible as secrecy and correctness of a VSS scheme
are derived respectively from the hiding and binding of the commitment
scheme under use. Our lower bound results hold for this variation as well.
However, for computationally secure VSS, we can prove security only against
a static adversary that chooses t parties before a protocol execution starts.

2. In our VSS, the reconstruction may end with ⊥. By fixing a default value
in Fp (say 0) that will be output instead of ⊥, it is possible to say that
s∗ ∈ Fp. However, as suggested in [11, Sec. 2.1], there is even a stronger VSS
definition possible. The stronger definition has exactly the same secrecy and
correctness properties, but has a stronger commitment property:
Strong Commitment. Even if D is dishonest, at the end of the sharing

phase, each party locally outputs a share of a secret s∗ chosen only from
Fp such that shares from any t + 1 honest parties are consistent with s∗.

For Shamir’s secret sharing, this property means that at the end of the shar-
ing phase, there exists a t-degree polynomial f(x) such that a share si held
by every honest party Pi is equal to f(i). While our asynchronous protocol
in Section 4.2 satisfies the basic VSS definition, our 2-round protocols in
sections 3.2 and 3.4 satisfy the stronger definition. In the full version [1], we
present an asynchronous protocol satisfying the stronger definition.

3. Another stronger variant of VSS considers dealer D to be an external party
(i.e., D /∈ P) and allows the t-bounded adversary to corrupt the dealer and
up to t additional parties in P .
Our lower bound results and all of our protocols except our one-round VSS
protocol [1] work for this variant as well. We show that 1-round VSS with
an external dealer is impossible even when t = 1 irrespective of the value of
n and the number of rounds in the reconstruction phase.

We work on VSS as a standalone primitive in this paper. The required VSS
properties, specially the commitment property, may change in some VSS applica-
tion. We consider that to be an interesting future work and discuss in Section 5.

2.3 Commitment Schemes

A cryptographic commitment scheme is a two-phase cryptographic protocol be-
tween a committer and a verifier.



Commit Phase. Given a message m, a committer runs [C, (m, d)] = Commit(m)
and publishes C as a commitment that binds her to message m (binding)
without revealing it (hiding). The function may output an opening value d.

Open Phase. The committer opens commitment C by revealing (m, d) to a
verifier. The verifier can then check if the message is consistent with the

commitment (i.e., m
?
= Open(C, m, d)).

We note that the commitment schemes also require a setup that generally in-
volves choosing the cryptographic parameters. This can easily be included in the
VSS setup and thus we do not consider it in detail.

A commitment scheme cannot be unconditional (perfect or statistical) bind-
ing and hiding at the same time. As a result, commitments come in two flavors:
perfect (or statistical) binding but computational hiding commitments, and per-
fect (or statistical) hiding but computational binding commitments. There are
many applications of commitments where they may never be opened or opened
only after a while. In such scenarios, commitments of the second type are gener-
ally considered advantageous over the first type, since the committed values are
hidden in information theoretic sense in the second type.

Perfect hiding but computational binding (under the DLog assumption) Ped-
ersen commitment scheme [27] is the most commonly used commitment scheme
in computational VSS. It has an interesting additive homomorphic property that
a product of two commitments C1 and C2 (associated respectively with messages
m1 and m2) commits to an addition of the committed messages (m1 + m2).
However, with its reliance on the DLog assumption, this commitment scheme
will not be suitable once quantum computers arrive.

On the other hand, commitments of both types can be achieved from any
one-way function (see [16] and references within). In this paper, we concentrate
on the commitments of the second type, whose efficient constructions are pos-
sible from any claw-free permutation [14], any one-way permutation [22] or any
collision-free hash function [17]. Along with being non-homomorphic, some of
these commitment constructions are also interactive in the nature. We restrict
ourselves to the non-interactive commitment constructions (e.g., [14] and [17]) as
the interactive commitment constructions may increase the rounds complexity
of our VSS schemes.

3 VSS in the Synchronous Network Model

Before presenting our results in the synchronous setting, we describe our syn-
chronous communication model in detail.

3.1 Synchronous Communication Model

We closely follow the bounded-synchronous communication model in [9, 13, 27].
Here, the dealer is connected to every other party by a private, authenticated
and bidirectional link. We do not require communication links between any two



non-dealer parties in P . We further assume that all parties have access to a
common broadcast channel that allows a party to send a message to all other
parties and every party is assured that all parties have received the same message
in the same round.

In the synchronous model, the distributed protocols operate in a sequence of
rounds. In each round, a party performs some local computation, sends messages
(if any) to the dealer through the private and authenticated link, and broadcasts
some information over the broadcast channel. By the end of the round, it also
receives all messages sent or broadcast by the other parties in the same round.

Along with being adaptive and t-bounded, we allow the adversary to be
rushing: in every round of communication it can wait to hear the messages of
the honest parties before sending (or broadcasting) its own messages. By round
complexity of VSS, we mean the number of rounds in the sharing phase only,
since all of our protocols ask for single round during reconstruction.

3.2 2-Round VSS for n ≥ 2t + 1 from any Commitment

Here, we present a 2-round sharing and 1-round reconstruction VSS protocol
for n ≥ 2t + 1. Our 2-round VSS protocol allows any form of commitment.
Feldman and Pedersen VSS schemes require three rounds for n ≥ 2t + 1. The
general structure of the sharing phase of their three round VSS schemes is: In
the first (distribution) round, the dealer sends shares to parties and publishes a
commitment on these shares. In the second round, parties may accuse (through
broadcast) the dealer of sending inconsistent shares, which he resolves (through
broadcast) in the third round. It is impossible to have distribution and accusation
in the same round. Therefore, in order to reduce the number of rounds to two, the
accusation and resolution rounds in VSS are collapsed into one round. To achieve
this, the set of parties (in addition to dealer) performs some communication in
the first round. We then employ a commitment-based modification of standard
round-reduction technique from unconditional VSS protocols [11, Sect. 3.1]. It
involves every party publicly committing to some randomness and sending that
randomness to the dealer in the first round. The dealer uses this randomness as a
blinding pad to broadcast the shares in the next round. Further, we use bivariate
polynomial instead of univariate polynomials used in Feldman or Pedersen VSS.
In the absence of homomorphism and without using bivariate polynomial, we
do not know how the parties can check if the degree of a shared univariate
polynomial is t without using expensive NIZK proofs.

Overview. In our 2-round protocol, dealer D chooses a t-degree symmetric
bivariate polynomial F (x, y) such that F (0, 0) = s, the secret that he wants
to distribute. Note that all of our protocols in this paper work also with the
asymmetric bivariate polynomials. However, for ease of understanding, we always
use symmetric polynomials in our descriptions. Dealer D gives the univariate
polynomial fi(x) = F (x, i) to every party Pi and publicly commits to evaluations
fi(j) for j ∈ [1, n]. As already mentioned, we allow every party to communicate
to D independently in the first round. Specifically, every party Pi sends n random



Protocol 2-Round-VSS(D,P , s): Sharing Phase (Two Rounds)

Round 1: Dealer D

– chooses a random symmetric bivariate polynomial F (x, y) of degree-t such that
F (0, 0) = s

– computes [Comij , (fij , rij)] = Commit(fij) for i, j ∈ [1, n] and i ≥ j, where
fij = F (i, j)

– assigns Comij = Comji and rij = rji for i, j ∈ [1, n] and i < j

– sends (fij , rij) to Pi for j ∈ [1, n] and broadcasts Comij for i, j ∈ [1, n]
Every other party Pi

– chooses two sets of n random values (pi1, . . . , pin) and (gi1, . . . , gin).
– computes [PComij , (pij , qij)] = Commit(pij) and [GComij , (gij , hij)] =

Commit(gij) for j ∈ [1, n].
– sends (pij , qij) and (gij , hij) for j ∈ [1, n] to D, and broadcasts PComij and

GComij for j ∈ [1, n].
Round 2: Dealer D, for every party Pi,

– verifies if pij
?
= Open(PComij , pij , qij) and gij

?
= Open(GComij , gij , hij) for j ∈

[1, n]
– broadcasts (αij , βij) for all j ∈ [1, n] such that αij = fij+pij and βij = rij+gij

if the verification succeeds, and broadcasts (fij , rij) for all j ∈ [1, n] otherwise.
Party Pi

– verifies if deg(fi(x))
?
= t and fij

?
= Open(Comij , fij , rij) for j ∈ [1, n], where

fi(x) is the polynomial defined by fijs for j ∈ [1, n].
– broadcasts nothing if the verifications succeeds, and broadcasts (pij , qij) and

(gij , hij) for j ∈ [1, n] otherwise.
Pi is said to be happy if she broadcasts nothing, and considered unhappy otherwise.

Local Computation: Every party Pk

1. discards D and halts the execution of 2-Round-VSS, if D broadcasts
– Comij 6= Comji for some i and j

– (fij , rij) such that fij 6= Open(Comij , fij , rij) for some i and j

– fij for j = [1, n] that define polynomial of degree > t for some i

– (fij , rij) and (fji, rji) for some i and j such that (fij 6= fji) or (rij 6= rji)
– (αij , βij) and Pi broadcasts (pij , qij) and (gij , hij) such that pij =

Open(PComij , pij , qij), gij = Open(GComij , gij , hij) for all j; and (f ′

ij 6=
Open(Comij , f

′

ij , r
′

ij) or deg(f ′

i(x)) > t) where f ′

ij = αij−pij , r′ij = βij−gij

and f ′

i(x) is the polynomial defined by f ′

ijs for j ∈ [1, n].
2. discards an unhappy party Pi, if she broadcasts pij and gij for j ∈ [1, n] such

that pij 6= Open(PComij , pij , qij) or gij 6= Open(GComij , gij , hij) for some j. Let
Q be the set of non-discarded parties.

3. outputs (fkj , rkj) for j ∈ [1, n] as received in round 1, if Pk is happy and in Q. If
she is unhappy and belongs to Q then she outputs (fkj , rkj) for j ∈ [1, n] if they
are broadcasted in round 2. Otherwise, Pk computes (fkj , rkj) for j ∈ [1, n] as
fkj = αkj − pkj and rkj = βkj − gkj .

Fig. 1. Sharing Phase of Protocol 2-Round-VSS(D,P , s) for n ≥ 2t + 1

values privately to D and publicly commits them. At the end of the first round,



Protocol 2-Round-VSS(D,P , s): Reconstruction Phase (One Round)

1. Each Pi in Q broadcasts (f ′

ij , r
′

ij) for j ∈ [1, n]

Local Computation: For every party Pk,
1. Party Pi ∈ Q is said to be confirmed if deg(f ′

i(x)) = t and f ′

ij =
Open(Comij , f

′

ij , r
′

ij) for j ∈ [1, n], where f ′

i(x) is the polynomial defined by
f ′

ij ’s for all j ∈ [1, n].
2. Consider f ′

i(x) polynomials of any t+1 confirmed parties. Interpolate F ′(x, y)
and output s′ = F ′(0, 0).

Fig. 2. Reconstruction Phase of Protocol 2-Round-VSS(D,P , s) for n ≥ 2t + 1

every party checks the consistency of his received univariate polynomial with
the commitments of D and D checks consistency of his received values with
the corresponding commitments of the individual parties. The second round
communication consists of only broadcasts. Any inconsistency between the public
commitments and private values as well as the pairwise inconsistencies in the

bivariate polynomial distribution (i.e, fi(j)
?
= fj(i)) are sorted out in the second

round. Note that there will be agreement among the parties at the end of local
computation of sharing phase; i.e. every honest party knows if D is discarded,
otherwise every honest party has identical copy of Q, the set of parties allowed
to participate in the reconstruction phase.

In the reconstruction phase, every party discloses their respective univariate
polynomials. They are verified with respect to the public commitments and the
consistent polynomials are used for the reconstruction of the bivariate polynomial
and consequently the committed secret s. We present the protocol in Fig. 1 and
Fig. 2. We prove that the 2-Round-VSS protocol satisfies the stronger variant of
VSS defined in Section 2.2.

Theorem 1. Protocol 2-Round-VSS is a VSS scheme for n ≥ 2t + 1.

Proof. We prove the secrecy, correctness and strong commitment properties of
VSS to show that the above theorem holds.
Secrecy. The secrecy of the scheme follows from the unconditional hiding prop-
erty of the underlying commitment function and the property of symmetric
bivariate polynomial. D’s public commitments Comij ’s will be uniformly dis-
tributed given the unconditional hiding property of the underlying commitment
function. Moreover, the αij , βij values for j ∈ [1, n] corresponding to honest Pi’s
will be uniformly distributed. Now the secrecy of the constant term of the D’s
degree-t bivariate polynomial follows from the standard information-theoretic
argument [27] against an adversary controlling at most t parties, i.e.,

Pr[A knows s|{Vi for any t parties, Public Information}] = Pr[A knows s],

where Vi represents all the information available at or computable by party Pi

at the end of the sharing phase.



Correctness. If D is honest, then he will never be discarded. Moreover, all
the honest parties will be happy. Now, correctness will follow if we show that a
corrupted Pi ∈ Q is considered as confirmed only when she broadcasts correct
polynomials in the reconstruction phase. Assume that corrupted Pi is consid-
ered to be confirmed even when she broadcasts f ′

ij and r′ij for j ∈ [1, n], where
these values are not equal to fij and rij (as given by D). We can then devise
an algorithm to break the computational binding property of the commitment
function using this adversary. Therefore, given that the commitment function
achieves computational binding, all the confirmed parties disclose proper fij and
rij for j ∈ [1, n]. Therefore, every honest party will correctly reconstruct F (x, y)
and consequently s = F (0, 0).
Strong Commitment. We have to consider the case of a corrupted D. If D
is discarded in the sharing phase, then every party may assume some default
predefined value as D’s secret. So we consider the case when D is not discarded.

Firstly, note that an honest party will never be discarded. Moreover at the
end of sharing phase honest Pi will output n points (i.e. fij ’s for all j ∈ [1, n])
on a degree-t polynomial fi(x) and n values rij such that for every honest Pj ,
it holds that fij = fji and rij = rji. We show this by considering all the three
cases for any pair of honest parties (Pi, Pj):

If Pi and Pj are happy, then we have Comij = Comji. Now Pi verified consis-
tency of (Comij , fij , rij), and Pj verified consistency of (Comji, fji, rji). This
implies the pair (fij , rij) is same as (fji, rji), unless corrupted D had broken
the binding property of the commitment function.

If Pi is happy and Pj is unhappy, then (Comij , fij , rij) is consistent and also
Comij = Comji. For Pj , we have two cases: (1) D has broadcasted fj(k) and
rjk for k ∈ [1, n]; (2) D broadcasted αik, βik for k ∈ [1, n] and Pj computed
fik = αik−pik, rik = βik−gik. However, in both the above cases, fik and rik

are consistent with Comjk for all k ∈ [1, n] (for otherwise D would have been
discarded). This also implies that tuple (Comji, fji, rji) is consistent. Again
unless corrupted D had broken the binding property of the commitment
function, the pairs (fij , rij) and (fji, rji) are identical.

If Pi and Pj are unhappy, then D would have been discarded if the pairs (fij ,
rij) and (fji, rji) are not identical.

So unless corrupted D breaks the binding property of commitment function, the
polynomials of the honest parties define symmetric bivariate polynomials, say
F (x, y). Now in the reconstruction phase, every honest party will be considered
as confirmed. However, a corrupted party will be considered as confirmed if she
broadcasts points on degree-t polynomial fi(x) = F (x, i) (assuming she does not
break binding of commitment function). Let Pi broadcasts n points, say f ′

ij ’s,
corresponding to f ′

i(x) that is different from fi(x). Then fij must be different
from f ′

ij at least for one j where Pj is honest. Then f ′

ij will not be consistent
with Comij and Pi will not be confirmed. Now it follows that the parties will
reconstruct D’s committed secret s = F (0, 0) in the reconstruction phase. �

The sharing phase of our 2-Round VSS protocol requires O(n2κ) bits of
broadcast and O(n2κ) bits of private communication, while the reconstruction



phase requires O(n2κ) bits of broadcast. This communication complexity is at
least a linear factor lower than the unconditional VSS schemes for n ≥ 2t+1 [21].
On the other hand, it is also a linear factor higher than the communication com-
plexity of 3-round Pedersen or Feldman VSS. This difference arises due to the
use of bivariate polynomial in our protocol, which results from the lack of homo-
morphism in the commitment scheme under use. We suppose this increase in the
communication complexity is a price paid for a reduction in the assumptions.
In subsection 3.4, we present a more efficient VSS protocol using homomorphic
commitments that has same communication complexity as Pedersen or Feldman
VSS, but requires one less round of communication.

3.3 (Im)possibility Results for 1-Round VSS

Here, we prove the impossibility of 1-Round VSS except when t = 1 and n ≥ 4,
which lower-bounds computational VSS for n ≥ 2t + 1 and any t to a round
complexity of two. Our 2-round protocol presented in the previous section thus
has an optimal round complexity. Our results hold irrespective of computational
or unconditional nature of the secrecy property.

Theorem 2. 1-round VSS is impossible for t > 1 and n ≥ 4, irrespective of the
number of rounds in the reconstruction phase.

Proof (Sketch). The proof of this theorem is very similar to the proof of Theorem
7 of [23]. We prove the theorem by contradiction. So we assume that 1-round
VSS, say Π , with t = 2 exists. Without loss of generality, we assume D to be some
party other than P1. We then show that for any execution if party P1 receives
some particular piece of information from the dealer, then she will reconstruct a
particular secret in the reconstruction phase irrespective of what P2, . . . , Pn has
received from the dealer. This of course allows us to show a breach of secrecy
of Π , since P1 could be the sole corrupted party and can distinguish the secret
when he receives the particular information. We note that the proof does not
make any assumption on the computational power of P1 i.e. even a polynomial
time P1 can breach the secrecy. Since the proof strategy is very similar to the
proof of Theorem 7 of [23], we skip the details here and present a detailed proof
in the full version of the paper [1].

Theorem 3. 1-round VSS is impossible for n ≤ 3t, irrespective of the number
of rounds in the reconstruction phase.

Proof (Sketch). This theorem is also proved by contradiction. In brief, we show
that if such a scheme exists, then the the view of any t parties in the sharing
phase must determine the secret. This further implies a breach of secrecy, since
adversary A can corrupt and coordinate any t parties. A detailed proof appears
in the full version of the paper [1].

In Theorem 3, we show that 1-round VSS is impossible for n ≤ 3t, which
implies the impossibility of 1-round VSS for t = 1 and n ≤ 3. Further, in



Theorem 2, we show that 1-round VSS is impossible for t > 1 and n ≥ 4.
Therefore, 1-round VSS, if possible, will work for t = 1 and n ≥ 4. We present
a 1-round protocol in support of the corollary in the full version of the paper.

VSS with an External Dealer. Here it can be shown that 1-round sharing
VSS is impossible even in the presence of a single corruption apart from the
dealer irrespective of the total number of parties and number of rounds in the
reconstruction phase. Basically, we can follow the proof of Theorem 2 and arrive
at the same contradiction while assuming t = 1 and the dealer is corrupted.
Hence, we have the following theorem.

Theorem 4. 1-round VSS with external dealer is impossible for t > 0 irrespec-
tive of the number of parties and the number of rounds in reconstruction phase.

3.4 An Efficient 2-round VSS using Homomorphic Commitments

We now present a 2-round sharing, 1-round reconstruction VSS protocol for
n ≥ 2t + 1 using homomorphic commitments. It has the same message and
communication complexities as that of Feldman and Pedersen VSS schemes,
and requires one less round of interaction. The protocol is similar to our 2-round
protocol in Section 3.2; however, we do not need bivariate polynomials here.

Without loss of generality, we use the Pedersen commitment scheme as a
representative homomorphic commitment scheme. In the sharing phase, dealer
D chooses two random degree-t polynomials f(x) and r(x) such that f(0) = s.
Dealer D then sends fi = f(i) and ri = r(i) to each Pi over the private links
and broadcasts commitments on the coefficients of f(x) (using the coefficients
of r(x) as random strings). By the end of the second round, every honest party
must hold the correct point on the committed polynomial. To ensure that every
Pi sends two pairs (pi, qi) and (gi, hi) in F

2
p to dealer D and publicly commits pi

(using qi as a random element) and gi (using hi as a random element). Broadcasts
and local computations in the second round are very similar to 2-Round-VSS in
Section 3.2. The protocol is presented in Fig. 3. Similar to 2-Round-VSS, we note
that there will be agreement among the parties at the end of local computation
of sharing phase on whether D is discarded or not. If D is not discarded, then
every honest party will have identical copy of Q.

Theorem 5. Protocol 2-Round-VSS-Hm is a VSS scheme for n ≥ 2t + 1.

The proof of the theorem closely follows from the proof of Theorem 1, and we
include it in the full version of the paper.

The sharing phase requires O(nκ) bits of communication over both the pri-
vate links and the broadcast channel. The reconstruction phase requires O(nκ)
bits of communication over the broadcast channel.

4 VSS in the Asynchronous Communication Model

We now shift our focus to the asynchronous communication setting where VSS
is possible for n ≥ 3t+1. As we discuss in the related work, all known computa-



Protocol 2-Round-VSS-Hm(D,P , s)

Sharing Phase: Two Rounds
Round 1:

1. D selects two random polynomials f(x) and r(x) of degree-t, such that
f(0) = s. Let f(x) = a0 +a1x+ . . .+atx

t and r(x) = b0 + b1x+ . . .+ btx
t.

2. For every i ∈ [1, n], D sends fi = f(i) and ri = r(i) to Pi and broadcasts
Comi = Commit(ai, bi) for i = 0, . . . , t.

3. Every party Pi sends two pairs (pi, qi) and (gi, hi) in F
2
p to D and broad-

casts commitments PComi = Commit(pi, qi) and GComi = Commit(gi, hi).
Round 2:

1. D checks if PComi and GComi are consistent with the received pairs (pi, qi)
and (gi, hi). If they are not consistent, then D broadcasts (fi, ri); else he
broadcasts αi = fi + pi and βi = ri + gi.

2. Party Pi checks if Commit(fi, ri) =
Qt

j=0
(Comi)

ij

. If not, then Pi broad-
casts pairs (pi, qi) and (gi, hi), else she broadcasts nothing. Party Pi is
considered happy in the later case while she is unhappy in the former case.

Local Computation: Every party Pk

1. discards D and halts the execution of 2-Round-VSS-Hm, if D broadcasts

(a) fi, ri for some i and Commit(fi, ri) 6=
Qt

j=0
(Comi)

ij

.
(b) αi, βi; and Pi broadcasts (pi, qi) and (gi, hi) such that PComi =

Commit(pi, qi) and GComi = Commit(gi, hi); and Commit(f ′

i , r
′

i) 6=
Qt

j=0
(Comi)

ij

where f ′

i = αi − pi and r′i = βi − gi.
2. discards an unhappy party Pi if she broadcasts (pi, qi) and (gi, hi) such

that PComi 6= Commit(pi, qi) or GComi 6= Commit(gi, hi). Let Q be the set
of non-discarded parties.

3. outputs fk, rk as received from D in round 1, if Pk is in Q and happy. An
unhappy Pk in Q outputs fk, rk if they are directly broadcasted by D in
round 2. Else Pk computes fk and rk as fk = αk − pk and rk = βk − gk.

Reconstruction Phase: One Round
Round 1:

1. Each Pi ∈ Q broadcasts f ′

i and r′i.
Local Computation: For every party Pk,

1. Party Pi ∈ Q is said to be confirmed if Commit(f ′

i , r
′

i) =
Qt

j=0
(Comi)

ij

.

2. Consider f ′

i values of any t + 1 confirmed parties and interpolate f ′(x).
Output s′ = f ′(0).

Fig. 3. Protocol 2-Round-VSS-Hm for n ≥ 2t + 1 with Homomorphic Commitments

tional VSS scheme [3,29,31] in the asynchronous communication setting rely on
homomorphism of commitments. In this section, we show that homomorphism
is not necessary for computational VSS in the asynchronous communication set-
ting. We build our protocol from asynchronous VSS of [3] as it is the only generic
and efficient asynchronous VSS scheme known in the literature. Further, with
its O(n2) messages complexity, it is extremely efficient in terms of the num-
ber of messages. We modify this scheme so that it satisfies the VSS properties
when the underlying commitment need not be homomorphic. This protocol does



not guarantee that every honest party receive his share of the secret. However, it
guarantees that even a corrupted D can not commit to ⊥ instead of a secret from
Fp (which is stronger than the basic definition given in section 2.2). We present
another protocol in the full version that achieves the stronger definition where
every party receives his share of the secret. Although this protocol increases the
communication complexity by a linear factor in n, it is highly efficient in terms
of communication when compared with the unconditional schemes [4, 5, 24, 25].

4.1 Asynchronous Communication Model

We follow the communication model of [3] and assume an asynchronous net-
work of n parties P1, . . . , Pn such that every pair of parties is connected by an
authenticated and private communication link. We work against a t-bounded
adaptive adversary that we defined in Section 2.1. In the asynchronous commu-
nication setting, we further assume that the adversary controls the network and
may delay messages between any two honest parties. However, it cannot read
or modify these messages as the links are private and authenticated, and it also
has to eventually deliver all the messages by honest parties. In the asynchronous
communication setting, a VSS scheme has to satisfy the liveness and agreement
properties (also called as the termination conditions) along with the secrecy,
correctness and commitment properties described in Section 2.2.

Liveness. If the dealer D is honest in the sharing phase, then all honest parties
complete the sharing phase.

Agreement. If some honest party completes the sharing phase, then all honest
parties complete the sharing phase eventually. If all honest parties subse-
quently start the reconstruction, then all honest parties will complete it.

4.2 VSS for n ≥ 3t + 1 from any Commitment

We observe that VSS of [3] heavily relies on homomorphism of the underlying
commitment schemes and does not satisfy VSS properties if we replace the homo-
morphic commitments by non-homomorphic commitments (agreement property
will not be satisfied). The incapability stems from the fact that verifying the
following with respect to non-homomorphic commitment is not easy: given com-
mitments on n values (associated with n indices), the underlying values define
a degree-t polynomial. However, we find that with subtle enhancements to VSS
of [3], one can obtain an asynchronous VSS protocol. In our enhanced protocol,
a majority (t + 1 or more) of the honest parties receives proper share of the
secret (t-degree univariate polynomial), while the remaining honest parties are
assured that there are t + 1 or more honest parties that have received t-degree
univariate polynomial and can complete the reconstruction phase. The message
and communication complexities of our protocol are same as that of VSS of [3].

In our protocol, D chooses a symmetric bivariate polynomial F (x, y) satisfy-
ing F (0, 0) = s. He then computes an n× n commitment matrix, Com such that



Protocol AsynchVSS(D,P , s)
Sharing Phase:
Code for D:

– Choose a random symmetric bivariate polynomial F (x, y) of degree-t such that
F (0, 0) = s.

– Compute [Comij , (fij , rij)] = Commit(fij) for i, j ∈ [1, n] and i ≥ j, where fij =
F (i, j).

– Assign Comij = Comji and rij = rji for i, j ∈ [1, n] and i < j. Let Com be the n × n

matrix containing Comij for j ∈ [1, n] in the ith row.
– Send (send, Com, fi(x), ri(x)) to Pi, where fi(x) = F (x, i), ri(x) is the degree-(n−1)

polynomial defined by the points {(1, ri1), . . . , (n, rin)}.

Code for Pi:

– On receiving (send, Com, fi(x), ri(x)) from D, send (echo, Com) to every Pj if (a)

Com is an n × n symmetric matrix and (b) fi(j)
?
= Open(Comij , fi(j), ri(j)).

– On receiving (echo, Com) from at least 2t + 1 parties (possibly including it-
self) satisfying that Com received from Pj is same as received from D, send
(ready, share-holder, Com) to every Pj , if you have already sent out echo mes-
sages.

– If you have not sent out any ready signal before:
1. on receiving ready messages from at least t+1 Pj ’s satisfying that Com received

from Pj is same as received from D, send (ready, share-holder, Com) to every
Pj , if you have already sent out echo messages.

2. on receiving (ready, share-holder, Com) from at least t + 1 Pj ’s such that all
the Com are same but do not match with the copy received from D, update
your Com with this new matrix, delete everything else received from D and
send (ready, ⋆, Com) to every Pj .

– On receiving ready signals from at least 2t+1 parties such that all of them contain
same Com as yours and at least t+1 ready signals contain share-holder, agree on
Com and terminate.

Reconstruction Phase:
Code for Pi:

1. Send (fi(x), ri(x)) to every Pj if you had sent (ready, share-holder, Com) in the
sharing phase.

2. Wait for t+1 (fj(x), rj(x)) messages such that fj(x) is degree-t polynomial, rj(x)
is degree-(n−1) polynomial and fj(k) = Open(Comjk, fj(k), rj(k)) for all k ∈ [1, n],
interpolate F (x, y) using those t+1 fj(x) polynomials, compute s = F (0, 0) as the
secret.

Fig. 4. Asynchronous VSS for n ≥ 3t + 1 (optimal resilience)

(i, j)th entry in Com is the commitment on F (i, j). Now D delivers fi(x) = F (x, i)
and Com to every Pi. In the rest of the protocol the parties try to agree on Com

and check whether their polynomials are consistent with Com or not. We observe
that the parties do not need to exchange and verify their common points on the



bivariate polynomial, given that agreement on Com can be achieved. Because,
the parties can now perform local consistency checking of their polynomial with
Com. In our protocol, some honest parties may not receive polynomials consistent
with Com, however, they still help to reach agreement on Com sensing that major-
ity of the honest parties have received a common Com and also the polynomials
received by them are consistent with Com. We describe the protocol in Fig. 4.

Lemma 1. If an honest party Pi sends a ready message containing Com and a
distinct honest party Pj sends a ready message containing Com, then Com = Com.

Proof. We prove this by contradiction. Let there exists an honest pair (Pi, Pj)
such that Com 6= Com. The honest Pi communicates ready with Com if: (a) it
receives (echo, Com) from at least 2t + 1 parties OR b) it receives (ready, ·, Com)
from at least t + 1 parties, where · can be either share-holder or ⋆. Similar
reasons apply for Pj who sends Com. If Pi and Pj send ready messages due to
(a), then it implies that there is at least one honest party who communicates
echo messages with Com as well as with Com. This is impossible, since an honest
party communicates echo with a unique matrix. For all other cases, we arrive
at the contradiction that there is at least one honest party who sends echo with
two different matrices or ready with two different matrices. We show this by
considering the case when Pi sends ready due to (a) and Pj sends due to (b).
The other cases will follow. Pj sends ready due to (b) implies that there is at
least one honest party, say Pk who communicated ready with Com to Pj . Then
by chain of arguments, we either get that honest Pi has sent ready with Com or
get an honest party (possibly including Pi) who communicates ready with Com

due to (a). In both cases, we arrive at contradiction, since no honest party can
send echo/ready with two different matrices. Hence, we prove the lemma. �

Lemma 2. If some honest party Pi has agreed on Com, then every honest party
will eventually agree on Com.

Proof. To prove the lemma, it is enough to prove the following: If some honest
party Pi has received 2t + 1 ready messages with Com such that at least t + 1 of
them contain share-holder, then every honest party will eventually receive the
same. If Pi receives ready messages as above, then there are at least t+1 honest
parties who send out ready messages with Com and at least one of the honest
party’s ready message must contain share-holder. An honest party sends out
ready with share-holder in two cases: (a) She received at least 2t + 1 echo

message with Com and it has sent out echo with Com. Among these 2t+1 parties
t+1 are honest and they will eventually receive ready message from all the t+1
honest parties who also sent the same to Pi (also by Lemma 2 if some honest
party has sent a ready message with Com, then no other honest party will send
ready with Com). Hence these t+1 honest parties will eventually send out ready
with share-holder. Hence eventually every honest party will receive 2t + 1
ready messages with Com such that at least t+1 of them contain share-holder.
(b) She received at least (t + 1) ready messages with Com and she has sent out
echo with Com. Among these (t+1), there is at least one honest party, say Pk. If



Pk has sent ready with share-holder, then by recursive argument this case will
boil down to case (a). However if Pk sends ready without share-holder, then
he has received at least t + 1 ready massages with share-holder which ensures
existence of another honest Pl who sent ready massage with share-holder.
Now again by recursive argument, this case will boil down to case (a). �

Lemma 3. If some honest party Pi has agreed on Com, then there is a set H of
at least t+1 honest parties each holding degree-t polynomial fj(x) such that it is
consistent with Com and there is a symmetric bivariate polynomial F (x, y) such
that F (x, i) = fi(x).

Proof. If honest Pi has agreed on Com, then she has received 2t + 1 ready mes-
sages with Com such that at least t + 1 of them contain share-holder. From
the previous proof, eventually t + 1 honest parties (possibly including Pi) will
eventually send out ready with share-holder. So there will be a set of at least
t+1 honest parties who send out ready with share-holder. We claim that this
set of honest parties, denoted by H will satisfy the conditions mentioned in the
lemma statement. We notice that the honest parties in H never update Com and
by previous lemma they eventually agree on the same. Also they send out echo
well before sending out ready. This implies each honest party Pi in H ensures
that her polynomial fi(x) (i.e. the points on it) are consistent with Com. Now
we proceed to show that there is a symmetric bivariate polynomial F (x, y) such
that F (x, i) = fi(x). This can be shown by showing for every pair (Pi, Pj) from
H, fi(j) = fj(i) holds good. This follows from the fact that Pi and Pj has same
Com where they checked Comij = Comji holds and then Pi and Pj individually

ensured fi(j)
?
= Open(Comij , fi(j), ri(j)) and fj(i)

?
= Open(Comji, fj(i), rj(i)) re-

spectively. If the above arguments do not hold then corrupted D has broken
binding property of underlying commitment, as he knows how to open Comij in
two different ways. �

Theorem 6. Protocol AsynchVSS is an asynchronous VSS for n ≥ 3t + 1.

Proof. Liveness. If D is honest, then every honest party will eventually send
out echo and then ready with share-holder. Since there are at least 2t + 1
honest parties, every honest party will eventually agree on Com.
Agreement. Agreement follows from Lemma 2.
Correctness. Correctness follows from Lemma 2 and 3. Honest dealer case is
easy to follow. For a corrupted dealer the unique secret determined in the shar-
ing phase is nothing but the constant term of F (x, y) defined by H in Lemma
3. In the reconstruction phase, all the parties will reconstruct D’s secret us-
ing the polynomials sent by the honest parties in H. Specifically, every honest
party will definitely consider fj(x), rj(x) sent by party Pj in H. However, we

will be done if we show that any wrong degree-t polynomial fj(x) sent by a
corrupted party Pj will never be considered (unless corrupted Pj breaks binding
of commitment). This is ensured by the following check performed by an hon-
est party before considering Pj ’s polynomial for the reconstruction of F (x, y):

fj(k) = Open(Comjk, fj(k), rj(k)) for all k ∈ [1, n]. This check ensures that fj(x)



must match with fj(x) at the t + 1 positions corresponding to H. But then it

implies fj(x) = fj(x).
Secrecy. Follows from the properties of bivariate polynomial and the hiding of
underlying commitment scheme. �

5 Discussion and Future Work

In this paper, we considered computational VSS as a standalone primitive. Our
VSS schemes may also be easily leveraged in applications such as asynchronous
Byzantine agreement protocols [5]. However, other VSS applications such as
proactive share renewal and share recovery schemes [3, 18] and distributed key
generation [12,19] heavily rely on homomorphism of the commitments. It repre-
sents an interesting open problem if we can do better than in the unconditional
case (e.g., [7]) for these applications. Further, most of the threshold crypto-
graphic protocols also rely on homomorphism to verify the correctness. It will
be interesting to check the feasibility of these threshold protocols based our VSS
schemes without using expensive zero-knowledge proofs.

Finally, our schemes based on the definitional properties of commitments are
expensive (by a linear factor) in terms of communication complexity in com-
parison to the respective schemes employing homomorphic commitments. It is
worthwhile to study whether this gap in communication complexity is inevitable.
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