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Abstract

After carrying out a protocol for quantum key agreement over a noisy
quantum channel, the parties Alice and Bob must process the raw key in
order to end up with identical keys about which the adversary has virtu-
ally no information. In principle, both classical and quantum protocols
can be used for this processing. It is a natural question which type of
protocols is more powerful. We show that the limits of tolerable noise are
identical for classical and quantum protocols in many cases. More specif-
ically, we prove that a quantum state between two parties is entangled if
and only if the classical random variables resulting from optimal measure-
ments provide some mutual classical information between the parties. In
addition, we present evidence which strongly suggests that the potentials
of classical and of quantum protocols are equal in every situation. An
important consequence, in the purely classical regime, of such a corre-
spondence would be the existence of a classical counterpart of so-called
bound entanglement, namely “bound information” that cannot be used
for generating a secret key by any protocol. This stands in contrast to
what was previously believed. The studied connection between the classi-
cal and quantum protocols makes it natural to conjecture that (classical
and quantum) distillability is possible only if single-copy distillability is
already possible.
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1 Introduction

In modern cryptography there are mainly two security paradigms, namely com-
putational and information-theoretic security. The latter is sometimes also
called unconditional security. Computational security is based on the assumed
hardness of certain computational problems (e.g., the integer-factoring or dis-
crete-logarithm problems). However, since a computationally sufficiently pow-
erful adversary can solve any computational problem, hence break any such
system, and because no useful general lower bounds are known in complexity
theory, computational security is always conditional and, in addition to this, in
danger by progress in the theory of efficient algorithms as well as in hardware
engineering (e.g., quantum computing). Information-theoretic security on the
other hand is based on probability theory and on the fact that an adversary’s
information is limited. Such a limitation can for instance come from noise in
communication channels or from the laws of quantum mechanics.

Many different cryptographic settings based on noisy channels have been
described and analyzed. Examples are Wyner’s wire-tap channel [37], Csiszar
and Korner’s broadcast channel [7], or Maurer’s model of key agreement from
joint randomness [26], [28].

Quantum cryptography on the other hand lies in the intersection of two of
the major scientific achievements of the 20th century, namely quantum physics
and information theory. Various protocols for so-called quantum key agreement
have been proposed (e.g., [3], [11]), and the possibility and impossibility of such
key agreement in different settings has been studied by many authors.

The goal of this paper is to derive parallels between classical and quantum
key agreement and thus to show that the two paradigms are more closely related
than previously recognized. These connections allow for investigating questions
and solving open problems of purely classical information theory with quantum-
mechanic methods. One of the possible consequences is that, in contrast to
what was previously believed, there exists a classical counterpart to so-called
bound entanglement (i.e., entanglement that cannot be purified by any quantum
protocol), namely mutual information between Alice and Bob which they cannot
use for generating a secret key by any classical protocol.

The outline of this paper is as follows. In Section 2 we introduce the classi-
cal (Section 2.2) and quantum (Section 2.3) models of information-theoretic key
agreement and the crucial concepts and quantities, such as secret-key rate and
intrinsic information on one side, and measurements, entanglement, and quan-
tum purification on the other. In Section 3 we show the mentioned links between
these two models, more precisely, between entanglement and intrinsic informa-
tion (Section 3.1) as well as between quantum purification and the secret-key
rate (Section 3.4). We illustrate the statements and their consequences with a
number of examples (Sections 3.2 and 3.5). In Section 4 we define and charac-
terize the classical counterpart of bound entanglement, called bound intrinsic
information. We show that not only problems in classical information theory
can be addressed by quantum-mechanical methods, but that the inverse is also
true: In Section 3.3 we propose a new measure for entanglement based on the



intrinsic information measure.

The results of Section 3 already appeared in [18] and [17]. Proposition 4 in
Section 4 was proved in [16], whereas the other results in Section 4 have not
been published previously.

2 Unconditionally Secure Key Agreement

Shannon [34] has defined an encryption scheme to be perfectly secret if the ci-
phertext does not reveal any information about the encrypted message. Such
a system is unconditionally secure with respect to a ciphertext-only attack; in
particular, an exhaustive search over the key space is of no help for finding
the cleartext. Shannon proved in the same paper that, unfortunately, such a
high level of secrecy has its price: it is, roughly spoken, only possible between
parties who share an information-theoretically secure key that is at least as
long as the message to be encrypted. The so-called one-time pad [35], a com-
putationally very simple encryption that just bit-wisely XORs the key to the
message, on the other hand shows that perfectly secure encryption is possible
between parties who do share a key of that length. Since we assume that in-
secure channels are always available, the one-time pad reduces the problem of
information-theoretically secure encryption to information-theoretically secure
key agreement, which we will consider in the following.

2.1 Information-Theoretic Key Agreement from Classical
and Quantum Information

We assume that two parties Alice and Bob, who are connected by an authentic
but otherwise completely insecure channel, are willing to generate a secret key.
More precisely, Alice and Bob want to compute, after some rounds of commu-
nication (where the random variable C' summarizes the communication carried
out over the public channel), strings S4 and Sp, respectively, with the property
that they are most likely both equal to a uniformly distributed string S about
which the adversary Eve has virtually no information. More precisely,

Prob[Sa=Sp=5]>1—-¢, H(S) =logy|S|, and I(S;C)<e (1)

(where S is the range of S and |S| is its cardinality) should hold for some small e.
Note that the security condition in (1) is information-theoretic (sometimes also
called unconditional): Even an adversary with unlimited computer power must
be unable to obtain useful information. In contrast to this, the Diffie-Hellman
protocol [9] for instance achieves the goal of key agreement by insecure commu-
nication only with respect to computationally bounded adversaries.

It is a straight-forward generalization of Shannon’s mentioned impossibility
result that information-theoretic secrecy cannot be generated in this setting, i.e.,
from authenticity only: Public-key systems are never unconditionally secure.
Hence we have to assume some additional structure in the initial setting, for



instance some pieces of information given to Alice and Bob (and also Eve),
respectively.

2.2 Classical Information

The general case where this information given to the three parties initially
consists of the outcomes of some random experiment has been studied inten-
sively [26], [28], [36]. Here, it is assumed that Alice, Bob, and Eve have access
to realizations of random variables X, Y, and Z, respectively, jointly distributed
according to Pxy z. A special case is when all the parties receive noisy versions
of a (binary) signal broadcast by some information source.

It was shown that if the setting is modified this way (where the secrecy
condition in (1) must be replaced by I(S;CZ) < €), then secret-key agreement
is often possible. Shannon’s pessimistic result now generalizes to the statement
that the size of the resulting secret key S cannot exceed the quantity

I(X;Y | Z):= min I(X;Y|Z)
XY —~Z—~Z

(where the minimum is taken over all Markov chains XY — Z — Z) which was
defined in [28] as the intrinsic conditional information between X and Y, given
7.

In the special case where the parties’ initial information consists of the out-
comes of many independent repetitions of the same random experiment given
by Pxyz (i-e., Alice knows X* :=[Xy, X3, ..., Xn], and similarly for Bob and
Eve), the secret-key rate S(X;Y||7) was defined as the maximal key-generation
rate (measured with respect to the number of required realizations of Pxyz)
that is asymptotically achievable (for N — oo0). The above-mentioned result
then implies

S(X;Y12) < I(X:Y12)

and it was conjectured that intrinsic information can always be distilled into
a secret key, i.e., that I(X;Y | Z) > 0 implies S(X;Y||Z) > 0 [28], [36].
This conjecture was supported by some evidence given in [28]; however, it is
the objective of this paper to give much stronger evidence for the opposite,
i.e., that there exist types of intrinsic information not allowing for secret-key
agreement. The motivation for the corresponding considerations comes from
quantum mechanics or, more precisely, from the concept of bound entanglement
in quantum information theory.

2.3 Quantum Information

When considering the model where certain pieces of information are given ini-
tially to the involved parties, it is a natural question where this information
comes from. According to Landauer, information is always physical and hence
ultimately quantum mechanical [24], [25]. Thus the random variables could



come from measuring a certain quantum state |¥). In this case however it
seems to be overly restrictive to force Alice and Bob to measure their quantum
systems right at the beginning of the key-agreement process. It is possibly ad-
vantageous for them to carry out a protocol first (using classical communication
and local quantum operations on their systems) after which they end up with a
“quantum key,” i.e., a number of quantum bits in a maximally entangled state.
Measuring them finally leads to a (classical) secret key. The first phase of this
protocol is called quantum (entanglement) purification.

In order to understand what happens in a purification protocol and for which
initial states such a protocol is at all possible, we recall some basic facts about
quantum (information) theory. In contrast to a classical bit (Cbit for short)
which can take either of the values 0 or 1, a quantum bit (Qbit) can exist in a
superposition of these two extremal states (with complex probability amplitudes
a and b satisfying |a|? + [b|? = 1):

) = al0) + b]1) .

When measuring this state with respect to the basis {|0),|1}}, we obtain |0)
with probability |a|? and |1) otherwise. All (pure) states of one Qbit can be
represented as unit vectors in the Hilbert space CZ.

A possible state of a system of two Qbits can be

[0) = [11) ® |wba) =t [h12ba)

which is simply the tensor product of the states |11} and |i2) of the first and
second Qbit, respectively. Such a state is called a product state. However,
(normalized) linear combinations of quantum states lead to additional states;
for instance,

|[47) = ([01) — [10)) /V2

is also a possible state of the two-Qbit system. This state is called singlet state
and has the property that whenever the Qbits are measured with respect to the
same basis, the outcomes are opposite bits. There is no classical explanation for
this behavior which is called (mazimal) entanglement. We conclude that two
Qbits are not the same as “two times one Qbit.”

As described above, the objective of Alice and Bob doing quantum purifica-
tion is to generate two-Qbit systems in the state [¢p~) (or in states very close to
it) by classical communication and local quantum operations. The states they
start with can for instance be their view of a pure state |¥) living in Alice’s,
Bob’s, and a possible adversary Eve’s (who is assumed to have total control over
the entire environment) Hilbert spaces:

) e Ha@Hp QHE -

In analogy to Alice and Bob’s marginal distribution Pxy in the classical setting,
one can define Alice and Bob’s view of the state |¥), the so-called trace over
the environment Hg,

pap = Try, (|¥)) .



The state pap is generally a mized state. In contrast to a pure state, which can
be represented by a vector in a Hilbert space, a mixed state is described by a
probability distribution over such a space. A mixed state, such as psp, can be
represented by a (dim#4)- (dim#p) x (dimH 4) - (dim H p) matrix, namely the
weighted sum (with respect to the probability distribution) of the projectors to
the subspaces generated by the corresponding pure states. This matrix is called
density matriz.

It is important to note that “purification,” which transforms the mixed state
pap into pure (singlet) states, actually means key agreement: Alice and Bob’s
final state is pure and hence not entangled with anything else, in particular
not with anything under Eve’s control. The adversary is out of the picture,
whatever operations and measurements she performs.

Let us consider some properties of mixed states. A state pap which is sep-
arable, i.e., a mixture of product states, can be prepared remotely by purely
classical communication. States that are not separable are called entangled and
cannot be prepared this way. It is a natural question which states pap can be
purified and which cannot. Separable states cannot be purified because of the
property just described and because of the generalization of Shannon’s theorem
mentioned at he beginning of this paper: No information-theoretic key agree-
ment is possible from authentic but public (classical) communication. On the
other hand, if Alice’s and Bob’s subsystems are two-dimensional® (i.e., Qbits)
and entangled, then purification is always possible [20]. However, the surprising
fact was recently discovered that the same is not true for higher-dimensional
systems: There exist entangled states which cannot be purified [21]. (This fol-
lows from the fact that the eigenvalues of the so-called partial transposition
of certain entangled density matrices pap are non-negative [31].) This type of
entanglement is called bound (in contrast to free entanglement, which can be
purified). From the perspective of classical information theory, the interesting
point is that bound entanglement seems to have a classical counterpart with
unexpected properties.

3 Linking Classical and Quantum Key Agree-
ment

In this section we derive a close connection between the possibilities offered by
classical and quantum protocols for key agreement. The intuition is as follows.
First of all, there is a very natural connection between quantum states ¥ and
classical distributions Pxyz which can be thought of as arising from ¥ by
measuring in a certain basis, e.g., the standard basis?. Such a measurement leads

I The same is even true if one of the spaces has dimension two and the other one has
dimension three.

2A priori, there is no privileged basis. However, physicists often write states like pap
in a basis which seems to be more natural than others. We refer to this as the standard
basis. Somewhat surprisingly, this basis is generally easy to identify, though not precisely
defined. One could characterize the standard basis as the basis for which as many coefficients



to classical information with some probability distribution depending on the
quantum state. In the following, we assume that Eve is free to carry out so-called
generalized measurements (POVMs) [30]. In other words, the set {|z)} will not
be assumed to be an orthonormal basis, but any set generating the Hilbert space
Hp and satisfying the condition >, |2){z| = 1y,. Then, if the three parties
carry out measurements in certain bases {|z)} and {|y)}, and in the set {|z)},
respectively, they end up with the classical scenario Pxyz = |(z,y, z|¥)|%.

When given a state ¥ between three parties Alice, Bob, and Eve, and if
pap denotes the resulting mixed state after Eve is traced out, then the cor-
responding classical distribution Pxy 7z will have positive intrinsic information
if and only if pap is entangled. However, this correspondence clearly depends
on the measurement bases used by Alice, Bob, and Eve. If for instance psp is
entangled, but Alice and Bob do very unclever measurements, then the intrinsic
information may vanish. If on the other hand pap is separable, Eve may do
such bad measurements that the intrinsic information becomes positive, despite
the fact that p4p could have been established by public discussion without any
prior correlation (see Example 4). Consequently, the correspondence between
intrinsic information and entanglement must involve some optimization over all
possible measurements on all sides.

A similar correspondence on the protocol level is supported by many exam-
ples, but not rigorously proven: The distribution Pxy 7z allows for classical key
agreement if and only if quantum key agreement is possible starting from the
state pap.

We show how these parallels allow for addressing problems of purely classical
information-theoretic nature with the methods of quantum information theory,
and vice versa.

3.1 Entanglement and Intrinsic Information

Let us first establish the connection between intrinsic information and entan-
glement. Theorem 1 states that if psp is separable, then Eve can “force” the
information between Alice’s and Bob’s classical random variables (given Eve’s
classical random variable) to be zero (whatever strategy Alice and Bob use?).
In particular, Eve can prevent classical key agreement.

Theorem 1. Let ¥ € Ha @Hp @HE and pap = Try, (Pgw). If pap is separa-
ble, then there exists a generating set {|z)} of Hg such that for all bases {|z)}
and {|y)} of Ha and Hp, respectively, [(X;Y|Z) = 0 holds for Pxy z(z,y, z) :=
|<I7y72|\1’>|2'

Proof. If pap is separable, then there exist vectors |a;) and |B.) such that
paB = 302, p:Ps, @ Ps., where P, denotes the one-dimensional projector
onto the subspace spanned by |e).

as possible of U are real and positive. We usually represent quantum states with respect to
the standard basis.

3The statement of Theorem 1 also holds when Alice and Bob are allowed to do generalized
measurements.



Let us first assume that n, < dim#g. Then there exists a basis {|z)} of
HEg such that W =3 /p. |az, 8., z) holds [29], [13], [23].

If n, > dimHg, then Eve can add an auxiliary system # 4y, to hers (usually
called an ancilla) and we have ¥ @ |vo) = D, \/P- |az, B2,7:), where |yo) €
Hauz is the state of Eve’s auxiliary system, and {|v.)} is a basis of Hg ®
Hauz- We define the (not necessarily orthonormalized) vectors |z) by |z, 7o) =
13, ®Py,|7-). These vectors determine a generalized measurement with positive
operators O, = |z){z|. Since Y. 0. ® Py, = Y, |z,70){z, %] = >, luy ®
Py v v 1 @ Py, = 1y, ® Py, the O, satisfy )", 0, = 1y,, as they
should in order to define a generalized measurement [30]. Note that the first
case (n, < dimHg) is a special case of the second one, with |y,) = |z, v0). If Eve
now performs the measurement, then we have Pxyz(z,y, z) = [{z,y, z|¥)|* =
|<I7 Y, ’7Z|\117 70>|27 and

Pxyiz(2,y,2) = {2, ylaz, B:) = [z|a:)? [(yB:)? = Px|z(z, 2) Py z(y, 2)

holds for all |z) and for all |z,y) € Ha ® Hp. Consequently, I(X;Y|Z)=0. O

Theorem 2 states that if pap is entangled, then Eve cannot force the in-
trinsic information to be zero: Whatever she does (i.e., whatever generalized
measurements she carries out), there is something Alice and Bob can do such
that the intrinsic information is positive. Note that this does not, a priori, im-
ply that secret-key agreement is possible in every case. Indeed, we will provide
evidence for the fact that this implication does generally not hold.

Theorem 2. Let V€ Hy @ Hp @ HE and pap = Try, (Pg). If pap is entan-
gled, then for all generating sets {|z)} of H, there are bases {|z)} and {|y)} of
Ha and Hp, respectively, such that I(X;Y | Z) > 0 holds for Pxyz(z,y,z) :=
|<:L‘,y,z|\1’>|2.

Proof. We prove this by contradiction. Assume that there exists a generating
set {|z)} of HE such that for all bases {|z)} of H4 and {|y)} of Hp, we have
I(X;Y | Z) = 0 for the resulting distribution. For such a distribution, there

exists a channel, characterized by Py, such that I(X;Y|Z) = 0 holds, i.e.,
PXY|7(‘/57 Y,Z) = PX|7(1'7 E)Pyﬁ(ya zZ) . (2)

Let pz := (1/pz) 3., PZP7|Z(ZZ)P¢” p: = Pz(z), and pz = }_, P7|Z(Z’Z)pzv
where 1), is the state of Alice’s and Bob’s system conditioned on Eve’s result z:
U@ |v) =2, %: @|7y:) (see the proof of Theorem 1).

From (2) we can conclude Tr(P, ® Pypz) = Tr(P, @ 1pz) Tr(1® P, pz) for all
one-dimensional projectors P, and P, acting in H 4 and H p, respectively. Con-
sequently, the states pz are products, i.e., pz = par @ pg., and pap = > . pzps
is separable. a

Theorem 2 can be formulated in a more positive way. Let us first introduce
the concept of a set of bases ({|z)};, {|y)};), where the j label the different bases,



as they are used in the 4-state (2 bases) and the 6-state (3 bases) protocols [3],
[4], [1]. Then if pap is entangled there exists a set ({|z)};, {|¥)};)j=1,....n of
N bases such that for all generalized measurements {|z)}, I(X;Y | [Z,4]) > 0
holds. The idea is that Alice and Bob randomly choose a basis and, after the
transmission, publicly restrict to the (possibly few) cases where they happen to
have chosen the same basis. Hence Eve knows j, and one has

N
XY L1Z,4]) = 5 D195V 1 7).

j=1

If the set of bases is large enough, then for all {|z)} there is a basis with positive
intrinsic information, hence the mean is also positive. Clearly, this result is
stronger if the set of bases is small. Nothing is proven about the achievable size
of such sets of bases, but it is conceivable that max{dim?# 4,dim# g} bases are
always sufficient.

It is important to note in this context that when the measurements are
actually carried out by the parties, then Alice and Bob can obtain positive
intrinsic information only if Eve cannot choose her measurement basis adaptively
(i.e., after learning what bases Alice and Bob have used).

Corollary 3. Let ¥ € Ha @ Hp ® HE and pap = Try, (Pg). Then the fol-
lowing statements are equivalent:

(i) pap is entangled,

(ii) for all generating sets {|z)} of HE, there exist bases {|z)} of Ha and
{ly)} of Hp such that the distribution Pxy z(z,y,z) := |{z,y, z|¥)|? satisfies
I(X;YlZ) >0,

(iii) for all generating sets {|z)} of Mg, there exist bases {|z)} of Ha and
{ly)} of Hp such that the distribution Pxy z(z,y,z) := |{z,y, z|¥)|? satisfies
I(X:Y|Z) > 0.

A first consequence of the fact that the statement of Corollary 3 often holds
with respect to the standard bases (see below) is that it yields, at least in the
binary case, a criterion for I(X;Y]Z) > 0 that is efficiently verifiable since it is
based on the positivity of the eigenvalues of the partial transpose of the density
matrix, i.e., of a 4 X 4 matrix. Previously, the quantity I(X;Y ] Z) has been
considered hard to handle.

3.2 Examples I

The following examples illustrate the correspondence established in Section 3.1.
They show in particular that very often (Examples 1, 2, and 3), but not always
(Example 4), the direct connection between entanglement and positive intrinsic
information holds with respect to the standard bases (i.e., the bases physicists
use by commodity and intuition). Example 1 was already analyzed in [18]. The



examples of this section will be discussed further in Section 3.5 under the as-
pect of the existence of key-agreement protocols in the classical and quantum
regimes.

Ezample 1. Let us consider the so-called 4-state protocol of [3]. The analysis of
the 6-state protocol [1] is analogous and leads to similar results. We compare the
possibility of quantum and classical key agreement given the quantum state and
the corresponding classical distribution, respectively, arising from this protocol.
The conclusion is, under the assumption of incoherent eavesdropping, that key
agreement in one setting is possible if and only if this is true also for the other.

After carrying out the 4-state protocol, and under the assumption of optimal
eavesdropping (in terms of Shannon information), the resulting quantum state

is [12]
¥ =/F/2]0,0) ® oo + v/ D/2[0,1) @ o1 + v/ D/2]1,0) ® é10 + VF/2|1,1) @ &1,

where D (the disturbance) is the probability that X # Y holds if X and Y are
the classical random variables of Alice and Bob, respectively, where FF =1 — D
(the fidelity), and where the &;; satisfy (£oolé11) = (£01|é10) = 1 — 2D and
(&ii]&i;) = 0 for all i # j. Then the state pap is (in the basis {|00), |01), |10},

[11)})

D 0 0 —D(1-2D)
1 0 1-D —(1 - D)(1-2D) 0
paB =73y 0 —(1— D)(1—2D) 1-D 0
—D(1-2D) 0 0 D

and its partial transpose

D 0 0 —(1 - D)(1-2D)
L1 0 1-D  —D(1-2D) 0
Pas =73y 0 —D(1-2D) 1-D 0
—(1 - D)(1-2D) 0 0 D

has the eigenvalues (1/2)(D=+(1—D)(1—2D)) and (1/2)((1— D)+ D(1-2D)),

which are all non-negative (i.e., pap is separable) if

1

D>1 7 (3)

From the classical viewpoint, the corresponding distributions (arising from
measuring the above quantum system in the standard bases) are as follows.
First, X and Y are both symmetric bits with Prob [X # Y] = D. Eve’s random
variable Z = [Z1, Z5] is composed of 2 bits Z; and Z3, where 7, = X ® Y, i.e.,
71 tells Eve whether Bob received the qubit disturbed (71 = 1) or not (Z; = 0)
(this is a consequence of the fact that the &; and &;; (i # j) states generate or-
thogonal sub-spaces), and where the probability that Eve’s second bit indicates
the correct value of Bob’s bit is Prob[Z; = Y] =3 = (1 + /1 — {£00lé11)?)/2 =

10



1/2+ +/D(1 — D). We now prove that for this distribution, the intrinsic infor-

mation is zero if and only if

D
1-D

>2/(1-68)8=1-2D (4)

holds. We show that if the condition (4) is satisfied, then I(X;Y|Z) = 0 holds.
The inverse implication follows from the existence of a key-agreement protocol
in all other cases (see Example 1 (cont’d) in Section 3.5). If (4) holds, we can
construct a random variable Z, that is generated by sending Z over a channel
characterized by Py, for which I(X;Y|Z) = 0 holds. We can restrict ourselves
to the case of equality in (4) because Eve can always increase d by adding noise.

Consider now the channel characterized by the following conditional distri-
bution Pz, (where Z ={u,v}):

P7|Z(u7 [070]) = Z(Ua [03 1]) =1,
P7|Z(17 [170]) = |Z(17[17 1]) = 1/2
for I € {u,v}. We show I(X;Y|Z) = Ez[I(X;Y|Z = )] = 0, ie., that

I(X;Y|Z =u) =0 and I(X;Y|Z = v) = 0 hold. By symmetry it is sufficient
to show the first equality. For a;; := Pxy3(4, j, 1), we get

SISy

ao = (1-D)(1-4)/2,
alr = (1—D)5/2,
agr = a = (D(1-=40)/24 D6/2)/2=D/4.

From equality in (4) we conclude agoa11 = ag1610, Which is equivalent to the
fact that X and Y are independent, given Z = u.

Finally, note that the conditions (3) and (4) are equivalent for D € [0, 1/2].
This shows that the bounds of tolerable noise are indeed the same for the quan-
tum and classical scenarios. &

Ezample 2. We consider the bound entangled state presented in [21]. This ex-
ample received quite a lot of attention by the quantum-information community
because it was the first known example of bound entanglement (i.e., entangle-
ment without the possibility of quantum key agreement). We show that its clas-
sical counterpart seems to have similarly surprising properties. Let 0 < a < 1
and

3a 1
Vo= Vg veltygag @+
a
% (1122) & [133) + [214) + [235) + 326
iy (122) 4 1133) 4 [214) + [235) + [326))

where ¢ = (|11) + |22} + [33)) /3 and ¢, = /(1 + a)/2|31) + /(1 — a)/2]33).

It has been shown in [21] that the resulting state pap is entangled.

11



The corresponding classical distribution is as follows. The ranges are X =
Y =1{1,2,3}and 2 ={0,1,2,3,4,5,6}. We write (ijk) = Pxyz(i,j, k). Then
we have (110) = (220) = (330) = (122) = (133) = (214) = (235) = (326) =
2a/(16a+2), (311) = (14+a)/(16a+2), and (331) = (1 —a)/(16a+2). We study
the special case a = 1/2. Consider the following representation of the resulting
distribution (to be normalized). For instance, the entry “(0) 1, (1) 1/2” for
X =Y = 3 means Pxyz(3,3,0) = 1/10 (normalized), Pxyz(3,3,1) = 1/20,
and Pxyz(3,3,2) = 0 for all z ¢ {0,1}.

X 1 2 3

Y (7)
1 0) 1 [ (@) 1] (1)3/2
2 @101 (61
3 BTG 1] (01

(1) 1/2

As we would expect, the intrinsic information is positive in this scenario.
This can be seen by contradiction as follows. Assume I(X;Y | Z) = 0. Hence
there exists a discrete channel, characterized by the conditional distribution
P72, such that I(X;Y|Z) = 0 holds. Let Z C N be the range of 7, and
let P7|Z(iv 0) =: aj, P7|Z(iv 1) = ay, P7|Z(i,6) =: s;. Then We_must have
a;, ziys; € [0,1] and Y, a; = >, 2 = > ;s = 1. Using I(X;Y(|Z) = 0, we
obtain the following distributions Pyy 7, (to be normalized):

X 1 2 3
Y
. 3a;%; 3z
1 i 2s; 2
2 S a; si
2a;(aitz:/2) ai(aitei/2) ] z
3 T §x1 13 7 ’Ls1 T al + 71

W]

By comparing the (2, 3)-entries of the two tables above, we obtain

1y e, g

We prove that (5) implies s; = a; (i.e., s; = a; for all i) and z; = 0. Clearly,
this does not lead to a solution and is hence a contradiction. For instance,
PXY|7:2'(17 2) = 2a;s;/3x; is not even defined in this case if a; > 0.

It remains to show that (5) implies a; = s; and z; = 0. We show that
whenever Y .a; = Y .s; = 1 and a; # s, then ), a?/s; > 1 . First, note
that >, a?/s; = >;a; = 1 for a; = s;. Let now s;; < a;, and s;, > a,.
We show that af /si, +af /si, < af [(si, —€) + af /(si, + €) holds for every
€ > 0, which obviously implies the above statement. It is straightforward to see
that this is equivalent to af, s;,(si, + ) > af s;,(si, — €), and holds because of
a? si,(si, +€) > af af, and af s, (si, —¢) < af af,. This concludes the proof of
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I(X;Y|Z) > 0. &

As mentioned, the interesting point about Example 2 is that the quantum
state is bound entangled, and that also classical key agreement seems impossible
despite the fact that I(X;Y|Z) > 0 holds. This is a contradiction to a conjec-
ture stated in [28]. The classical translation of the bound entangled state leads
to a classical distribution with very strange properties as well! (See Example 2
(cont’d) in Section 3.5).

In Example 3, another bound entangled state (first proposed in [22]) is dis-
cussed. The example is particularly nice because, depending on the choice of a
parameter «, the quantum state can be made separable, bound entangled, and
free entangled.

Ezample 3. We consider the following distribution (to be normalized). Let
0<a<3.

X 1 2 3

Y (7)
1 02 | @4)5— 3) a
2 (1) @ 0) 7 (G)5—a
3 [|[6)5-a] (2a 0) 2

This distribution arises when measuring the following quantum state. Let 1 :=

(1/+/3) (J11) + |22) + |33)). Then

v - \f¢®|o>+,/,i<|u>®|1>+|zs>®|z>+|31>®|3>>
—I-\/ (|21) ® 4) + |32) @ [5) + |13) ® |6)), and
2 5—

pap = = ¢+21 (P12+Pz3+P31)+T(Pz1+P32+P13)

is separable if and only if a € [2,3], bound entangled for a € [1,2), and free
entangled if o € [0, 1) [22] (see Figure 1).

Let us consider the quantity I(X;Y | Z). First of all, it is clear that
I(X;Y|lZ) = 0 holds for @ € [2,3]. The reason is that & > 2 and 5 — a > 2
together imply that Eve can “mix” her symbol Z = 0 with the remaining sym-
bols in such a way that when given that Z takes the “mixed value,” then XY
is uniformly distributed; in particular, X and Y are independent. Moreover, it
can be shown in analogy to Example 2 that I(X;Y]Z) > 0 holds for a < 2. {

Examples 1, 2, and 3 suggest that the correspondence between separability
and entanglement on one side and vanishing and non-vanishing intrinsic infor-
mation on the other always holds with respect to the standard bases or even
arbitrary bases. This is however not true in general: Alice and Bob as well as
Eve can perform bad measurements and give away an initial advantage. The

13



following is a simple example where measuring in the standard basis is a bad
choice for Eve.

Fzample j. Let us consider the quantum states

o= (004014 10)® [0)+ 00+ 11) @ |1))
= Jg )
3 2
pap = 3P|00+01+10) + 5P|00+11) .

If Alice, Bob, and Eve measure in the standard bases, we get the classical
distribution (to be normalized)

X 0 1
Y (7)

0 JJ(0)1] (01

(M1]@mo

T [ (0)1](0)0

mojmt

For this distribution, I(X;Y]Z) > 0 holds. Indeed, even S(X;Y||Z) > 0 holds.
This is not surprising since both X and Y are binary, and since the described
parallels suggest that in this case, positive intrinsic information implies that a
secret-key agreement protocol exists.

The proof of S(X;Y||Z) > 0 in this situation is analogous to the proof of
this fact in Example 3. The protocol consists of Alice and Bob independently
making their bits symmetric. Then the repeat-code protocol can be applied.

However, the partial-transpose condition shows that pap is separable. This
means that measuring in the standard basis is bad for Eve. Indeed, let us rewrite
¥ and pap as

U = VAmm)e|0)+V1—A|—m,—m)o|l),

5456 5—+/5
PAB = |m,m) + 10

10
where A = (5 4+ +/5)/10, |m,m) = |m) @ |m), | £ m) = /(1 £9)/2]0) +
V(IF )/2|1), and = 1/V5.

In this representation, pap is obviously separable. It also means that Eve’s
optimal measurement basis is

P|—m,—m) ’

1 ~ 1
—ﬁllh |1>:—V1—A|0>—m|1>-

Then, I(X;Y|Z) = 0 holds for the resulting classical distribution. &

0y = VA |0)

14



3.3 A Classical Measure for Quantum Entanglement

It is a challenging problem of theoretical quantum physics to find good measures
for entanglement [32]. Corollary 3 above suggests the following measure, which
is based on classical information theory.

Definition 1. Let for a quantum state pap

:=min( max (I(X;YlZ))),
#loan) = minl, e, (YLD
where the minimum is taken over all ¥ = Y /p;%, ® |z) such that pap =

Try, (Pg) holds and over all generating sets {|z)} of Hpg, the maximum is over
all bases {|z)} of Ha and {|y)} of # p, and where Pxy z(z,y,2) := [{z,y, z|¥)|%
@)

The function g has all the properties required from such a measure. If
pap is pure, i.e., pap = |Yap){¥ap|, then we have in the Schmidt basis
(see for example [30]) Yap = Zj cilzj,y;), and p(pap) = —Tr(palogpa)
(where pa = Trp(pap)) as it should [32]. Tt is obvious that u is convex, i.e.,
n(Apr + (1= A)p2) < Aulpr) + (1 = A)p(p2)-

FEzample 5. This example is based on Werner’s states. Let ¥ = /A (~)
10 + /(1 —X)/4]001 4 012 + 103 + 114), where (=) = |10 — 01)/+/2, and
pap = APy + ((1 = A)/4)1. Tt is well-known that pap is separable if and
only if A < 1/3. Then the classical distribution is P(010) = P(100) = A/2 and
P(001) = P(012) = P(103) = P(114) = (1 — \)/4.

If A < 1/3, then consider the channel P7|Z(0 0) Pz,(2, ) P7,(3,3) =
1, Py (0,1) = Py,(0,4) = £, Pz,(1,1) = Pz (4, 4) = 1—¢, where £ =
2X/(1 = A) < 1. Then p(pag) = I(X;Y] Z) (X |7) = 0 holds, as it
should.

If A > 1/3, then consider the (obviously optimal) channel PZlZ(O,O) =
P712(2,2) = P7,(3,3) = P75(0,1) = Pz,(0,4) = 1. Then

plpan) = I(X;Y1Z) = I(X;Y[Z) = Pz(0) - I(X;Y[Z = 0)
- %-(l—qlong—(1—4)1082(1_‘1))v
where ¢ = 2X/(1 + A). ¢

3.4 Classical Protocols and Quantum Purification

It is a natural question whether the analogy between entanglement and intrinsic
information (see Section 3.1) carries over to the protocol level. The examples
given in Section 3.5 support this belief. A quite interesting and surprising conse-
quence would be that there exists a classical counterpart to bound entanglement,
namely intrinsic information that cannot be distilled into a secret key by any
classical protocol, if |X|+ |Y| > 5, where X and ) are the ranges of X and Y,
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respectively. In other words, the conjecture in [28] that such information can
always be distilled would be proved for |X|+ |Y| < 5, but disproved otherwise.

Conjecture 1. Let ¥ € Hy @ Hp @ Hg and pap = Try, (Pg). Assume
that for all generating sets {|z)} of Hg there are bases {|z)} and {|y)} of
Ha and Hp, respectively, such that S(X;Y||Z) > 0 holds for the distribution
Pxyz(z,y,2) = [{z,y,z|¥)|?. Then quantum purification is possible with the
state pap, i.€., pap is free entangled.

Conjecture 2. Let ¥ € Hy @ Hp @ Hg and pap = Try, (Pg). Assume
that there exists a generating set {|z)} of HE such that for all bases {|z)} and
{ly)} of Ha and Hp, respectively, S(X;Y||Z) = 0 holds for the distribution
Pxyz(z,y,2) := [{z,y,2|¥)|2. Then quantum purification is impossible with
the state pap, i.e., pap is bound entangled or separable.

3.5 Examples II

The following examples support Conjectures 1 and 2 and illustrate their conse-
quences. We consider mainly the same distributions as in Section 3.2, but this
time under the aspect of the existence of classical and quantum key-agreement
protocols.

Ezample 1 (cont’d). We have shown in Section 3.2 that the resulting quantum
state is entangled if and only if the intrinsic information of the corresponding
classical situation (with respect to the standard bases) is non-zero. Such a cor-
respondence also holds on the protocol level. First of all, it is clear for the
quantum state that QPA is possible whenever the state is entangled because
both H 4 and Hp have dimension two. On the other hand, the same is also true
for the corresponding classical situation, i.e., secret-key agreement is possible
whenever D/(1 — D) < 24/(1 —4§)¢ holds, i.e., if the intrinsic information is
positive. The necessary protocol includes an interactive phase, called advantage
distillation, based on a repeat code or on parity checks (see [26] or [36]). &

Ezample 2 (cont’d). The quantum state pap in this example is bound entan-
gled, meaning that the entanglement cannot be used for QPA. Interestingly, but
not surprisingly given the discussion above, the corresponding classical distri-
bution has the property that I(X;Y ] Z) > 0, but nevertheless, all the known
classical advantage-distillation protocols [26], [28] fail for this distribution! Tt
seems that S(X;Y[|Z) = 0 holds (although it is not clear how this fact could
be rigorously proven). &

Ezample 3 (cont’d). We have seen already that for 2 < a < 3, the quantum
state is separable and the corresponding classical distribution (with respect
to the standard bases) has vanishing intrinsic information. Moreover, it has
been shown that for the quantum situation, 1 < a < 2 corresponds to bound
entanglement, whereas for a < 1, QPA is possible and allows for generating a
secret key [22]. We describe a classical protocol here which suggests that the
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situation for the classical translation of the scenario is totally analogous: The
protocol allows classical key agreement exactly for o < 1. However, this does
not imply (although it appears very plausible) that no classical protocol exists
at all for the case a > 1.

Let o < 1. We consider the following protocol for classical key agreement.
First of all, Alice and Bob both restrict their ranges to {1,3} (i.e., publicly
reject a realization unless X € {1,3} and Y € {1, 3}). We will later call this a
binarization of the corresponding random variables and show that this concept
is of great importance in the context of possibility and impossibility of secret-key
agreement, both classical and quantum.

The resulting distribution is as follows (to be normalized):

X 1 3
Y (7)

1 02 |@a

3 [ @)5—a] (0)2

Then, Alice and Bob both send their bits locally over channels Ple and PVIY’
respectively, such that the resulting bits_y and Y_are symmetric. The channel
Pxx [Pyjy] sends X = 0 [Y = 1] to X = 1 [Y = 0] with probability (5 —
2a)/(14 — 2a), and leaves X [Y] unchanged otherwise. The distribution Py,
is then

X 1 3
Y (7)
(0) 2 o5y (1) o
1 (2) (5 - O‘) ’ ﬁ ’ 154_—22(2 (2) (5 - O‘) (154_—22(2
(0) 2-2. 154_—22aa
3 (2) (- ) (1) (0) 2+ 25
(2) (5 — O‘) ) ﬁ ) 154_—2262

It is not difficult to see that for a < 1, we have Prob[X = Y] > 1/2 and
that, given that X = Y holds, Eve has no information at all about what this bit
is. This means that the repeat-code protocol mentioned in Example 1 allows for
classical key agreement in this situation [26], [36]. For > 1, classical key agree-
ment, like quantum key agreement, seems impossible however. We will discuss
this further in Section 4. The results of Example 3 are illustrated in Figure 1. {

4 Bound Intrinsic Information and Binarizations
Conjecture 1 suggests that, in contrast to previous beliefs in classical information

theory, bound entanglement has a classical counterpart, which we call bound
information.
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Quantum Regime

[ is...
= free bound
) entangled entangled separable
5| o 1 2. 39
C C C ]
§ I(X;Y(2)>0 1(X;Y{2)>0 1(X;Y}Z)=0

SX;Y[I2)>0 S(X;Y[12)=0 (?) S(X;Y|I2)=0

Py, satisfies...

Classical Regime

Figure 1: The Results of Example 3

Definition 2. Let Pxyz be a distribution with I(X;Y | Z) > 0. Then if
S(X;Y||Z) > 0 holds for this distribution, the intrinsic information between
X and Y, given 7, is called free. Otherwise, if S(X;Y||Z) = 0, the intrinsic
information is called bound. O

We are now interested in a proof of the existence of such bound information.
In view of the fact that Conjecture 1 might be hard to prove in general, it is
worth to look at a classical “translation” of a bound entangled quantum state
directly and analyze it with the tools of classical information theory.

This analysis shows that an important concept in the context of key agree-
ment from classical information are so-called binarizations. We give evidence
for the fact that classical information can be used for key agreement only if
the random variables X and Y can be made binary by local operations (i.e., by
sending them over some binary-output channel) in such a way that the resulting
binary random variables still share some information. The quantum counterpart
of this insight may result in an easy characterization and better understanding
of the strange phenomenon of bound entanglement.

Let is look at the states ¥, of Example 3 again. First, we prove that
whenever the random variable Y is “binarized,” i.e., sent through a binary-
output channel PVIY (or a ternary-output channel but where only two symbols
are actually considered in the computation of the mutual information), then the
intrinsic information vanishes (Proposition 4).

Proposition 5 on the other hand suggests that intrinsic information which
does not resist any binarization must be bound: Whenever secret-key agreement
is possible with X and Y and with respect to 7, then there exist binarizations of
a certain number of repetitions of X and Y such that the intrinsic information
remains positive.
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Proposition 4. Assume the distribution of Erxample 3 with a € [1,2). Let
Pgy be an arbitrary conditional distribution with Y = {0,1,A}, and let E be

the event that Y € {0,1}. Then I(X;Y | Z| E) = 0.

Proof. We only have to consider the case & = 1. This implies the statement for
all € [1,2). Let the following channel Py 3 be given (where Y =1{0,1,A}):

Pry(0,1) = z, Pyy(0,2) =y, Pyy(0,3) = 2,
Pry(1,1) = u, Ppy(1,2) = v, Ppy(l,3) = w.

Here, we have z,y, z,u,v,w,z + u,y + v,z + w € [0,1]. We get the following
distribution Pyy (to be normalized).

X 1 2 3
Y (7)
(0) 2z | (0) 2y | (0) 2z
0 By | ()dz | (2) =
()4 | (6) = | (4) 4y
(0) 2u | (0) 2v | (0) 2w
1 B)v | ()4du | (2)u
(5) 4w | (6) w | (4) 4v

The only symbol z of Z for which I(X;Y|Z = z, E) > 0 holds is z = 0. Let

Furthermore, P7|Z(67 1) = ¢ and P7|Z(T, 1) = 1 — ¢, and analogously for Z =
2,3,4,5, and 6 with transition probabilities e, a, f, b, and d, respectively. Then
we get for the column vectors of the PX7|7:5 matrix:

2(2) () v () ae(C) +2(2) +a5) () + oo (1) 42 ()]

Clearly, the three vectors are linearly dependent. We can assume that

() =1 ()+()

holds for some A1, Ay € [0, 00). (The other cases are analogous.)
Let 5:= (Y) and = ). We then get for the above matrix
[(a 4 2X1)5+ (4b 4 2X2)1, (24 4cA1)5 4 (d + 4ehg)t, (4F + €M)+ (2 + edo)T ]
The corresponding distribution satisfies I(X;Y|Z = 0, E) = 0 if

Cl—|—2)\1 _ 2+4C)\1 4f—|—6A1

4b—|—2)\2 o d—|—4CAZ o 2—|—6)\2
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holds. This is equivalent to

A1(2d — 16be) + Ag(dac —4) = 8b—ad,
A1(4 — 4be) + Az(ae —8f) = 16bf —2a .

We show that this system is solvable, with (a,b,c,d,e, f) € [0,1]%, for all
A1, Az € [0, 00). For this, we prove that for all sufficiently large numbers R > 0,
the equations are solvable for all pairs (A1, A2) on the path (0,0)-(R, 0)-(R, R)-
(0, R)-(0,0), and that the corresponding path in [0, 1]® is homeomorphic to S*.
Then the claim follows by a simple topological argument.

We only sketch the remainder of the proof. For (A1, A2) = (0,0), the equa-
tions are solvable by setting

d=f=1 and 8b=d. (6)

For (A1,A2) = (R,0), where we assume R to be sufficiently large, a solution is
given by

br~ern 1 and d=~ 8¢

(where additionally both equations of (6) should not be satisfied nor approxi-
mately satisfied). For (A1, A2) = (R, R), the equalities are

R(2d — 16bc+4ac—4) = 8b—ad
R(4—4be+ae—8f) = 16bf —2a

with a possible approximate solution
bnem0, cxndal, an fal/2.
Finally, the case (A1, Az) = (0, R) can be solved by
ar~ca~1 and e~ 8f .

When combining the solutions for the different cases, it is not difficult to see
that there exists a path « in [0, 1]® that, mapped to the (A1, A2) plane, exactly
corresponds to the square (0,0)-(R,0)-(R, R)-(0, R)-(0,0). This is true for all
sufficiently large R, and thus the argument is finished. i

Proposition 5. Let X, Y and Z be random variables with S(X;Y||Z) > 0.
Then for each € > 0 there exist a number N and ternary-output channels PleN

and Pgy~ with ranges X =Y = {0, 1, A} such that

Prob[E'] > 0 (7)

PIX=Y|E] > 1l-¢ (8)
P[X=0|F'|=P[X=1|F"] = 1/2 (9)
HX|ZNJE) > 1-¢ (10)



where E and E' are the events defined by X #+AA#£Y and X = ?_#_A,
respectively (note that E' = EN[X = Y]). In particular, we have I(X;Y |
ZN E) > 0.

Proof. According to the definition of the secret-key rate, for each ¢’ there exist
a number N and a protocol that allows Alice and Bob for computing keys
Sa,Sp € {0,1}¥ out of N realizations of the random variables X and Y such
that

P[54+ # SB] < e (11)
H(SalZNC) > K¢ (12)

where C is the communication exchanged over the public channel. Let S’ and
S5 to be the first bit of S4 and Sg, respectively. It is clear from (11) that

PSS, # Sl < € (13)
and from (12)

H(SYZNC) = H(SA|ZNC) — H(Sa|S4ZNC)> K —¢' — (K- 1) =1-¢.

(14)
Define the functions
e:c P[SY # S|C =] (15)
and
ke 1—H(S,|ZY,C = ¢). (16)

From conditions (13) and (14) we have that Fcle(C)] < &’ and Ec[k(C)] < &
(where E¢ is the expectation value over all possible communications ¢ € C).
Since both e and k only take on positive values, it follows immediately that
Ple(C) < 2¢'] > 1/2 and P[k(C) < 2¢'] > 1/2, which implies that there exists
a particular communication string ¢ € C such that e(c) < 2¢’ and k(c) < 2¢’, or

P[S, # ShlC=¢c < 2 (17)
H(S4|1ZN,C=¢) > 1-2¢. (18)

In general, a secret-key agreement protocol consists of 2M steps (where M is
itself a random variable) such that in each step Alice sends the information C; to
Bob (for 7 odd) or Bob sends C; to Alice (for ¢ even). After this communication
phase, Alice and Bob compute their secret-key bits S, and S%, respectively.
We thus have

PslAséclxNyN = PsglxNC . PSIBlYNC . PC2Mlc2M—1yN . PC2M_1|C2M_2XN .

e " PC2|C1}’N . PCllXN
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(the arguments are omitted in this expression), where C':=C;---Cjand C :=
C?M | When the terms are rearranged, this expression can be written as

P5545$30|XNYN (SAa SB,C, T, y) = pA(SAa c, I) ° pB(SBaca y) (19)

for appropriate functions ps and pg. For a communication string ¢ € C satisfy-

ing (17) and (18), we define
Py/lXN(TI,I) = pA(fI,C, I‘) (20)
Pyyyn (7 y) = pB(7 ¢, y) (21)

for all 7,y € {0,1}, z € AN, y € YN. (Note that this completely determines
the channels PY’|XN and P?’|YN') Then we get from (17) and (18)

PX 2V |X #A+Y] < 2 (22)
HX|ZV,X #A4Y) > 1-2. (23)

It remains to show that equality (9) holds. Let therefore
§:=1/2—P[X =0[X =Y #A] (24)

and assume without loss of generality that § > 0. Define

1 fz=2=Aorz=2"=0
1

fz=2"=1

P z, ) — 1/2446 925
xix (7 1- 1220 fr=Aand ¥ =1 (25)
0 otherwise
and ¥ := Y. Then
PIX =0|E'] = P[X = 1|F'] = 1/2. (26)

It can easily be verified from (23) that J is of order ¢’ and thus the assertion
follows from (22) and (23). O

Propositions 4 and 5 do not imply that Alice and Bob share bound information
in the considered distribution. More precisely, the following statement, which
we give as a conjecture, is the missing gap in the way towards proving the
existence of bound information.

Conjecture 3. Let Pxyz be a distribution. Then there exist binary-output
channels Pz x and Pgy with I(X;Y | Z) > 0 if and only if there exist, for
some N, binary-output channels Py xn and Pgy such that I(X;Y | ZV) > 0
holds.

The results of this section suggest that free intrinsic information can be
binarized, whereas bound information cannot. We finally conjecture that this
is also a way of distinguishing free from bound entanglement on the quantum
side.
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Conjecture 4. Let pap be a mized state over Ha @ Hp. Then pap is free
entangled if and only if there are two-dimensional projectors P4 and Pp such
that (Pa ® Pp)pap(Pa ® Pp) is an entangled two-Qbit state.

Note that it is clear that if Alice and Bob can produce entangled Qbits, then
they can always purify the original state because these Qbits are free entangled.
The conjecture states that the reverse implication is also true. This would mean
that pap is free entangled if and only if Alice and Bob can produce entangled
Qbits using a single copy of pap.

5 Concluding Remarks

We have considered the model of information-theoretic key agreement by public
discussion from correlated information. More precisely, we have compared sce-
narios where the joint information is given by classical random variables and by
quantum states (e.g., after execution of a quantum protocol). We proved a close
connection between such classical and quantum information, namely between
intrinsic information and entanglement.

Furthermore, examples have been presented that provide evidence for the
fact that the close connections between classical and quantum information ex-
tend to the level of the protocols. A consequence would be that the power-
ful tools and statements on the existence or rather non-existence of quantum-
purification protocols immediately carry over to the classical scenario, where it
is often unclear how to show that no protocol exists. Many examples coming
from measuring bound entangled states, and for which none of the known clas-
sical secret-key agreement protocols is successful, as well as some general facts
on binarizing classical information, strongly suggest that bound entanglement
has a classical counterpart: intrinsic information which cannot be distilled to a
secret key. This stands in sharp contrast to what was previously believed about
classical key agreement. This is one of the rare examples for which a concept
of information processing is first discovered on the quantum domain and then
leads to new insight in the classical regime.

Finally, we have proposed a measure for entanglement, based on classical
information theory, with all the properties required for such a measure.
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