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Abstract. Many aspects of cryptographic security proofs can be seen as
the proof that a certain system (e.g. a block cipher) is indistinguishable
from an ideal system (e.g. a random permutation), for different types of
distinguishers.

This paper presents a new generic approach to proving upper bounds
on the information-theoretic distinguishing advantage (from an ideal sys-
tem) for a combined system, assuming upper bounds of certain types for
the component systems. For a general type of combination operation of
systems, including the XOR of functions or the cascade of permutations,
we prove two amplification theorems. The first is a product theorem,
in the spirit of XOR-lemmas: The distinguishing advantage of the com-
bination of two systems is at most twice the product of the individual
distinguishing advantages. This bound is optimal. The second theorem
states that the combination of systems is secure against some strong class
of distinguishers, assuming only that the components are secure against
some weaker class of distinguishers.

A key technical tool of the paper is the proof of a tight two-way corre-
spondence, previously only known to hold in one direction, between the
distinguishing advantage of two systems and the probability of winning
an appropriately defined game.

1 Introduction

1.1 Indistinguishability Amplification for Random Variables

This paper is concerned with the indistinguishability of systems that interact
with their environment. As a motivation for this paper, we consider an indistin-
guishability amplification result for random variables. A random variable can be
understood as the special case of a system, which is non-interactive. Lemma 1
below states that the distance from uniform, of random variables, can be am-
plified by combining two or more (independent) moderately uniform random
variables.

To state the lemma, we recall the following definitions.

Definition 1. The statistical distance of two random variables X and X ′ over
X is defined as
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δ(X, X ′) := ‖PX − PX′‖ = 1
2

∑
x∈X |PX(x) − PX′(x)| .

The distance of a random variable X from uniform is d(X) := δ(X, U), where
U is a uniform random variable on X .

The advantage of the best distinguisher for X and X ′ is δ(X, X ′).

Lemma 1. For any two independent random variables X and Y over a finite
domain X and any quasi-group operation1 � on X ,

d(X � Y ) ≤ 2 d(X) d(Y ).

This bound is tight, as the following example illustrates.

Example 1. Consider two independent biased bits, X with a 40/60-bias and
Y with a 30/70-bias. Then d(X) = 0.1, d(Y ) = 0.2, and d(X ⊕ Y ) = 0.04
(= 2 · 0.1 · 0.2), since X ⊕ Y is 54/46-biased.

Corollary 2 of this paper can be seen as a natural generalization of Lemma 1.
It states (for example) that if F and G are systems, for each of which the best
distinguisher’s advantage in distinguishing it from a uniform random function is
bounded by ε and ε′, respectively, then the system F � G obtained by using F
and G in parallel and combining their outputs with �, can be distinguished with
advantage at most 2εε′ from a uniform random function (for the same number of
queries issued by the distinguisher). Actually, the proof of Corollary 2, restricted
to random variables, appears to be a natural proof for Lemma 1.

As the abstraction underlying the quasi-group operation we introduce the
concept of a neutralizing combination of two systems, which means that if any
one (or both) of the systems is an ideal system (e.g. a uniform random function),
then the combined system is also ideal. This is for example true for X � Y : If
either X or Y is uniform, then so is X � Y .

1.2 Contributions of This Paper

The amplification of security properties is an important theme in cryptography.
Examples of amplification results are XOR-lemmas, Vaudenay’s product theorem
for random permutations [Vau99], and the theorems proving adaptive security
from non-adaptive security assumptions of [MP04] and [MOPS06].

This paper generalizes, strengthens, and unifies these results and provides a
framework for proving such amplification results. We explore the general prob-
lem of proving various indistinguishability amplification results for systems. In
contrast to earlier works, we do not restrict ourselves to stateless systems. The
term “amplification” is used with two different meanings:

1 A quasi-group operation � on a set X is a function X 2 → X : (a, b) �→ c = a � b such
given a and c (b and c), b (a) is uniquely determined. An important example is the
bit-wise XOR of bit-strings. Any group operation is also a quasi-group operation.
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– Reduction of the distinguishing advantage. We prove a general the-
orem (Theorem 1), in the spirit of Lemma 1, which states that the distin-
guishing advantage of a neutralizing combination of two systems is at most
twice the product of the individual distinguishing advantages.

– Attack strengthening. We prove a general theorem (Theorem 2), which
states that the adaptive distinguishing advantage of a neutralizing combina-
tion of two systems is bounded by the sum of the individual distinguishing
advantages for a weaker distinguisher class (e.g. non-adaptive, or for permu-
tations, one-sided instead of two-sided queries).

Our results are stated in the random systems framework of [Mau02] (see Sec-
tion 2). They hold in the information-theoretic setting, with computationally
unbounded distinguishers. In practice one is often interested in computational
indistinguishability. Although the results from this paper do not directly trans-
late to the computational setting2, they have implications in the computational
setting as well.

A main technical tool of this paper is a tight relation between the distin-
guishing advantage and the game-winning probability, discussed in the following
section.

1.3 Discrete Systems, Indistinguishability, and Game-Winning

Many cryptographic systems (e.g. a block cipher, the CBC-MAC construction,
or more complex games) can be modeled as discrete systems. A discrete system
interacts with its environment by taking a sequence of inputs and producing,
for each new input, an output (for a single, a fixed, or an unbounded number of
such interactions).

Two major paradigms for cryptographic security definitions are:

– Indistinguishability: An ideal-world system is indistinguishable from a
real-world system. For example, a secure encryption scheme can be seen as
realizing a secure channel (ideal world) from an authenticated channel (real
world).

– Game-winning: Breaking a system means that the adversary must achieve
a certain goal, i.e., win a certain game. For example, a MAC is secure if the
adversary cannot generate a fresh message together with the correct MAC,
even if he can query the system arbitrarily.

The first type of security definition requires to prove that the distinguishing
advantage of a certain class of distinguishers for two systems is very small. The
second type of security definition requires to prove that no adversary of a certain
type can win the game, except with very small probability.

In this paper we establish a tight relation between the above two problems in
the information-theoretic setting. More precisely, game-winning can be modeled
as an internal monotone condition in a system. Indeed, an important paradigm
2 Actually, some results from this paper are known to be false in the computational

case under standard assumptions [Pie05].
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in indistinguishability proofs is the definition of such an internal monotone con-
dition in a system (sometimes also called a “bad event”) such that for any dis-
tinguisher D the distinguishing advantage can be shown to be upper bounded by
the probability that D provokes this condition. A key technical tool of the paper
(Lemma 5) is to show that this holds also in the other direction: For two systems
S and T one can always define new systems Ŝ and T̂, which are equivalent to
S and T, respectively, but have an additional monotone binary output (MBO),
such that

(i) for any distinguisher D the distinguishing advantage for F and G is equal
to the probability that D sets the MBO to 1 in Ŝ (or T̂), and

(ii) the systems Ŝ and T̂ are equivalent as long as the respective MBOs are 0.

1.4 Related Work and Applications

This section is perhaps best read after reading the technical part of the paper.
Lemma 5 from this paper improves on Lemma 9 of [MP04] where a relation

between distinguishing advantage and monotone binary outputs (there called
conditions) was introduced, but which was not tight by a logarithmic factor and
whose proof was quite technical, based on martingales. This paper settles a main
open problem from [MP04], as Lemma 5 is tight.

The product theorem for sequential composition of stateless permutations,
implied by Corollary 3, was proved earlier by Vaudenay within his decorrelation
framework (see [Vau98] for the non-adaptive and [Vau99] for the adaptive case).
Vaudenay’s proofs, which use matrix norms, are tailored to the construction and
attack at hand (i.e. sequential composition and stateless permutations), and do
not extend to our general setting. While Vaudenay’s decorrelation theory [Vau03]
is purely information-theoretic, its application is for the design of actual (compu-
tationally secure) block-ciphers. In the same sense, our results have applications
in the computational setting, where one considers computationally bounded ad-
versaries.

In the computational setting, a product theorem for the sequential composi-
tion of permutations was proved by Luby and Rackoff [LR86]. Myers [Mye03]
proved a product theorem3 for a construction which is basically the parallel
composition but with some extra random values XOR-ed to the inputs.

Our stronger results (compared to [MP04]) on adaptive security by compo-
sition, namely Corollaries 4 and 5, immediately apply to all results that made
use of the bounds of [MP04]. For example, the construction of Kaplan, Naor
and Reingold [KNR05] of randomness-efficient constructions of almost k-wise
independent permutations, achieve a priori only non-adaptive security, but the
authors observe that one can apply the results from [MP04] in order to obtain
adaptive security. This paper allows to improve the bound of [KNR05]. An-
other application of Corollary 5 is in the already mentioned decorrelation theory

3 Which in some sense is stronger than the amplification from [LR86], see [Mye03] for
a discussion.
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where it implies better security against adaptive attacks, even if the considered
block-cipher only satisfies a non-adaptive notion of decorrelation.

The question whether composition implies adaptive security also in the com-
putational setting (i.e. for pseudorandom systems) has been investigated in
[Mye04, Pie05]. Unlike for the product amplification results, these attack-
strengthening results do not hold for pseudorandom systems in general, though
some positive results have also been achieved in this setting [Pie06].

Theorem 2 can be used to prove the adaptive security of more complicated
constructions than the sequential and parallel composition considered in this
paper. In [MOPS06], (a generalization of) Theorem 2 is used to prove that
the four-round Feistel network with non-adaptively secure round functions is
adaptively secure. That paper also shows that in the computational setting this
is no longer true.

A result using Lemma 5 of a completely different vain than the problems consid-
ered in this paper is given in [PS07], where the security of some constructions for
range extension of weak random functions is proven in the information theoretic
setting (again, in the computational setting those results no longer hold).

2 Random Systems

This section follows and extends [Mau02], in slightly different notation.

2.1 Random Systems

Essentially every kind of discrete system (say S), in particular a cryptographic
system, can be described as follows. It takes inputs X1, X2, . . . (from some al-
phabet4 X ) and generates, for each new input Xi, an output Yi (from some
alphabet Y). The output Yi depends (possibly probabilistically) on the current
input Xi and on the internal state. Such a system is called an (X , Y)-system.

In most contexts, only the observable input-output behavior, but not the in-
ternal state representation, is of interest. For example, if one considers the dis-
tinguishing advantage of a certain distinguisher D for two systems S and T,
then all that matters is the input-output behavior of the systems D, S and
T. Hence the input-output behavior is the abstraction of a system that needs
to be captured. This is analogous, for example, to a memoryless channel C in
communication theory whose abstraction is captured by a conditional probabil-
ity distribution pC

Y |X of the output Y , given the input X , independently of the
physical description of the channel. A system is more complex than a channel;
what is the abstraction of a (discrete) system?

A system is described exactly by the conditional probability distributions of
the ith output Yi, given X1, . . . , Xi and Y1, . . . , Yi−1, for all i. We use the short-
hand notation X i := [X1, . . . , Xi]. This is captured by the following definition
from [Mau02].
4 It is not a restriction to consider fixed input and output alphabets. This allows

to model also systems where inputs and outputs come from different alphabets for
different i.
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Definition 2. An (X , Y)-random5 system S is a (generally infinite) sequence of
conditional probability distributions6 pS

Yi|XiY i−1 for i ≥ 1.7

This description of a system is exact and minimal in the sense that two sys-
tems with different input-output behavior correspond to two different random
systems, and two different random systems have different input-output behavior.

Note that the name S is used interchangeably for a system S (which can be
described arbitrarily, for example by its internal workings) and the corresponding
random system. This should cause no confusion. It is therefore also meaningful
to say that two systems are equivalent if they have the same behavior, even
though their internal structure may be different.

Definition 3. Two systems S and T are equivalent, denoted S ≡ T, if they
correspond to the same random system, i.e., if for all i ≥ 18

pS
Yi|XiY i−1 = pT

Yi|XiY i−1 .

The results of this paper are stated for random systems, but we emphasize that
they hold for arbitrary systems, as the only property of a system that is relevant
here is the input-output behavior. When several random systems appear in the
same random experiment, they are (tacitly) assumed to be independent. In a
more general theory, random systems could be dependent.

A random system S can be characterized equivalently by the sequence pS
Y i|Xi ,

for i ≥ 1, of conditional probability distributions. This description is often con-
venient, but is not minimal.9 The conversion between the two forms is given by

pS
Y i|Xi =

i∏

j=1

pS
Yj |XjY j−1 and pS

Yi|XiY i−1 =
pS

Y i|Xi

pS
Y i−1|Xi−1

. (1)

S and T are equivalent if and only if pS
Y i|Xi = pT

Y i|Xi for i ≥ 1.

2.2 Special Random Systems

Definition 4. A random function X → Y is a random system which answers
consistently in the sense that Xi = Xj =⇒ Yi = Yj . A random function is
stateless if it corresponds to a random variable taking on as values function
tables X → Y. A random permutation on X is a random function X → X
mapping distinct inputs to distinct outputs: Xi 	= Xj =⇒ Yi 	= Yj .
5 Throughout the paper, the term “random” is used in the same sense as it is used in

the term “random variable”, without implying uniformity of a distribution.
6 We use a lower-case p to stress the fact that these conditional distributions by

themselves do not define a random experiment in which probabilities are defined.
7 For arguments xi−1 and yi−1 such that pS

Y i−1|Xi−1(yi−1, xi−1) = 0, pS
Yi|XiY i−1 need

not be defined.
8 This equality is an equality of (partial) functions, where two conditional probability

distributions are considered to be equal if they are equal for all arguments for which
both are defined.

9 The distributions pS
Y i|Xi must satisfy a consistency condition for the different i.
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Note that in general a random function is not stateless. For example, a system
defined by Yi = X1 for all i is not stateless.

We discuss a few examples of random systems.

Example 2. A Y-beacon, usually denoted as B, is a random system which out-
puts a new independent uniformly (over Y) output Yi for every new input Xi:
pB

Yi|XiY i−1 = 1/|Y| for all choices of the arguments.

Example 3. A uniform random function, usually denoted as R, from some do-
main X to some finite range Y. Typically X = {0, 1}m for some m or X = {0, 1}∗,
and Y = {0, 1}n for some n. If X is finite, then this corresponds to a randomly
selected function table. We have

pR
Yi|XiY i−1(yi, x

i, yi−1) =

⎧
⎨

⎩

1 if xi = xj for some j < i and yi = yj

0 if xi = xj for some j < i and yi 	= yj

1/|Y| else.

pR
Yi|XiY i−1(yi, x

i, yi−1) is undefined if xj = xk and yj 	= yk for j < k < i.

We point out that when analyzing constructions involving uniform random func-
tions (or other random systems), there is no need to resort to this apparently
complex description. Any complete description is fine. Using the concept of ran-
dom systems buys precision and simplicity, without requiring technical complex-
ity of the arguments.

Example 4. A uniform random permutation, usually denoted as P, for domain
and range X , is a function randomly selected from all bijective functions X → X .

2.3 Distinguishing Random Systems

We are interested in distinguishing two systems S and T by means of a distin-
guisher D. In the sequel, we will usually tacitly assume that the two systems are
compatible, i.e., have the same input and output alphabets.

A distinguisher D for distinguishing two (X , Y)-systems generates X1 as an
input, receives the output Y1, then generates X2, receives Y2, etc. Finally, after
receiving Yk, it outputs a binary decision bit, say W . More formally:

Definition 5. A distinguisher D for (X , Y)-random systems is a (Y, X )-random
system, which is one query ahead, meaning that it is defined by pD

Xi|Y i−1Xi−1

(instead of pD
Xi|Y iXi−1) for all i.10 D outputs a bit W after a certain number k

of queries, based on the transcript (Xk, Y k).

When a distinguisher D is connected to a system S, which we denote simply as
DS, this defines a random experiment. The probabilities of an event E in this

10 In particular the first output pD
X1 is defined before D is fed with any input.
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experiment will be denoted as PDS(E). We note that the probability distribution
PDS

XkY k can be expressed by

PDS
XkY k(xk, yk) =

k∏

i=1

pD
Xi|Xi−1Y i−1(xi, x

i−1, yi−1) pS
Yi|XiY i−1(yi, x

i, yi−1)

= pD
Xk|Y k−1(xk, yk−1) pS

Y k|Xk(yk, xk) , (2)

where the last equality follows from (1).
The performance of a distinguisher, called the advantage, can be defined in

two equivalent ways, both of which will be useful for us. We first state the
standard definition.

Definition 6. The advantage of distinguisher D for random systems S and T,
for k queries, denoted ΔD

k (S,T), is defined as

ΔD
k (S,T) :=

∣
∣PDS(W = 1) − PDT(W = 1)

∣
∣ .

For a class D of distinguishers, the advantage of the best D in D, asking at most
k queries, is denoted as

ΔD
k (S,T) := max

D∈D
ΔD

k (S,T).

For the class of all distinguishers we simply write Δk(S,T).

To state an equivalent definition of the advantage we need the following definition.

Definition 7. For two compatible systems S and T, 〈S/T〉 denotes the random
system which is equal to system S or T with probability 1

2 each. To make the
independent unbiased binary random variable, say Z, selecting between S (for
Z = 0) and T (for Z = 1) explicit, we write 〈S/T〉Z .11

The advantage ΔD
k (S,T) can be defined equivalently in terms of the probability

that D, interacting with the mixed system 〈S/T〉Z , guesses Z correctly:

Lemma 2. For every distinguisher D,12

ΔD
k (S,T) = 2

∣
∣
∣PD〈S/T〉Z (W = Z) − 1

2

∣
∣
∣ .

Proof. Let pz for z ∈ {0, 1} denote the probability that W = 1 if Z = z.
Then ΔD

k (S,T) = |p0 − p1| and PD〈S/T〉Z (W = Z) = 1
2 (1 − p0 + p1), hence

2
∣
∣PD〈S/T〉Z (W = Z) − 1

2

∣
∣ = |p0 − p1|. 
�

The following distinguisher classes are usually of special interest:

Definition 8. By NA we denote the class of computationally unbounded non-
adaptive distinguishers which select all queries X1, . . . , Xk in advance (i.e.,
11 It is helpful to think of Z as the position of a switch selecting between the systems

S and T.
12 The normalization factor 2 assures that the advantage is between 0 and 1. The

absolute value in |PD〈S/T〉Z (W = Z) − 1
2 | takes into account the fact that one can

always invert the output of a distinguisher whose success probability is below 1
2 .
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independent of the outputs Yi).13 By RI we denote the class of computation-
ally unbounded distinguishers which (cannot select the queries but) are given
uniformly random values X1, . . . , Xk (and the corresponding outputs Y1, . . . , Yk).

Clearly, RI ⊆ NA. The class NA is sometimes called nCPA (non-adaptive chosen-
plaintext attack) in the literature and the class RI is sometimes called KPA
(known-plaintext attack).

The following lemma captures the simple fact that if one has to distinguish
the systems S and 〈S/T〉Z , then the advantage is only half of the advantage
when distinguishing S and T. In a sense, 〈S/T〉Z is half-way between S and T.

Lemma 3. For every D, ΔD
k (S, 〈S/T〉Z) = 1

2ΔD
k (S,T).

Proof. This follows from the linearity of the probability of D outputting a 1: we
have PD〈S/T〉Z (W = 1) = 1

2 (PDS(W = 1) + PDT(W = 1)).

2.4 Game-Winning and Monotone Binary Outputs

An important paradigm in certain security definitions is the notion of winning a
game. Without loss of generality, a game with one player (e.g. the adversary) can
be described by an (X , Y)-system which interacts with its environment by taking
inputs X1, X2, . . . (considered as moves) and answering with outputs Y1, Y2, . . ..
In addition, after every input it also outputs a bit indicating whether the game
has been won. This bit is monotone in the sense that it is initially set to 0 and
that, once it has turned to 1 (the game is won), it can not turn back to 0. This
motivates the following definition, which captures the notion of game-winning.

Definition 9. For a (X , Y × {0, 1})-system S the binary component Ai of the
output (Yi, Ai) is called a monotone binary output (MBO) if Ai = 1 implies
Aj = 1 for j ≥ i. For such a system S with MBO we define two derived systems:

(i) S− is the (X , Y)-system resulting from S by ignoring the MBO.
(ii) S� is the (X , Y × {0, 1})-system which masks the Y-output to a dummy

symbol (⊥) as soon as the MBO turns to 1. More precisely, the following
function is applied to the outputs of S:

(y, a) �→ (y′, a) where y′ =
{

y if a = 0
⊥ if a = 1.

Definition 10. Two systems S and T with MBOs are called restricted equiva-
lent if S� ≡ T�, i.e., if they are equivalent as long as the MBO is 0.

A system (or player) D interacting with S, trying to win the game defined by S,
is like a distinguisher, except that it need not have a binary output W . Whether
or not D “sees” the MBO is irrelevant; one can think of D interacting with S−

instead of S. One could call such a D a “player” or a “provoker”, as it tries to
provoke the MBO to become 1, but for consistency we will continue to call D a
distinguisher.
13 One can view such a distinguisher as making a single (compound) query (x1, . . . , xk).
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Definition 11. For a (X , Y × {0, 1})-random system S with an MBO (called
Ai) and for a distinguisher D, we denote with νD

k (S) the probability that D
wins the game within k queries:

νD
k (S) := PDS(Ak = 1).

For a class D of distinguishers, the winning probability of the best D in D within
k queries is denoted as

νD
k (S) := max

D∈D
νD

k (S).

For the class of all distinguishers we simply write νk(S).

3 Relating Indistinguishability and Game-Winning

3.1 From Game-Winning to Indistinguishability

The following lemma was proved in [Mau02]. Versions of this lemma for special
types of systems appeared subsequently.

Lemma 4. Let S and T be two (X , Y × {0, 1})-random systems with MBOs. If
S� ≡ T�, then

ΔD
k (S−,T−) ≤ νD

k (S) = νD
k (T)

for all distinguishers D for (X , Y)-random systems.14 In particular, for any dis-
tinguisher class D, ΔD

k (S−,T−) ≤ νD
k (S), hence Δk(S−,T−) ≤ νk(S) and

ΔNA
k (S−,T−) ≤ νNA

k (S).

Proof. According to Lemma 2, ΔD
k (S,T) can be computed in terms of the prob-

ability that D guesses the switch Z in 〈S/T〉Z correctly. The condition S� ≡ T�

implies that if the MBO of 〈S/T〉Z is 0, then the output of 〈S/T〉Z is independent
of Z, and therefore in this case D cannot do better than guess randomly. (If the
MBO is 1, the success probability is bounded by 1.) Hence, if we denote by p the
probability that D sets the MBO to 1, the probability that D guesses Z correctly
is bounded by 1

2 (1−p)+p = 1
2 + 1

2p, where p = νD
k (〈S/T〉Z) = νD

k (S) = νD
k (T).

Applying Lemma 2 completes the proof. 
�

3.2 From Indistinguishability to Game-Winning

The following lemma states, in a certain sense, a converse to Lemma 4, and is
a key tool for the proofs of the main results. While Lemma 4 holds for every
distinguisher, whether computationally bounded or not, and whether or not its
binary output is determined optimally based on the transcript, the converse only
holds in the information-theoretic setting and if we assume that the decision bit
is computed optimally. More precisely, it is a statement about the statistical
distance of transcripts.
14 Recall that it is well-defined what it means for such a distinguisher to play the game

for S which is defined with an MBO.
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Definition 12. Let

δD
k (S,T) := ‖PDS

XkY k − PDT
XkY k‖

be the statistical distance of the transcripts (XkY k) when D interacts with S
and T, respectively. For a class D of distinguishers we define15

δDk (S,T) := max
D∈D

δD
k (S,T).

Note that in general we have ΔD
k (S,T) ≤ δD

k (S,T), but for a computation-
ally unbounded distinguisher D that chooses the output bit optimally, we have
ΔD

k (S,T) = δD
k (S,T). In particular,

Δk(S,T) = δk(S,T) and ΔNA
k (S,T) = δNA

k (S,T).

Lemma 5. For any two (X , Y)-systems S and T there exist (X , Y × {0, 1})-
random systems Ŝ and T̂ with MBOs such that

(i) Ŝ− ≡ S,
(ii) T̂− ≡ T,
(iii) Ŝ� ≡ T̂�, and
(iv) δD

k (S,T) = νD
k (Ŝ) = νD

k (T̂) for all D.16

To illustrate the idea of the proof of Lemma 5, we consider an analogous state-
ment (in fact, a special case) where probability distributions PX and QX (over
some alphabet X ) take the place of the random systems Ŝ and T̂. In this case,
the systems with MBO can be replaced by joint distributions P̂XA and Q̂XA,
where A is binary. Indeed, if we define these distributions by

P̂XA(x, 0) = Q̂XA(x, 0) = min(PX(x), QX(x))

P̂XA(x, 1) = PX(x) − min(PX(x), QX(x))

Q̂XA(x, 1) = QX(x) − min(PX(x), QX(x))

(for any x ∈ X ) it is easy to verify that P̂X = PX and Q̂X = QX , which
corresponds to (i) and (ii), respectively. Furthermore, and trivially, P̂XA(·, 0) =
Q̂XA(·, 0), which is (iii). Finally, because the statistical distance can be written
as

δ(PX , QX) = 1 −
∑

x

min(PX(x), QX(x)) , (3)

the equivalent of (iv) follows from the fact that the right-hand side of (3) equals
P̂A(1) = Q̂A(1).

15 For the class of all distinguishers we simply write δk(S,T).
16 This also implies, for example, Δk(S,T) = νk(Ŝ) and ΔNA

k (S,T) = νNA
k (Ŝ).
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Proof (of Lemma 5). The idea is to define the system Ŝ with MBO Ai (and,
likewise, T̂) such that, for all i ≥ 1,

pŜ
Y iAi|Xi(yi, 0, xi) := mxi,yi

pŜ
Y iAi|Xi(yi, 1, xi) := pS

Y i|Xi(yi, xi) − mxi,yi ,
(4)

where
mxi,yi := min(pS

Y i|Xi(yi, xi), pT
Y i|Xi(yi, xi)) .

We will verify below that this can always be done consistently.
Note that properties (i), (ii), and (iii) follow immediately from these equations

(similarly to the above argument for random variables). To verify (iv), we recall
that the probabilities of PDS

XkY k (and, likewise, PDT
XkY k) can be expressed by

equation (2). Using formula (3) for the statistical distance we find

δD
k (S,T) = ‖PDS

XkY k − PDT
XkY k‖

= 1 −
∑

xk,yk

min
(
PDS

XkY k(xk, yk), PDT
XkY k(xk, yk)

)

= 1 −
∑

xk,yk

pD
Xk|Y k−1(xk, yk−1)min

(
pS

Y k|Xk(yk, xk), pT
Y k|Xk(yk, xk)

)
.

Property (iv) then follows because the probability that the MBO Ak of Ŝ (and,
likewise, T̂) equals 1 after k steps is given by

νD
k (Ŝ) = 1 −

∑

xk,yk

PDŜ
XkY kAk(xk,yk,0)

= 1 −
∑

xk,yk

pD
Xk|Y k−1(xk, yk−1)pŜ

Y kAk|Xk(yk, 0, xk) ,

which equals the above expression for δD
k (S,T).

It remains to verify that there exists a system Ŝ satisfying (4) (the argument
for T̂ follows by symmetry).

Note that (4) only determines the interrelation between the system’s output
Yi and the value Ai of the MBO at the same step, but it does not specify
the dependency on previous values Ai−1. In fact, there are various degrees of
freedom in the definition of Ŝ, for instance in the choice of the probabilities
rxi,yi := pŜ

Y iAi−1|Xi(yi, 0i−1, xi). Most generally, the probabilities defining Ŝ,
conditioned on the event that the previous MBO equals 0, can be written as17

pŜ
YiAi|XiY i−1Ai−1(yi, ai, x

i, yi−1, 0i−1) :=

⎧
⎨

⎩

mxi,yi

mxi−1,yi−1
if ai = 0

rxi,yi−mxi,yi

mxi−1,yi−1
if ai = 1,

17 We use the convention pS
Y 0|X0 ≡ 1 and, in particular, mx0,y0 = 1.
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for any i ≥ 1, where rxi,yi ∈ [mxi,yi , pS
Y i|Xi(yi, xi)] are parameters. To make

sure that the conditional probabilities sum up to 1, we require
∑

yi

rxi,yi = mxi−1,yi−1 , (5)

for any fixed xi and yi−1. Note that such a choice of rxi,yi always exists because
the right side of (5) lies in the interval

mxi−1,yi−1 ∈
[∑

yi

mxi,yi ,
∑

yi

pS
Y i|Xi(yi, xi)

]
.

To complete the definition of Ŝ, we set, for any i > 1 and ai−1 	= 0,

pŜ
YiAi|XiY i−1Ai−1(yi, 1, xi, yi−1, ai−1) :=

pS
Y i|Xi(yi, xi) − rxi,yi

pS
Y i−1|Xi−1(yi−1, xi−1) − mxi−1,yi−1

.

Again, the conditional probabilities are well-defined because all values are non-
negative and, by (5), sum up to 1. Furthermore, it is easy to see that the outputs
Ai of Ŝ are indeed monotone. Finally, by induction over i, it is straightforward
to verify that Ŝ satisfies (4), which concludes the proof. 
�

We give another interpretation of Lemma 5. If two probability distributions
PX and QX have statistical distance δ then there exists a (common) random
experiment with two random variables X ′ and X ′′, distributed according to PX

and QX , respectively, such that X ′ = X ′′ with probability 1 − δ. Lemma 5 can
be interpreted as the generalization of this statement to random systems. For
any distinguisher D, two random systems S and T are equal with probability
1 − δ, where δ is D’s distinguishing advantage.

4 Amplification of the Distinguishing Advantage

4.1 Neutralizing Constructions

Throughout the rest of the paper we let C(·, ·) be a construction invoking two
systems. For example C(F,G) denotes the system obtained when C(·, ·) invokes
the two systems F and G.

Definition 13. A construction C(·, ·) is called neutralizing for the pairs (F, I)
and (G,J) of (independent) systems if

C(F,J) ≡ C(I,G) ≡ C(I,J) ≡ Q (6)

(for some Q). Moreover, we denote by k′ and k′′ the maximal number of queries
made to the first and the second subsystem, respectively, when the number of
queries to C(·, ·) is k.
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D

SSS

TTT

D′
k

D′′
k

D′
0

D′′
0

Fig. 1. Illustration for the proof of Lemma 6. D can be seen as a pair (D′
k,D′′

k) of
distinguishers which can exchange up to k = 2k′′ messages (simply set D′

k ≡ D and
D′′

k to be the trivial system which only passes messages). The gray arrows indicate the
MBOs.

4.2 Winning Independent Games

The following lemma states that the best combined strategy for winning two
independent games is not better than applying the individually best strategies
separately. We note that this is (of course) also true for real games, like playing
black jack, but we phrase the result at an abstract (and hence very general)
level.

We need some new notation: For two systems S and T with MBOs let [S‖T]∧

be the system consisting of S and T being accessible independently, with an MBO
which is 1 if and only if the MBOs of S and T are both 1. Let νD

k′,k′′ ([S ‖T]∧)
denote the advantage of the best distinguisher in D, making k′ and k′′ (arbitrarily
scheduled) queries to S and T, respectively, in setting the MBO to 1 (we simply
write νk′,k′′ ([S‖T]∧) if D is the class of all distinguishers).

Lemma 6. For any random systems S and T with MBOs, and any k′ and k′′,

νk′,k′′([S‖T]∧) = νk′ (S) νk′′ (T), (7)

and
νNA

k′,k′′ ([S‖T]∧) = νNA
k′ (S) νNA

k′′ (T). (8)

Proof. The non-adaptive case (8) follows from the adaptive case (7) by viewing
the non-adaptive queries as a single adaptive query. To prove (7), let D be an
optimal distinguisher for the task considered, i.e.

νk′,k′′([S‖T]∧) = νD
k′,k′′ ([S‖T]∧).

Let A1, . . . , Ak′ and B1, . . . , Bk′′ denote the MBOs of S and T, respectively.
We can interpret D as a pair (D′

k,D′′
k) of distinguishers which can exchange up

to k = 2k′′ messages with each other, as shown in Figure 1. As this is just a
conceptual change, the advantage of setting both MBOs to 1 is exactly the same
for D as for the pair (D′

k,D′′
k).

Now assume that there is a pair of distinguishers D′
� and D′′

� which can
exchange up to � messages and have advantage ε to provoke (Ak′ = 1) ∧ (Bk′′ =
1) when querying S and T, respectively. We claim that then there also exist
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distinguishers D′
�−1 and D′′

�−1 which exchange one message less but still have
advantage at least ε to provoke (Ak = 1)∧ (Bk = 1). Before we prove this claim,
note that it implies the lemma as, by induction, there now exist D′

0 and D′′
0

(which do not communicate at all) where

νk′,k′′ ([S‖T]∧) ≤ ν
D′

0
k′ (S) · ν

D′′
0

k′′ (T) ≤ νk′(S) · νk′′ (T).

We actually have equality above as the other direction (≥) is trivial. To prove
the claim, assume that the (last) �-th message is sent from D′

� to D′′
� . Let the

random variable M denote this last message, and let V be the “view” of D′′
�

just before receiving the message. Let E denote this random experiment where
D′

� and D′′
� are querying S and T respectively. The probability that we have

Ak′ = 1 ∧ Bk′′ = 1 is
∑

m,v

PE [Ak′ = 1 ∧ M = m ∧ V = v] · PE [Bk′′ = 1|M = m ∧ V = v]. (9)

We used PE [Bk′′ = 1|Ak′ = 1∧ M = m ∧V = v] = PE [Bk′′ = 1|M = m ∧V = v]
which holds as S is independent of T and the whole interaction between these
systems is captured by M and V . Now consider a new system D′′

�−1 which
simulates D′′

� but does not expect the (last) �-th message M and instead replaces
it with a message m′ which maximizes the probability of Bk′′ = 1 (given the view
V ). Also, let D′

�−1 be the system D′
�, but where the last message is not sent (note

that this change does not affect the probability of Ak′ = 1 or the distribution of
V ). The probability that the pair (D′

�−1,D
′′
�−1) can provoke Ak′ = 1 ∧ Bk′′ = 1

is thus
∑

m,v

PE [Ak′ = 1 ∧ M = m ∧ V = v] · max
m′

PE [Bk′′ = 1|M = m′ ∧ V = v]

which is at least equal to (9). 
�

4.3 The Product Theorem

We can now state the first main result of the paper. Recall Definition 13.

Theorem 1. If C(·, ·) is neutralizing for the pairs (F, I) and (G,J) of systems,
then, for all k,

Δk(C(F,G),C(I,J)) ≤ 2 Δk′ (F, I) Δk′′ (G,J).

Proof. We consider the systems HZ,Z′ := C(〈I/F〉Z , 〈J/G〉Z′), indexed by Z
and Z ′, where Z and Z ′ are independent unbiased bits. Due to (6) we have
H11 ≡ C(F,G) and H00 ≡ H01 ≡ H10 ≡ Q ≡ C(I,J). One can hence easily
verify that

HZ,Z′ ≡ 〈〈Q/C(F,G)〉Z′/Q〉Z⊕Z′ ,

by checking the equivalence for all four values of the pair (Z, Z ′).
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Lemma 3 implies that Δk(C(F,G),Q) = 2 · Δk(〈Q/C(F,G)〉Z′ ,Q), where,
according to Lemma 2, Δk(〈Q/C(F,G)〉Z′ ,Q) is equal to the optimal advantage
in guessing Z ⊕Z ′ with k queries to HZ,Z′ , since Z ′ and Z ⊕Z ′ are independent
unbiased bits. For the analysis of this advantage we consider the form HZ,Z′ =
C(〈I/F〉Z , 〈J/G〉Z′).

Let F̂ and Î be defined as guaranteed by Lemma 5, where F̂− ≡ F, Î− ≡ I,
F̂� ≡ Î�, and δk′(F, I) = Δk′ (F, I) = νk′ (F̂). Similarly, let Ĝ and Ĵ be defined
such that Ĝ− ≡ G, Ĵ− ≡ J, Ĝ� ≡ Ĵ�, and δk′′(G,J) = Δk′′ (G,J) = νk′′ (Ĝ).
We define the system

ĤZ,Z′ := C(〈Î/F̂〉Z , 〈Ĵ/Ĝ〉Z′)

with two MBOs. If we define Ĥ−
Z,Z′ as ĤZ,Z′ with both MBOs ignored, then

Ĥ−
Z,Z′ ≡ HZ,Z′ .
Since the MBOs can always be ignored, guessing Z ⊕ Z ′ can only become

easier in ĤZ,Z′ (compared to HZ,Z′ .) If we assume further that whenever an
MBO turns to 1, the corresponding bit (Z or Z ′) is also output (i.e., given to
the distinguisher for free), this can only improve the advantage further.

If either MBO is 0, the advantage in guessing that bit (Z or Z ′) is 0, and
hence also the advantage in guessing Z ⊕ Z ′ is 0. Thus the optimal strategy
for guessing Z ⊕ Z ′ is to provoke both MBOs (i.e., win both games), and the
probability that this succeeds is the advantage in guessing Z ⊕ Z ′.

We can now consider making the distinguisher’s task even easier. Instead of
having to provoke the two MBOs in the system ĤZ,Z′ , we give the distinguisher
direct access to the systems 〈Î/F̂〉Z and 〈Ĵ/Ĝ〉Z′ , allowing k′ and k′′ queries, re-
spectively. Lemma 6 implies that in this setting, using individual optimal strate-
gies is optimal. The probabilities of provoking the MBOs by individually optimal
strategies are νk′ (F̂) = Δk′(F, I) and νk′′ (Ĝ) = Δk′′ (G,J), respectively, hence
the advantage in guessing Z ⊕Z ′ is Δk′ (F, I)Δk′′ (G,J). Taking into account the
factor 2 from above (due to Lemma 3) this completes the proof. 
�

We say that a construction C(·, ·) is feed-forward if, within the evaluation of a
single query to C(F,G), no input to F (or G) depends on a previous output of
F (or G) of the same evaluation of C(F,G). We will only consider constructions
C(·, ·) that make a single call to the invoked systems per invocation of C(·, ·),
and such constructions are always feed-forward. The proof of the following result
is omitted.

Corollary 1. Consider the setting of Theorem 1. If C(·, ·) is a feed-forward
construction, then the inequality also holds for non-adaptive strategies:

ΔNA
k (C(F,G),C(I,J)) ≤ 2 ΔNA

k′ (F, I) ΔNA
k′′ (G,J).

4.4 Implications of the Product Theorem

Recall that R (P) denotes a uniform random function (permutation).
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Definition 14. For two (X , Y)-systems F and G and a quasi-group operation
� on Y, we define F � G as the system obtained by feeding each input to both
systems and combining the outputs using �.

Corollary 2. For any random functions F and G, any quasi-group operation �,
and for all k,

Δk(F � G,R) ≤ 2 Δk(F,R) Δk(G,R)

and
ΔNA

k (F � G,R) ≤ 2 ΔNA
k (F,R) ΔNA

k (G,R).

The same statements hold for general random systems F and G when R is
replaced by (a beacon) B.

Proof. Let I := R and J := R in Theorem 1 and C(F,G) := F�G. Condition (6)
is satisfied since F � R ≡ R, R � G ≡ R, and R � R ≡ R. This proves the first
inequality. The second inequality follows from Corollary 1 since F � G is clearly
a feed-forward construction. The proof of the last statement is analogous. 
�

Definition 15. For two (X , X )-random permutations F and G we define F�G
as the system obtained by cascading F and G, i.e., the input to F � G is fed to
F, its output is fed to G, and G’s output is the output of F � G. Moreover, for
a random permutation F, we denote by 〈F〉 the random permutation which can
be queried from “both sides”, i.e., one can also provide an output and receive
the corresponding input.18

Corollary 3. For any compatible random permutations F and G, where G is
stateless, for all k,

Δk(F � G,P) ≤ 2 Δk(F,P) Δk(G,P)

and
ΔNA

k (F � G,P) ≤ 2 ΔNA
k (F,P) ΔNA

k (G,P).

If also F is stateless, then the corresponding two inequalities also hold when
bi-directional permutations are considered.19

Proof. Let I := P and J := P in Theorem 1 and C(F,G) := F�G. Condition (6)
is satisfied since F�P ≡ P, P�G ≡ P, and P�P ≡ P. Note that P�G ≡ P is only
guaranteed to hold if G is stateless.20 No restriction applies to F. This proves
the first inequality. The second inequality follows from Corollary 1 since the
cascade construction is feed-forward. The proof of the last statement is similar
but omitted. 
�
18 This definition is motivated by considering chosen-plaintext and chosen-ciphertext

attacks against a block-cipher. One-sided and two-sided attacks are sometimes also
called CCA and nCCA, for the adaptive and the non-adaptive version.

19 E.g., Δk(〈F〉 � 〈G〉, 〈P〉) ≤ 2 Δk(〈F〉, 〈P〉) Δk(〈G〉, 〈P〉).
20 As an example, consider a stateful random permutation G which internally builds

a permutation function table by always taking the least unused element.
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5 Amplification of the Distinguisher Class

The second main result of this paper states that if subsystems of a neutralizing
construction are only indistinguishable from ideal systems by a weak distin-
guisher class, then the construction is indistinguishable for a stronger distin-
guisher class. Recall Definition 13.

Theorem 2. If C(·, ·) is neutralizing for the pairs (F, I) and (G,J) of systems,
then, for all k and all distinguishers D,21

δD
k (C(F,G),C(I,J)) ≤ δ

DC(·,J)
k′ (F, I) + δ

DC(I,·)
k′′ (G,J).

Proof. As in the proof of Theorem 1, let F̂ and Î be defined as guaranteed by
Lemma 5, where F̂− ≡ F, Î− ≡ I, F̂� ≡ Î�, and δD

k (F, I) = νD
k (F̂) = νD

k (Î)
for all D. (Note that this D is different from that in the theorem.) Similarly, let
Ĝ and Ĵ be defined such that Ĝ− ≡ G, Ĵ− ≡ J, Ĝ� ≡ Ĵ�, and δD

k (G,J) =
νD

k (Ĝ) = νD
k (Ĵ) for all D.

We can consider the following two systems with MBO: Ĥ00 := C(Î, Ĵ) and
Ĥ11 := C(F̂, Ĝ), where for each system the MBO is defined as the OR of the two
internal MBOs. We have Ĥ�

00 ≡ Ĥ�
11 because F̂� ≡ Î� and Ĝ� ≡ Ĵ�. Therefore,

since Ĥ−
00 ≡ C(I,J) and Ĥ−

11 ≡ C(F,G), Lemma 4 implies that

δD
k (C(F,G),C(I,J)) ≤ νD

k (Ĥ00).

It remains to determine a bound on νD
k (Ĥ00). The MBO in Ĥ00 (i.e., in

C(Î, Ĵ)) is provoked if either of the two internal MBOs is provoked. We can
apply the union bound and consider the provocation of each MBO separately.
More precisely, we consider the following systems with MBO: C(Î,J) and C(I, Ĵ).
Then νD

k (Ĥ00) is bounded by the sum of the probabilities that D provokes the
MBO in each of these systems, i.e.,

νD
k (Ĥ00) ≤ νD

k (C(Î,J)) + νD
k (C(I, Ĵ)).

The proof is completed, using Lemma 5, by noting that νD
k (C(Î,J))=ν

DC(·,J)
k′ (Î)

= δ
DC(·,J)
k′ (F, I) and νD

k (C(I, Ĵ)) = ν
DC(I,·)
k′′ (Ĵ) = δ

DC(I,·)
k′′ (G,J). 
�

Note that since Theorem 2 applies to every distinguisher, it also applies to any
distinguisher class D, for instance the class of all distinguishers. Recalling that
Δk(S,T) = δk(S,T) and ΔNA

k (S,T) = δNA
k (S,T), we obtain:

Corollary 4. For any compatible random functions F and G and any quasi-
group operation �, and all k,

Δk(F � G,R) ≤ ΔNA
k (F,R) + ΔNA

k (G,R).
21 Here, for example, DC(·,J) denotes the distinguisher consisting of D connected to

C(·, ·) where the second subsystem is simulated as J and the system to be distin-
guished is placed as the first subsystem.



148 U. Maurer, K. Pietrzak, and R. Renner

Proof. We recall that the �-combination is neutralizing: F�R ≡ R�G ≡ R�R ≡
R. It remains to show that the distinguisher classes correspond to the class of
non-adaptive distinguishers.

For any D, the distinguisher DC(·,J) (i.e., the distinguisher D(· �R)) for pro-
voking the MBO in F̂ obtains only random outputs, independently of F̂. A distin-
guisher could simulate these random outputs itself, ignoring the output of F � R,
and hence corresponds to a non-adaptive distinguisher. The same argument also
applies to the distinguisher DC(I, ·) for provoking the MBO in Ĝ. 
�
Corollary 5. For any compatible random permutations F and G, where G is
stateless, for all k,

Δk(F � G,P) ≤ ΔNA
k (F,P) + ΔRI

k (G,P).

If also F is stateless, then22

Δk(〈F � G−1〉, 〈P〉) ≤ ΔNA
k (F,P) + ΔNA

k (G,P).

The last statement means that 〈F � G−1〉 is adaptively indistinguishable (from
both sides) if F and G are only non-adaptively indistinguishable (from one side).

Proof. We recall that the �-combination is neutralizing: F�P ≡ P�G ≡ P�P ≡
P. It remains to show that the distinguisher classes correspond to the class NA
of non-adaptive distinguishers and the class RI of random-input distinguishers,
respectively.

For any D, the distinguisher DC(·,J), i.e., the distinguisher D(·�P), obtains
only random outputs, independently of F. A distinguisher could simulate these
random outputs itself, ignoring the output of F �P, and hence corresponds to a
non-adaptive distinguisher.

Similarly, the distinguisher DC(I, ·), i.e., the distinguisher D(P � ·), can only
produce random inputs to G, with the possibility of repeating a previous input.
Because G is stateless, repeating an input does not help in provoking the MBO
in G.

The proof of the second statement is omitted. 
�
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